
Fast and Accurate Model Scaling

Piotr Dollár Mannat Singh Ross Girshick

Facebook AI Research (FAIR)

Abstract

In this work we analyze strategies for convolutional neu-

ral network scaling; that is, the process of scaling a base

convolutional network to endow it with greater computa-

tional complexity and consequently representational power.

Example scaling strategies may include increasing model

width, depth, resolution, etc. While various scaling strate-

gies exist, their tradeoffs are not fully understood. Existing

analysis typically focuses on the interplay of accuracy and

flops (floating point operations). Yet, as we demonstrate,

various scaling strategies affect model parameters, activa-

tions, and consequently actual runtime quite differently. In

our experiments we show the surprising result that numer-

ous scaling strategies yield networks with similar accuracy

but with widely varying properties. This leads us to pro-

pose a simple fast compound scaling strategy that encour-

ages primarily scaling model width, while scaling depth and

resolution to a lesser extent. Unlike currently popular scal-

ing strategies, which result in about O(s) increase in model

activation w.r.t. scaling flops by a factor of s, the proposed

fast compound scaling results in close to O(
√

s) increase in

activations, while achieving excellent accuracy. Fewer ac-

tivations leads to speedups on modern memory-bandwidth

limited hardware (e.g., GPUs). More generally, we hope

this work provides a framework for analyzing scaling strate-

gies under various computational constraints.

1. Introduction

Advances in modern hardware for training and running

convolutional neural networks over the past several years

have been impressive. Highly-parallel hardware accelera-

tors, such as GPUs and TPUs, allow for training and de-

ploying ever larger and more accurate networks.

Interestingly, this rapid advancement has greatly bene-

fited our ability to optimize models for the low-compute

regime. In particular, whether via manual design, random

search, or more complex neural architecture search strate-

gies [37], it has become feasible to train a large number of

small models and select the best one, in terms of both accu-

racy and speed. At intermediate-compute regimes, efficient

search [17] or efficient design spaces [22, 23] can still pro-

0.5 1 2 4
flops (B)

17

18

19

20

21

22

23

er
ro

r

EfficientNet
compound (dwr)
depth+width (dw)
fast (dWr)
width (w)

0.5 1 2 4
flops (B)

17

18

19

20

21

22

23

er
ro

r

RegNetZ
compound (dwr)
depth+width (dw)
fast (dWr)
width (w)

1 2 4 8 16 32
scale (s)

0

5

10

15

20

re
la

tiv
e

ac
tiv

at
io

ns
 (a

)

scaling complexity
dwr: a=O(s5/6)
dw: a=O(s3/4)
dWr: a=O(s3/5)
w: a=O(s)

0.5 1 2 4 8 16
flops (B)

0

10

20

30

40

50

60

ep
oc

h
tim

e
(m

)

EfficientNet
compound (dwr)
depth+width (dw)
fast (dWr)
width (w)

Figure 1. An analysis of four model scaling strategies: width

scaling (w), in which only the width of a base model is scaled;

compound scaling (dwr), in which the width, depth, and resolu-

tion are all scaled in roughly equal proportions; depth and width

scaling (dw); and the proposed fast compound scaling (dW r),

which emphasizes scaling primarily, but not only, the model width.

(Top): We apply the four scaling strategies to two base models

(EfficientNet-B0 and RegNetZ-500MF). Compound and fast scal-

ing result in highest accuracy models, and both outperform width

scaling. (Bottom-left): The scaling strategies have asymptotically

different behavior in how they affect model activations. Given a

scale factor of s, activations increase with about O(
√

s) for w and

dW r scaling compared to almost O(s) for dwr and dw scaling.

(Bottom-right): Runtime of a model (EfficientNet-B0) scaled us-

ing the four scaling strategies. Fast scaling results in models nearly

as fast as w scaling (but with higher accuracy), and much faster

than dwr and dw scaling, closely reflecting model activations.

vide the ability to directly optimize neural networks. How-

ever, regardless of computational resources, there will nec-

essarily exist a high-compute regime where it may only be

feasible to train a handful of models, or possibly even only

a single model. This regime motivates our work.

In the high-compute regime, network scaling, the pro-

cess by which a lower-complexity model is enlarged by

expanding one or more of its dimensions (e.g., depth or

width), becomes essential. Scaling has proven effective in

terms of obtaining larger models with good accuracy [32].

However, existing work on model scaling focuses on model

accuracy. In this work, we are interested in large, accurate

models that are fast enough to deploy and use in practice.

924

The concept of network scaling emerged naturally in

deep learning, with early work focused on scaling networks

by increasing depth [27, 29, 10]. However, gains from

depth scaling plateaued, leading to explorations of scaling

width [35] and resolution [12]. More recently scaling multi-

ple dimensions at once, coined compound scaling [32], has

been shown to achieve excellent accuracy.

Existing explorations of model scaling typically focus on

maximizing accuracy versus flops. Yet as we will show, two

scaled models with the same flops can have very different

runtime on modern accelerators. This leads us to the cen-

tral question explored in our work: can we design scaling

strategies that optimize both accuracy and model runtime?

Our first core observation is that there exists multiple

scaling strategies that can yield similar accuracy models at

the same flops. In Figure 1, top, we show that there ex-

ist multiple scaling strategies that can result in models with

high accuracy. We will expand on this result in §6.

However, scaling a model to a fixed target flops using

two scaling strategies can result in widely different run-

times, see Figure 1, bottom-right. To better understand this

behavior at a more fundamental level, in §3 we develop a

framework for analyzing the complexity of various scaling

strategies, in terms of not just flops, but also parameters

and activations. In particular, we show that different strate-

gies scale activations at different asymptotic rates relative to

flops. E.g., when scaling a model from f flops to sf flops

by scaling width, activations increase by O(
√

s), compared

to nearly O(s) for compound scaling. Figure 1, bottom-left,

shows this asymptotic behavior for a few select strategies.

In §4 we will show that within a flop range of practi-

cal interest, on modern accelerators the runtime of a scaled

model is more strongly correlated with activations than

flops. We emphasize that this correlation holds over a di-

verse set of scaling strategies, which enables us to use acti-

vations as a proxy for predicting a scaled model’s runtime.

