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Abstract

In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological
function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method
aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and
function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis,
sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been
successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete
nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and
efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian
modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous
Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the
quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete
variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii)
the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our
multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code.
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Introduction

One of the most important challenges in modern computational

biology is to exploit the wealth of sequence data, accumulating

thanks to modern sequencing technology, to extract information

and to reach an understanding of complex biological processes. A

particular example is the inference of conserved structural and

functional properties of proteins from the empirically observed

variability of amino-acid sequences in homologous protein

families, e.g. via the inference of signals of co-evolution between

residues, which may be distant along the sequence, but in contact

in the folded protein; cf. [1–6] for a selection of classical works and

[7] for a review over recent developments. In the last 5 years, a

strong renewed interest in residue co-evolution has been emerging:

a number of global statistical inference approaches [8–16] have led

to a highly increased precision in predicting residue contacts from

sequence information alone. Furthermore, co-evolutionary anal-

ysis was found to provide valuable insight on specificity and

partner prediction in protein-protein interaction [17,18] in

bacterial signal transduction.

Key to this recent progress are global statistical inference

approaches, like direct-coupling analysis (DCA) [8,10] and sparse

inverse covariance estimation (PSICOV) [12], and the GREMLIN

algorithm based on pseudo-likelihood maximization [11,16]. DCA is

based on the maximum-entropy (MaxEnt) principle [19,20] which

naturally leads to statistical models of protein families in terms of

so-called Potts models or Markov random fields. Proposed initially

more than a decade ago [21,22], it was not until very recently that

the first successful MaxEnt approaches to the study of co-evolution

were published [8,23]. The main idea behind such global

inference techniques is the following: correlations between the

amino-acids occurring in two positions in a protein family, i.e.

between two columns in the corresponding multiple-sequence

alignment (MSA), may result not only from direct co-evolutionary

couplings. They may also be generated by a whole network of such

couplings. More precisely, if a position i is coupled to a position j,

and j is coupled to k, then i and k will also show some correlation
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even if they are not coupled. The aim of global methods is to

disentangle such direct and indirect effects, and to infer the

network of direct co-evolutionary couplings starting from the

empirically observed correlations.

In this context, we focus on two different biological problems:

the inference of residue-residue contacts and the prediction of

interaction partners.

The inference of residue-residue contacts from large MSAs of

homologous proteins [8–16] is an important challenge in structural

biology. Inferred contacts have been shown to be sufficient to

guide the assembly of complexes between proteins of known (or

homology modeled) monomer structure [24,25], and to predict the

fold of single proteins [26–31], including highlights like large trans-

membrane proteins [28,31]. In [25], the predicted structure of the

auto-phosphorylation complex of a bacterial histidine sensor

kinase has been used to repair a non-functional chimeric protein

by rationally designed mutagenesis; this structure is also, to the

best of our knowledge, the first case of a prediction, which has

subsequently been confirmed by experimental X-ray structures

[32,33]. The possibility to guide tertiary and quaternary protein

structure prediction is an important finding, in light of the

experimental effort needed for generating high-resolution struc-

tures.

The second problem, concerning molecular determinants of

interaction specificity of proteins and the identification of

interaction partners [17,18], is a central problem in systems

biology. In both cited papers, bacterial two-component signal

transduction systems (TCS) were chosen, which constitute a major

way by which bacteria sense their environment, and react to it

[34]. TCS consist of two proteins, a histidine sensor kinase (SK)

and a response regulator protein (RR): the SK senses an

extracellular signal, and activates a RR by phosphorylation; the

RR typically acts as a transcription factor, thus triggering a

transcriptional response to the external signal. The same

(homologous) phosphotransfer mechanism is used for several

signaling pathways in each bacterium; thus, to produce the correct

cellular response to an external signal, interactions have to be

highly specific inside each pathway: crosstalk between pathways

has to be avoided [35–37]. This evolutionary pressure can be

detected by co-evolutionary analysis [17,18]. Results are interest-

ing: statistical couplings inferred by DCA reflect physical

interaction mechanisms, with the strongest signal coming from

charged amino-acids. They are able to predict interacting SK/RR

pairs for so-called orphan proteins (SK and RR proteins without

an obvious interaction partner), and the predictions compared

favorably to most available experimental results, including the

prediction of 7 (out of 8 known) interaction partners of orphan

signaling proteins in Caulobacter crescentus [18].

In the present study, we describe an alternative approach to co-

evolutionary analysis, based on a multivariate Gaussian modeling

of the underlying MSA. It can be understood as an approximation

to the MaxEnt Potts model in which (i) the discreteness constraint

is released, i.e. continuous values are allowed for variables

representing amino-acids, (ii) a Gaussian interaction model is

assumed, and (iii) a prior distribution is introduced to compensate

for the under-sampling of the data. This simplification allows to

explicitly determine the model parameters from empirically

observed residue correlations. The approach shares many

similarities with [12], in which a multivariate Gaussian model is

also assumed, and with the mean-field approximation to the

discrete DCA model [10], but the simpler structure of the

probability distribution makes the model analytically tractable,

and allows for an efficient implementation, while still having a

prediction accuracy comparable or superior to that of the

aforementioned models (see the Results section). The model is

briefly described in the next section, and in greater detail in the

Materials and Methods section.

A fast, parallel implementation of the multivariate Gaussian

modeling approach is provided on http://areeweb.polito.it/

ricerca/cmp/code in two different versions, a MATLAB [38]

one and a Julia [39] one.