Based on our analysis, in §5 we introduce a new fam-

ily of scaling strategies parameterized by a single param-

eter α that controls the relative scaling along model width

versus other dimensions. This lets us carefully control the

asymptotic rate at which model activations scale. We show

0 ≪ α < 1 yields models that are both fast and accurate.

We refer to this scaling strategy as fast compound model

scaling, or simply fast scaling for brevity.

As we will show in §6, fast scaling allows us to obtain

large models that are as accurate as the state-of-the-art but

faster. As a concrete example, we apply fast scaling to scale

a RegNetY-4GF [23] model to 16GF (gigaflops), and find

it uses less memory and is faster (and more accurate) than

EfficientNet-B4 [32] – a model with 4× fewer flops.

In order to facilitate future research we will release all

code and pretrained models introduced in this work.1

1https://github.com/facebookresearch/pycls

2. Related Work

Manual network design. Since the impressive success of

AlexNet [16], and with the steady progress of hardware ac-

celerators, the community has pushed toward ever larger

and more accurate models. Increasing model depth led to

rapid gains, notable examples include VGG [27] and Incep-

tion [29, 30]. This trend culminated with the introduction

of residual networks [10]. Next, wider models proved not

only effective but particularly efficient [35, 12]. The use

of depthwise [3] and group convolution [33] enabled even

higher capacity models. Other notable design elements that

led to larger and more accurate models include the inverted

bottleneck [26], SE [13], and new nonlinearities [11, 24].

Automated network design. With the rapid advancement

of hardware for training deep models, it has become more

feasible to automate network design. Neural architecture

search [37, 38, 25] has turned into a thriving research area

and led to highly efficient models, especially in the low-

compute regime. Model search is computationally expen-

sive when training larger models, this has led to interest in

developing efficient search algorithms [17, 21, 18]. For ex-

ample, DARTS [18] proposed a differentiable search strat-

egy that does not require training multiple separate mod-

els to optimize model structure. Nevertheless, in practice

search is most effective in low or medium compute regimes.

Design space design. Despite the effectiveness of model

search, the paradigm has limitations. The outcome of a

search is a single model instance tuned to a specific set-

ting (e.g., dataset or flop regime). As an alternative, Ra-

dosavovic et al. [23] recently introduced the idea of design-

ing design spaces, and designed a low-dimensional design

space consisting of simple, easy-to-tune models. Given a

new dataset or compute regime, a model can be selected

from this design space by tuning a handful of parameters,

allowing for highly efficient random search. This allows for

optimizing models directly in fairly high-compute regimes.

We utilize these efficient design spaces in our experiments.

Network scaling. Regardless of the model design strategy,

there will exist some computational regime in which it is

not feasible to train and compare a large number of mod-

els. Thus model scaling becomes crucial. Popular scaling

strategies include scaling depth [27, 29, 10], width [35, 12]

and resolution [12, 14]. The recently introduced compound

scaling strategy [31], which scales along all three dimen-

sions at once, achieves an excellent accuracy versus flops

tradeoff and serves as a core baseline in our work.

Going bigger. There is substantial interest in scaling to

massive datasets [28, 19] and compute regimes [14]. More-

over, recent progress in unsupervised learning [9, 2, 1] may

create the potential to train with essentially unlimited data.

These efforts motivate our work: we aim to enable scaling

models to the size necessary for these brave new regimes.

925

https://github.com/facebookresearch/pycls

dim scaling flops (f) params (p) acts (a)

none d w r dw2r2 dw2 dwr2

d sd w r sdw2r2 sdw2 sdwr2

w d
√

sw r sdw2r2 sdw2
√

sdwr2

r d w
√

sr sdw2r2 1dw2 sdwr2

Table 1. Simple scaling: Complexity of scaling a stage (of d conv

layers with width w and spatial resolution r×r) by a factor of s
using various simple scaling strategies where a single dimension

is varied at a time. Note that parameters and activations vary sub-

stantially for the scaling strategies, especially for large s.

3. Complexity of Scaled Models

In this section we present a general framework for ana-

lyzing the complexity of various network scaling strategies.

While the framework is simple and intuitive, it proves pow-

erful in understanding and extending model scaling.

3.1. Complexity Metrics

The three most relevant properties of models we con-

sider are their flops (f), parameters (p), and activations (a).

Following common practice, we use flops to mean multiply-

adds and parameters to denote the number of free variables

in a model. We define activations as the number of elements

in the output tensors of convolutional (conv) layers.

Flops and parameters are popular complexity measures

of neural networks. We note, however, that parameters of a

convolution are independent of input resolution and hence

do not fully reflect the actual capacity or runtime of a convo-

lutional network. Therefore, given that we study networks

with varying input resolution, we report parameters but we

focus on flops as a primary complexity measure.

Activations are less often reported but as we demonstrate

play a key role in determining network speed on modern

memory-bandwidth limited hardware. Hence, we carefully

analyze the interplay between scaling and activations.

3.2. Network Complexity

While conv networks are composed of many heteroge-

neous layers, we focus our complexity analysis on conv lay-

ers. First, many layers such as normalization, pooling, or

activation often account for a small percentage of a model’s

compute. Second, the number and complexity of these lay-

ers tends to be proportional to the number and size of conv

layers (e.g., every conv may be followed by an activation).

For these reasons analyzing convs serves as an excellent

proxy of how model scaling affects an entire network.

Consider a k×k conv layer with width (number of chan-

nels) w and spatial resolution r. The layer takes in a feature

map of size r×r×w, and for each of the r2 patches of size

k×k×w the network applies w dot products of size wk2.

Therefore the complexity of a conv layer is given by:

f = w2r2k2, p = k2w2, a = wr2 (1)

As k is not scaled, we let k = 1 without loss of generality.

dims scaling flops (f) params (p) acts (a)

dw
√

sd 4
√

sw r sdw2r2 sdw2 s3/4dwr2

wr d 4
√

sw 4
√

sr sdw2r2
√

sdw2 s3/4dwr2

dr
√

sd w 4
√

sr sdw2r2
√

sdw2 sdwr2

dwr 3
√

sd 6
√

sw 6
√

sr sdw2r2 s2/3dw2 s5/6dwr2

Table 2. Compound scaling: Complexity of compound scaling

strategies with uniform scaling along each dimension, where the

relative flops increase of scaling along each dimension is equal.

Scaling uniformly along all dimensions, which closely resembles

compound scaling [32], results in near linear scaling of activations.

Common networks are composed of stages, where each

stage consists of d uniform conv layers, each with the same

w and r. The complexity of a stage of depth d is:

f = dw2r2, p = dw2, a = dwr2 (2)

In subsequent analysis we will show how different scaling

strategies affect the complexity of a single stage. For sim-

plicity, we use the same scaling for each network stage, thus

our complexity analysis applies to the entire network.

3.3. Complexity of Simple Scaling

We define simple scaling of a stage as scaling a stage

along a single dimension. In particular, we consider width

(w), depth (d), and resolution (r) scaling. In addition to the

scaling dimension, we define the scaling factor s to be the

amount by which scaling increases model flops. Increasing

d by s, w by
√

s, or r by
√

s all increase flops by s (for

simplicity we ignore quantization effects).

Table 1 shows the complexity of scaling a stage by a fac-

tor of s along different scaling dimensions. While in each

case the resulting flops are the same (by design), the param-

eters and activations vary. In particular, activations increase

by
√

s when scaling width compared to by s when scaling

along resolution or depth. This observation will play a cen-

tral role in how we design new scaling strategies.

3.4. Complexity of Compound Scaling

Rather than scaling along a single dimension, an intu-

itive approach is to scale along multiple dimensions at once.

Coined compound scaling by [32], such an approach has

been shown to achieve higher accuracy than simple scaling.

In Table 2 we show the complexity for scaling along ei-

ther two or three dimensions. In each case, we select ratios

such that scaling is uniform w.r.t. flops along each dimen-

sion. E.g., if scaling along all dimensions (dwr), we scale d
by 3

√
s, w by 6

√
s, and r by 6

√
s, such that flops increase by

3
√

s when scaling each dimension and by 3
√

s
3

= s in total.

Interestingly, the compound scaling rule discovered em-

pirically in [32] scaled by 1.2, 1.1, and 1.15 along d, w, and

r, which corresponds roughly to uniform compound scaling

with s = 2 (3
√

s ≈ 1.26, 6
√

s ≈ 1.12). We thus use uniform

compound scaling as a simple proxy for the purpose of our

analysis. Observe that for uniform compound scaling, acti-

vations increase nearly linearly with s.

926

dims scaling flops (f) params (p) acts (a)

none w g wgr2 wg wr2

w sw g swgr2 swg swr2

g w sg swgr2 swg 1wr2

wg
√

sw
√

sg swgr2 swg
√

swr2

Table 3. Group width scaling: Complexity of scaling a group

conv by scaling only width w, only group width g, or both (we as-

sume g ≤ w). Scaling only g does not impact activations; scaling

uniformly in both w and g results in
√

s increase in activations.

Unless noted, we scale g proportionally to w for group conv.

3.5. Complexity of Group Width Scaling

Many top-performing networks rely heavily on group

conv and depthwise conv. A group conv with channel width

w and group width g is equivalent to splitting the w channels

into w/g groups each of width g, applying a regular conv to

each group, and concatenating the results. Depthwise conv

is a special case with g = 1. Therefore, its complexity is:

f = wgr2, p = wg, a = wr2. (3)

In Table 3 we show three basic strategies for scaling group

conv. We observe that to obtain scaling behavior similar to

scaling regular conv, both channel width and group width

must be scaled. Therefore, unless otherwise noted, we scale

g proportionally to w. For networks that use depthwise conv

(g = 1), as in previous work [32], we do not scale g.

Finally, we note that when scaling g, we must ensure w
is divisible by g. To address this, we set g = w if g > w
and round w to be divisible by g otherwise (w will change

by at most 1/3 under such a strategy [23]).

4. Runtime of Scaled Models

Our motivation is to design scaling strategies that result

in fast and accurate models. In §3 we analyzed the behav-

ior of flops, parameters, and activations for various scaling

strategies. In this section we examine the relationship be-

tween these complexity metrics and model runtime. This

will allow us to design new fast scaling strategies in §5.

How are the complexity metrics we analyzed in §3 re-

lated to model runtime on modern accelerators? To an-

swer this question, in Figure 2 we report runtime for a large

number of models scaled from three base models as a func-

tion of flops, parameters, and activations. From these plots

we can make two observations: flops and parameters are

only weakly predictive of runtime when scaling a single

model via different scaling strategies; however, activations

are strongly predictive of runtime for a model regardless of

the scaling strategy. See Figure 2 for additional details.

This simple result leads us to use model activations as

a proxy for runtime. Specifically, for scaled versions of a

single model, the Pearson correlation between runtime and

activations is r ≥ 0.99, regardless of the scaling strategy,

while correlation with flops and parameters is far lower (r

0 5 10 15 20 25 30 35
flops (B)

0

20

40

60

80

100

120

ep
oc

h
tim

e
(m

) fit [r=0.81]
EN-dwr [r=1.00]
EN-dw [r=1.00]
EN-dWr [r=0.99]
EN-w [r=0.99]

0 100 200 300 400 500
parameters (M)

0

20

40

60

80

100

120

ep
oc

h
tim

e
(m

) fit [r=0.56]
EN-dwr [r=1.00]
EN-dw [r=1.00]
EN-dWr [r=0.99]
EN-w [r=0.99]

0 20 40 60 80 100 120 140
activations (M)

0

20

40

60

80

100

120

ep
oc

h
tim

e
(m

) fit [r=0.99]
EN-dwr [r=1.00]
EN-dw [r=0.99]
EN-dWr [r=1.00]
EN-w [r=0.99]

0 20 40 60 80 100 120 140
activations (M)

0

20

40

60

80

100

120

ep
oc

h
tim

e
(m

) fit [r=0.95]
EfficientNet [r=0.99]
RegNetZ [r=0.99]
RegNetY [r=0.99]

Figure 2. Model runtime as a function of various complexity met-

rics. (Top-left): We scale EfficientNet-B0 (EN-B0) using four

scaling strategies (dwr, dw, dW r, w) with a wide range of scaling

factors (s < 100). For each scaling strategy we plot epoch time

versus flops for each model (along with a best fit line). For a single

scaling strategy (e.g., w), runtime is highly correlated with flops

(e.g., Pearson’s r = 0.99). However, when comparing scaled ver-

sions of the same model using different scaling strategies, flops are

only weakly predictive of runtime (r = 0.81). (Top-right): Using

the same set of models, we plot runtime versus parameters, and

again observe parameters are even more weakly correlated with

runtime (r = 0.56). (Bottom-left): Repeating the same analysis

for runtime versus activations, we see that activations are strongly

predictive of runtime regardless of the scaling strategy (r = 0.99).

(Bottom-right): We repeat the analysis of runtime versus activa-

tions for three models (see §6.1 for model details). For scaled ver-

sions of each model, activations are highly predictive of runtime

(r ≥ 0.99), and only very large models tend to be flop bound.

This makes activations an excellent proxy for runtime. We note,

however, that activations are less predictive of runtime when com-

paring scaled versions of different models (r = 0.95).

of 0.81 and 0.56, respectively). We caution, however, that

activations cannot perfectly predict runtime across hetero-

geneous models (r = 0.95), as models may use operations

with different runtimes, e.g. ReLU vs. SiLU. Moreover,

some big models have runtimes higher than predicted from

their activations indicating these models are flop bound.

Implementation details. We report the time to perform one

epoch of training on ImageNet [6] which contains ∼1.2M

training images. For each model, we use the largest batch

size that fits in memory. We note that inference time is

highly correlated with training time, but we report epoch

time as it is easy to interpret (inference performance de-

pends heavily on the use case). We time all models using

PyTorch and 8 32GB Volta GPUs. Runtime is of course

hardware dependent; however, we believe timing on GPUs

is reasonable for two reasons. First, hardware accelerators

(such as GPUs, TPUs, etc.) are highly prevalent. Second,

accelerators are extremely efficient in terms of compute but

tend to be memory-bandwidth bound [34], and this trend is

expected to become more pronounced.

927

dims α ed ew er f p a

α 1−α
2

α 1−α
2

s s
1+α

2 s
2−α

2

dr 0 0.5 0 0.5 s s0.50 s1.00

dwr 1/3 1/3 1/3 1/3 s s0.67 s0.83

dW r 0.8 0.1 0.8 0.1 s s0.90 s0.60

w 1 0 1 0 s s1.00 s0.50

Table 4. Fast scaling. We introduce a family of scaling strategies

parameterized by α. The top row shows scaling factor exponents

ed, ew, and er as a function of α, and the relative increase in model

complexity as a function of α and scaling factor s. The remaining

rows show instantiations of the scaling strategy for various α. α =
1 corresponds to width (w) scaling, and α = 1/3 corresponds to

uniform compound scaling (dwr). The new regime we explore in

this work is 1/3 < α < 1. In particular, using α near 1 results

in fewer activations and thus faster networks (see Figure 2). In

our experiments, we find α = 0.8 results in an excellent tradeoff

between speed and accuracy. We use dW r to denote fast scaling

to emphasize scaling is primarily, but not only, along w.

5. Fast Compound Model Scaling

Given the strong dependency of runtime on activations,

we aim to design scaling strategies that minimize the in-

crease in model activations. As our results from Tables 1-3

indicate, of all scaling strategies that involve scaling width,

depth, and resolution, scaling a network by increasing its

channel width and group width results in the smallest in-

crease in activations. Indeed, it is well known that wide

networks are quite efficient in wall-clock time [35]. Unfor-

tunately, wide networks may not always achieve top results

compared to deeper or higher-resolution models [10, 32].

To address this, in this work we introduce the concept

of fast compound model scaling, or simply fast scaling for

brevity. The idea is simple: we design and test scaling

strategies that primary increase model width, but also in-

crease depth and resolution to a lesser extent.

We formalize this by introducing a family of scaling

strategies parameterized by α. Given α we define:

ed = 1−α

2
, ew = α, er = 1−α

2
, (4)

and when scaling a network by a factor of s, we set:

d′ = sedd, w′ =
√

s
ew

w, r′ =
√

s
er

r. (5)

If using group conv, we also set g′ =
√

s
ew g (same scaling

as for w). The resulting complexity of the scaled model is:

f = sdw2r2, p = s
1+α

2 dw2, a = s
2−α

2 dwr2. (6)

Instantiations for scaling strategies using various α are

shown in Table 4. Setting α = 1 results in width (w) scal-

ing (lowest activations). Setting α = 0 results in depth and

resolution (dr) scaling (highest activations). α = 1/3 cor-

responds to uniform compound scaling (dwr).

The interesting new regime we explore is 1/3 < α < 1.

In particular, we refer to scaling strategies with α near 1 as

fast scaling. Unless specified, we use α = 0.8 by default,

which we denote using dWr. Next, in §6 we show that fast

scaling results in good speed and accuracy.

6. Experiments

We next evaluate the effectiveness of our proposed fast

scaling strategy. We introduce the baseline networks we test

along with optimization settings in §6.1. In §6.2, we eval-

uate existing scaling strategies, then we perform extensive

experiments and comparisons of fast scaling in §6.3. Finally

we compare scaling vs. random search in §6.4 and compare

larger models in §6.5. Additional experiments are presented

in the appendix in the extended version of this work [7].

6.1. Baselines and Optimization Settings

Baseline networks. In this work we evaluate scaling strate-

gies on three networks families: EfficientNet [32], Reg-

NetY [23], and RegNetZ (described below). We chose these

models as they are representative of the state-of-the-art and

are well suited for our scaling experiments. Moreover, Ef-

ficientNet was introduced in the context of model scaling

work [32], making it an excellent candidate for our study.

EfficientNet. EfficientNets have been shown to achieve a

good flop-to-accuracy tradeoff. These models use inverted

bottlenecks [26], depthwise conv, and the SiLU nonlinear-

ity [11] (also popularly known as Swish [24]). An Efficient-

Net is composed of seven stages with varying width, depth,

stride and kernel size. The original model (EfficientNet-B0)

was optimized in the mobile regime (400MF) using neural

architecture search [31] and scaled to larger sizes (B1-B7)

via compound scaling. For further details, please see [32].

Note that EfficientNets are specified by ∼30 parameters

(input resolution, 7 stages with 4 parameters each, and stem

and head width). Given this high-dimensional search space,

optimizing an EfficientNet is only feasible in a low-compute

regime, and scaling must be used to obtain larger models.

RegNets. As an alternative to neural architecture search,

Radosavovic et al. [23] introduced the idea of designing de-

sign spaces, where a design space is a parameterized popu-

lation of models. Using this methodology, [23] designed a

design space consisting of simple, regular networks called

RegNets that are effective across a wide range of block

types and flop regimes. Importantly for our work, a RegNet

model is specified by a handful of parameters (∼6), which

then allows for fast model selection using random search.

Thus, unlike EfficientNets, RegNets allow us to compare

large models obtained either via scaling or random search.

A RegNet consists of a stem, a body with four stages,

and a head. Each stage consists of a sequence of identical

blocks. The block type can vary depending on the model

(the two block types we use are shown in Figure 3). Impor-

tantly, the widths and depths of a RegNet are not specified

independently per stage, but are determined by a quantized

linear function which has 4 parameters (d, w0, wa, wm),

for details see [23]. Any other block parameters (like group

width or bottleneck ratio) are kept constant across stages.

928

w, r, r

⨁

w, r, r

w/b, r, r

w/b, r, r

1×1, s=1

3×3, g, s=1

1×1, s=1

(b) Y block, s=1

w, r, r

⨁

win, 2r, 2r

w/b, 2r, 2r

w/b, r, r

1×1, s=1

3×3, g, s=2

1×1, s=1

(a) Y block, s=2

1×1, s=2

w, r, r

win, 2r, 2r

w/b, 2r, 2r

w/b, r, r

1×1, s=1

3×3, g, s=2

1×1, s=1

(c) Z block, s=2

⨁

w, r, r

w/b, r, r

w/b, r, r

1×1, s=1

3×3, g, s=1

1×1, s=1

(d) Z block, s=1

w, r, r

Figure 3. RegNet blocks. Each stage consists of a stride s = 2
block that halves r and increases w followed by multiple stride

s = 1 blocks with constant r and w. (a-b) The Y block is based

on residual bottlenecks with group conv [33]. Each block consists

of a 1×1 conv, a 3×3 group conv, and a final 1×1 conv. The 1×1
convs can change w via the bottleneck ratio b, however, we set b =
1 following [23]. BatchNorm [15] and ReLU follow each conv.

(c-d) We introduce the Z block based on inverted bottlenecks [26].

The Z block is similar to the Y block with 4 differences: no non-

linearity follows the final 1×1 conv, (2) SiLU [11] is used in place

of ReLU, (3) the stride 2 variant of the block has no residual, and

(4) b < 1 (we use b = 1/4 in all experiments). Finally, a Squeeze-

and-Excitation (SE) op [13] (reduction ratio of 1/4) follows the

3×3 conv for both the Y and Z blocks (not shown).

RegNetY. The RegNetY block (Y) is shown in Figure 3 (a-

b). The Y block resembles the standard residual bottleneck

block with group conv [33]. Additionally it uses a Squeeze-

and-Excitation (SE) layer [13]. Following [23], we set the

bottleneck ratio b to 1 (effectively no bottleneck). A Reg-

NetY model is thus fully specified with 5 parameters: d, w0,

wa, wm, and g. Unlike [23], we additionally vary the image

input resolution r (bringing the total parameters to 6).

RegNetZ. We introduce a new Z block based on inverted

bottlenecks [26]. The Z block resembles the Y block except

it omits the last nonlinearity and inverts the bottleneck (we

use b = 1/4 in all experiments). See Figure 3 (c-d) for ad-

ditional details. A RegNetZ model, built using the Z block,

is fully specified with the same 6 parameters as a RegNetY

model. We note that EfficientNet also uses inverted bottle-

necks, but we introduce RegNetZ to allow us to compare

large models obtained via scaling and random search.

Optimization settings. Our goal is to enable fair and repro-

ducible results. However, we also aim to achieve state-of-

the-art results. This creates a tension between using a sim-

ple yet weak optimization setup (e.g., [23]) versus a strong

setup that yields good results but may be difficult to repro-

duce (e.g., [32]). To address this, we use a training setup

that effectively balances between these two objectives.

Our setup is as follows: we use SGD with a momen-

tum of 0.9, label smoothing with ǫ = 0.1 [30], mixup with

α = 0.2 [36], AutoAugment [4], stochastic weight averag-

ing (SWA) [5], and mixed precision training [20]. For all

models we use 5 epochs of gradual warmup [8]. We use

an exponential learning rate schedule with a batch size of

flops params acts time publication schedule

(B) (M) (M) (min) ICML arXiv 1× 2× 4×

EN-B0 0.4 5.3 6.7 2.8 23.7 22.7 23.6±0.09 22.7±0.08 22.3±0.04

EN-B1 0.7 7.8 10.9 4.6 21.2 20.8 21.7±0.18 20.8±0.10 20.5±0.09

EN-B2 1.0 9.1 13.8 5.9 20.2 19.7 20.7±0.06 20.0±0.12 19.6±0.09

EN-B3 1.8 12.2 23.8 9.5 18.9 18.3 19.4±0.07 18.8±0.10 18.3±0.11

EN-B4 4.4 19.3 49.5 19.2 17.4 17.0 18.0±0.05 17.4±0.07 17.3±0.06

EN-B5 10.3 30.4 98.9 40.8 16.7 16.3 17.1±0.13 16.7±0.05 –

Table 5. EfficientNet reproduction. The first set of results in-

cludes the originally reported errors (from ICML [32] and updated

numbers later reported on arXiv), the second set our reproduction

under three schedule lengths (1× corresponds to 100 epochs), av-

eraged over 3 trials. Our results match or outperform the originally

reported results (for the biggest nets they slightly lag the updated

arXiv errors). We emphasize that unlike the results in [32], we use

the same, easy to reproduce optimization setup for all models.

flops params acts time schedule

(B) (M) (M) (min) 1× 2× 4×

RegNetY-500MF 0.5 5.6 4.2 2.3 24.8±0.07 23.9±0.14 23.2±0.05

RegNetZ-500MF 0.5 7.1 5.9 3.1 22.2±0.04 21.3±0.02 21.0±0.08

RegNetY-4GF-224 4.0 20.6 12.3 6.4 19.4±0.07 18.4±0.05 18.1±0.07

RegNetY-4GF 4.1 22.4 14.5 7.7 18.8±0.04 18.0±0.07 17.7±0.09

RegNetZ-4GF-224 4.0 26.9 20.8 11.3 17.7±0.04 17.2±0.06 17.0±0.04

RegNetZ-4GF 4.0 28.1 24.3 11.7 17.5±0.09 17.0±0.12 16.9±0.04

Table 6. RegNet Baselines. The two 500MF RegNet models use

a default resolution of 224. RegNetY-4GF-224 uses the default

224 resolution; RegNetY-4GF uses a resolution found by random

search. Likewise there are two versions of RegNetZ-4GF with

default and discovered resolutions.

1024 (distributed on 8 32GB GPUs), learning rate λ = 2.0,

and decay β = 0.02.2 For RegNets we use a weight decay

of 2e-5 and for EfficientNets we use 1e-5. Batch norm pa-

rameters are not decayed. For large models we reduce the

batch size and learning rate proportionally as in [8]. For

reproducibility, we will release code for our setup.

EfficientNet baselines. In Table 5, we report Efficient-

Net results using our optimization setup versus results

from [32]. We report our results using a ‘1×’, ‘2×’, or ‘4×’

schedule (corresponding to 100, 200, and 400 epochs, re-

spectively). Our 2× schedule achieves competitive results,

our 4× schedule outperforms the originally reported results

for all but the largest model tested. We use the 2× schedule

in all following experiments unless otherwise noted.

RegNet baselines. In Table 6 we report results for baseline

RegNet models. We obtain these models via random search

as in [23].3 Note that there are two versions of the 4GF

RegNets (using default and discovered resolutions).

2We parameterize the exponential learning rate via λt = λβ
t

T , where

t is the current epoch, T the final epoch, λ is the initial learning rate, and

λβ is the final learning rate. We use this parameterization (as opposed to

λt = λγt) as it allows us to use a single setting for the decay β regardless

of the schedule length T (setting γ = β1/T makes the two equivalent).
3We sample RegNet model configurations until we obtain 32 models in

a given flop regime, train each of these model using the 1× schedule, and

finally select the best one. Sampling just 32 random models in a given flop

regime is typically sufficient to obtain accurate models as shown in [23].

929

0.5 1 2 4
flops (B)

17

18

19

20

21

22

23

er
ro

r

d
w
r
dwr
orig

0.5 1 2 4
flops (B)

5

10

15

20

ep
oc

h
tim

e
(m

) d
w
r
dwr
orig

Figure 4. Compound scaling: EfficientNet. (Left) Uniform com-

pound scaling (dwr) offers the best accuracy relative to simple

scaling along depth (d), width (w), or resolution (r). All mod-

els are scaled from EfficientNet-B0 (400MF) up to at most 4GF.

(Right) Models obtained with w scaling are much faster than those

from dwr scaling. Both of these results are expected. However, as

we will show, it is possible to obtain models that are both fast and

accurate. For reference, we also show the original EfficientNet

models (orig) obtained via non-uniform compound scaling [32],

the results closely match uniform compound scaling (dwr).

0.5 1 2 4
flops (B)

18

20

22

24

er
ro

r

d
w
r
dwr

0.5 1 2 4
flops (B)

17

18

19

20

21

22

23

er
ro

r

d
w
r
dwr

Figure 5. Compound scaling: RegNet. We apply simple and

compound scaling to RegNetY-500MF (left) and RegNetZ-500MF

(right). As in Figure 4, dwr scaling achieves the best error, but at

significant increase in runtime (see appendix) relative to w scaling.

6.2. Simple and Compound Scaling

We now turn to evaluation of simple and compound scal-

ing [32] described in §3.3 and §3.4, respectively. For these

experiments we scale the baseline models from §6.1.

In Figure 4, we evaluate the accuracy (left) and runtime

(right) of EfficientNet-B0 scaled either via simple scaling

along width (w), depth (d), or resolution (r) or via uniform

compound scaling (dwr). As expected, dwr scaling pro-

vides the best accuracy, but results in slower models than w
scaling. This suggests a tradeoff between speed and accu-

racy, but as we will show shortly, this need not be the case.

Finally, we tested uniform scaling along pairs of dimensions

(see Table 2), but dwr scaling proved best (not shown).

We also compare uniform compound scaling (dwr) to

the original compound scaling rule (orig) from [32], which

empirically set the per-dimension scalings factors. As ex-

pected from our analysis in §3.4, dwr scaling is close in

both accuracy and runtime to the original compound scaling

rule without the need to optimize individual scaling factors.

In Figure 5 we repeat the same experiment but for the

RegNetY-500MF and RegNetZ-500MF baselines. We see a

similar behavior, where dwr scaling achieves the strongest

results. Runtimes (see appendix [7]) exhibit very similar

behaviors (w scaling is much faster). Note that as discussed,

group width g is scaled proportionally to width w.

0.5 1 2 4
flops (B)

17

18

19

20

21

22

23

er
ro

r

=1/3 (dwr)
=2/3
=4/5 (dWr)
=1.0 (w)

0.5 1 2 4
flops (B)

5

10

15

20

ep
oc

h
tim

e
(m

) =1/3 (dwr)
=2/3
=4/5 (dWr)
=1.0 (w)

Figure 6. Fast scaling: EfficientNet. We test scaling EfficientNet-

B0 using our family of scaling strategies parameterized by α (see

Table 4). (Left) Scaling with any α < 1 achieves good accuracy

and results in a sizable gap in error to scaling with α = 1 (w). The

exact value of α < 1 does not greatly influence the error. (Right)

While all scaling strategies with α < 1 give good accuracy, their

runtime differs substantially. A setting of α = 4/5 (dW r) gives

the best of both worlds: models that are both fast and accurate.

0.5 1 2 4
flops (B)

18

20

22

24

er
ro

r

=1/3 (dwr)
=2/3
=4/5 (dWr)
=1.0 (w)

0.5 1 2 4
flops (B)

17

18

19

20

21

22

23

er
ro

r

=1/3 (dwr)
=2/3
=4/5 (dWr)
=1.0 (w)

Figure 7. Fast scaling: RegNet. We apply scaling with different α
to RegNetY-500MF (left) and RegNetZ-500MF (right). As in Fig-

ure 6, dW r scaling yields good accuracy and speed (see appendix

for rutnimes). We note that α may potentially be be further tuned

to tradeoff speed and accuracy, but we use α = 4/5 in this work.

6.3. Fast Scaling

We now perform an empirical analysis of the effective-

ness of our fast scaling strategy. Recall that in §5 we in-

troduced a family of scaling strategies parameterized by α
that interpolates between uniform compound scaling (dwr)

when α = 1/3 to width scaling (w) when α = 1. As α goes

toward 1, the model activations increase least as we scale a

model, resulting in faster models. In particular, we define

α = 4/5 as fast scaling, and denote it by dWr.

In Figure 6, we evaluate the accuracy (left) and runtime

(right) of EfficientNet-B0 scaled with various settings of α.

Interestingly, for all tested values of α < 1 model accuracy

was quite similar and substantially higher than for w scaling

(α = 1), especially for larger models. In terms of runtime,

dWr scaling is nearly as fast as w scaling, and substan-

tially faster than dwr scaling. We emphasize that the differ-

ences in memory and speed increase asymptotically, hence

the difference in runtime for models scaled with different α
becomes more pronounced at larger scales.

In Figure 7 we repeat the same experiment but for the

RegNet baselines. Results are similar, dWr scaling (α =
4/5) achieves excellent accuracy and runtime. Finally, we

observe that for RegNets, w scaling is more effective than

for EfficientNet. This can be partially explained as for Reg-

Nets we scale the group width g along width w (Efficient-

Net always uses g = 1), indeed setting g = 1 and scaling

RegNets by just w performs worse (see appendix).

930

flops params acts time schedule

(B) (M) (M) (min) 1× 2× 4×

RegNetY-500MF→4GF 4.1 36.2 13.3 7.2 19.1±0.07 18.6±0.09 18.3±0.06

RegNetY-4GF [optimized] 4.1 22.4 14.5 7.7 18.8±0.04 18.0±0.07 17.7±0.09

RegNetZ-500MF→4GF 4.0 41.1 19.4 10.5 17.7±0.07 17.2±0.07 17.0±0.05

RegNetZ-4GF [optimized] 4.0 28.1 24.3 11.7 17.5±0.09 17.0±0.12 16.9±0.04

RegNetY-500MF→16GF 16.2 112.7 29.4 17.8 17.8±0.18 17.2±0.06 16.9±0.10

RegNetY-4GF→16GF 15.5 72.3 30.7 16.4 17.3±0.09 16.8±0.11 16.6±0.03

Table 7. Scaling vs. Search. Models optimized for a given flop

regime (via random search) outperform scaled models (rows 1-4).

Nevertheless, scaling is necessary in flop regimes where optimiza-

tion is computationally prohibitive. A hybrid approach is to opti-

mize a model in an intermediate regime (e.g. 4GF) prior to scaling

to a higher flop regime (e.g. 16GF), as in rows 5-6.

0.5 1 2 4 8 16
flops (B)

16

18

20

22

24

er
ro

r

EfficientNet [original]
EfficientNet-B0 [dWr]
RegNetY-500MF [dWr]
RegNetZ-500MF [dWr]
RegNetY-4GF [dWr]

0.5 1 2 4 8 16
flops (B)

0

10

20

30

40

ep
oc

h
tim

e
(m

)

EfficientNet [original]
EfficientNet-B0 [dWr]
RegNetY-500MF [dWr]
RegNetZ-500MF [dWr]
RegNetY-4GF [dWr]

Figure 8. Large models. We scale four models via fast scaling

(dW r) up to 16GF (1× to 32× scaling). We include the original

EfficientNet model for reference. All results use our 2× schedule.

See §6.5 for details and discussion.

6.4. Scaling versus Search

How do scaled models compare to models obtained via

random search? Recall that RegNets only have 6 free pa-

rameters, so optimizing a RegNet directly by random search

in an intermediate flop regime is feasible (see §6.1).

Table 7 compares three sets of models. First, we com-

pare RegNetY at 4GF obtained either via dWr scaling

(denoted by RegNetY-500MF→4GF) or search (RegNetY-

4GF) in rows 1-2. The best sampled model outperforms

the scaled model by 0.6% with a 4× schedule. We repeat

this analysis for RegNetZ (rows 3-4) and find the best sam-

pled model outperforms the scaled model by 0.1%. These

results indicate that scaling a high-accuracy model is not

guaranteed to yield an optimal model. Nevertheless, scal-

ing is often necessary for targeting high compute regimes

where model optimization is not feasible.

The above results suggest a hybrid scaling strategy, in

which we optimize a model at an intermediate flop regime

prior to scaling the model to larger scales. In Table 7, rows

5-6, we compare two 16GF RegNetY models, one scaled

by 32× from a 500MF model and one scaled 4× from an

optimized 4GF model. The model obtained with the hybrid

strategy of scaling an intermediate model is 0.3% better.

Finally, observe that the best sampled models have far

fewer parameters than the scaled models. We found that at

higher flop regimes, optimized models have fewer blocks in

the last stage, which greatly reduces their parameters. This

shows a limitation of uniformly scaling model stages with-

out redistributing blocks across stages.

flops params acts time schedule

(B) (M) (M) (min) 1× 2× 4×

ResNet50 [10] 4.1 25.6 11.3 3.5 22.0±0.12 21.0±0.08 20.5±0.07

ResNeXt50 [33] 4.2 25.0 14.6 5.8 20.8±0.06 19.9±0.16 19.5±0.05

EfficientNet-B4 [32] 4.4 19.3 49.5 19.2 18.0±0.05 17.4±0.07 17.3±0.06

RegNetY-4GF 4.1 22.4 14.5 7.7 18.8±0.04 18.0±0.07 17.7±0.09

RegNetZ-4GF 4.0 28.1 24.3 11.7 17.5±0.09 17.0±0.12 16.9±0.04

EfficientNet-B0→4GF 4.1 36.1 29.2 11.1 18.4±0.11 17.7±0.07 17.4±0.11

RegNetY-500MF→4GF 4.1 36.2 13.3 7.2 19.1±0.07 18.6±0.09 18.3±0.06

RegNetZ-500MF→4GF 4.0 41.1 19.4 10.5 17.7±0.07 17.2±0.07 17.0±0.05

EfficientNet-B0→16GF 16.2 122.8 61.8 25.8 17.4±0.08 16.8±0.09 –

RegNetY-500MF→16GF 16.2 112.7 29.4 17.8 17.8±0.18 17.2±0.06 16.9±0.10

RegNetY-4GF→16GF 15.5 72.3 30.7 16.4 17.3±0.09 16.8±0.11 16.6±0.03

RegNetZ-500MF→16GF 16.2 134.8 42.6 29.4 16.6±0.04 16.1±0.06 16.1±0.07

RegNetZ-4GF→16GF 15.9 95.3 51.3 33.2 16.5±0.05 16.0±0.10 16.0±0.05

Table 8. Large models. For reference and reproducibility, we list

details of our scaled 4GF and 16GF models models trained using

our 1×, 2×, and 4× schedules. For reference, we also retrain

ResNet50 [10] and ResNeXt50 [33] using our strong setup (and

obtain an ∼3% reduced error than originally reported).

6.5. Comparison of Large Models

The primary benefit of model scaling is it allows us to

scale to larger models where optimization is not feasible.

In Figure 8, we scale four models up to 16GF using fast

scaling. We make the following observations:

1. Model ranking is consistent across flop regimes, with

scaled versions RegNetZ achieving the best accuracy.

2. All models obtained via fast scaling (dWr) are asymp-

totically faster than the original EfficientNet models,

including our scaled versions of EfficientNet-B0.

3. The gap between the highest and lowest error models

(RegNetY and RegNetZ) shrinks from 2.2% at 500MF

to 0.8% at 16GF, implying that on ImageNet model op-

timization may be less important at high flop regimes.

4. The hybrid approach of scaling an intermediate flop

regime model to higher flops (4GF→16GF) closes

much of the gap between RegNetY and RegNetZ.

5. RegNetY is the fastest model tested and a good choice

if runtime is constrained, especially at higher flops.

In Table 8 we give further details of the 4GF and 16GF

models we tested, along with additional baselines. We note

that RegNetY-4GF→16GF uses less memory and is faster

than EfficientNet-B4, even though this RegNetY model has
∼4× as many flops. This emphasizes the importance of

looking at metrics beyond flops when comparing models.

7. Discussion

In this work we presented a general framework for ana-

lyzing model scaling strategies that takes into account not

just flops but also other network properties, including ac-

tivations, which we showed are highly correlated with run-

time on modern hardware. Given our analysis, we presented

a fast scaling strategy that primarily, but not exclusively,

scales model width. Fast scaling results in accurate models

that also have fast runtime. While the optimal scaling ap-

proach may be task dependent, we hope our work provides

a general framework for reasoning about model scaling.

931

References

[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learn-

ing of visual features by contrasting cluster assignments. In

NeurIPS, 2020. 2

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv:2002.05709, 2020. 2

[3] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In CVPR, 2017. 2

[4] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. AutoAugment: Learning augmentation

policies from data. arXiv:1805.09501, 2018. 6

[5] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-

jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew

Yu, Peter Vajda, and Joseph E. Gonzalez. FBNetV3: Joint

architecture-recipe search using neural acquisition function.

arXiv:2006.02049, 2020. 6

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009. 4

[7] Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and

accurate model scaling. arXiv:2103.06877, 2021. 5, 7

[8] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large minibatch

sgd: Training ImageNet in 1 hour. arXiv:1706.02677, 2017.

6

[9] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In CVPR, 2020. 2

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2, 5, 8

[11] Dan Hendrycks and Kevin Gimpel. Gaussian error linear

units (GELUs). arXiv:1606.08415, 2016. 2, 5, 6

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient con-

volutional neural networks for mobile vision applications.

arXiv:1704.04861, 2017. 2

[13] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, 2018. 2, 6

[14] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat,

Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam,

Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient train-

ing of giant neural networks using pipeline parallelism. In

NeurIPS, 2019. 2

[15] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 6

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet classification with deep convolutional neural net-

works. In NeurIPS, 2012. 2

[17] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In ECCV, 2018. 1, 2

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In ICLR, 2019. 2

[19] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens van der Maaten. Exploring the limits of weakly

supervised pretraining. In ECCV, 2018. 2

[20] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory

Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael

Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu.

Mixed precision training. In ICLR, 2018. 6

[21] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. In ICML, 2018. 2

[22] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,

and Piotr Dollár. On network design spaces for visual recog-

nition. In ICCV, 2019. 1

[23] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. In CVPR, 2020. 1, 2, 4, 5, 6

[24] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Search-

ing for activation functions. arXiv:1710.05941, 2017. 2, 5

[25] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In AAAI, 2019. 2

[26] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 2, 5, 6

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015. 2

[28] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-

nav Gupta. Revisiting unreasonable effectiveness of data in

deep learning era. In ICCV, 2017. 2

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 2

[30] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-

ception architecture for computer vision. In CVPR, 2016. 2,

6

[31] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-

Net: Platform-aware neural architecture search for mobile.

In CVPR, 2019. 2, 5

[32] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. ICML,

2019. 1, 2, 3, 4, 5, 6, 7, 8

[33] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017. 2, 6, 8

[34] C Yang and S Williams. Performance analysis of GPU-

accelerated applications using the roofline model, 2019. 4

[35] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In BMVC, 2016. 2, 5

[36] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In ICLR, 2018. 6

[37] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. In ICLR, 2017. 1, 2

[38] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018. 2

932