Gaussian Modeling of Multiple Sequence Alignments
This section briefly outlines the prediction procedure coming

from our proposed model, and highlights its main distinctive

features with respect to other similar methods. A full presentation

can be found in the Materials and Methods section, and additional

details in File S1.

The input data to our model is the MSA for a large protein-

domain family, consisting of M aligned homologous protein

sequences of length L. Sequence alignments are formed by the

Q~20 different amino-acids, and may contain alignment gaps.

As in [12], we consider a multivariate Gaussian model in which

each variable represents one of the Q possible amino-acids at a

given site, and aim in principle at maximizing the likelihood of the

resulting probability distribution given the empirically observed

data (in particular, given the observed mean and correlation

values, computed according to a reweighting procedure devised to

compensate for the sampling bias). Doing so would yield the

parameters for the most probable model which produced the

observed data, which in turn would provide a synthetic description

of the underlying statistical properties of the protein family under

investigation. Unfortunately, however, this is typically infeasible,

due to under-sampling of the sequence space. A possible approach

to overcome this problem, used e.g. in [12], is to introduce a

sparsity constraint, in order to reduce the number of degrees of

freedom of the model. Here, instead, we propose a Bayesian

approach, in which a suitable prior is introduced, and the

parameter estimation is then performed over the posterior

distribution.

A convenient choice for the prior is the normal-inverse-Wishart

(NIW), which, being the conjugate prior of the multivariate

Gaussian distribution, provides a NIW posterior. Thus, within this

choice, the posterior simply is a data-dependent re-parametriza-

tion of the prior: as a result, the problem is analytically tractable,

and the computation of relevant quantities can be implemented

efficiently. Furthermore, by choosing the parameters for the prior

to be as uninformative as possible (i.e. corresponding to uniformly

distributed samples), we obtain an expression for the posterior

which, interestingly, can be reconciled with the pseudo-count

correction of [10]: in the Gaussian framework, the pseudo-count

parameter has a natural interpretation as the weight attributed to

the prior.

We then estimate the parameters of the model as averages on

the posterior distribution, which have a simple analytical

expression and can be computed efficiently (in practical terms,

the computation amounts to the inversion of a LQ|LQ matrix).

On one hand, this yields an estimate of the strengths of direct

interactions between the residues of the alignments, which can be

used to predict protein contacts. On the other hand, this allows to

build joint models of interacting proteins, which can be used to

score candidate interaction partners, simply by computing their

likelihood - which can be done very efficiently on a Gaussian

model.

The contact prediction between residues relies on the model’s

inferred interaction strengths (i.e. couplings), which are represent-

ed by Q|Q matrices; in order to rank all possible interactions, we

need to compute a single score out of each such matrix. As

Multivariate Gaussian Modeling of Protein Families
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mentioned above, these matrices are numerically identical to those

obtained in the mean-field approximation of the discrete (Potts)

DCA model. We tested two scoring methods: the so-called direct

information (DI), introduced in [8], and the Frobenius norm (FN)

as computed in [15]. The DI is a measure of the mutual

information induced only by the direct couplings, and its

expression is model-dependent: in the Gaussian framework it

can be computed analytically (see File S1) and yields slightly

different results with respect to the Potts model (but with a

comparable prediction power, see the Results section). The FN, on

the other hand, does not depend on the model, and therefore some

of the results which we report here for the contact prediction

problem are applicable in the context of the Potts model as well. In

our tests, the FN score yielded better results; however, the DI score

is gauge-invariant and has a well-defined physical interpretation,

and is therefore relevant as a way to assess the predictive power of

the model itself.

Results

Residue-residue contact prediction
The aim of the original DCA publication [8] was the

identification of inter-protein residue-residue contacts in protein

complexes, more precisely in the SK/RR complex in bacterial

signal transduction. More recently, global methods for inferring

direct co-evolution attacked the problem prediction of intra-

domain contacts for large protein domain families [9–16,26].

Thanks to the development of more efficient approximation

techniques triggered by the wide availability of single-domain data

on databases like Pfam [40], one can now easily undertake co-

evolutionary analysis of a large number of protein families on

normal desktop computer. To give a comparison, whereas the

message-passing algorithm in [8] was limited to alignments with

up to about 70 columns at a time (typically requiring some ad-hoc

pre-processing of larger alignments to select the 70 potentially

most interesting columns), the subsequent approaches easily

handle MSA of proteins with up to ten times this number of

columns.

In this context, our multivariate Gaussian DCA is particularly

efficient: parameter estimation can be done explicitly in one step,

and the computation of the relevant coupling measures such as the

direct information (DI) and the log-likelihood also uses explicit

analytical formulae. The analytical tractability of Gaussian

probability distributions results in a major advantage in algorith-

mic complexity, and therefore in real running time. In the

included implementation of the algorithm the largest alignment

analyzed (PF00078, L~214 residues, M~126258 sequences) the

DI is obtained in about 20 minutes, whereas a more typical

alignment (e.g. PF00089, L~219, M~15894) is analyzed in less

than a minute on a normal @2270 MHz Intel Core i5 M430 CPU

on a Linux desktop. With respect to the computational complexity

of the algorithm, the sequence reweighting step is O M2L
� �

(since

it requires a computation of sequence similarity for all sequence

pairs in the MSA), while the model’s parameters estimate is O L3
� �

(since it requires to invert a covariance matrix whose size is

proportional to L).

Here, we will show that this gain in running time has no

detectable cost in terms of predictive power. To this aim, we first

studied the prediction of intra-domain contacts (see Fig. 1). From

the Pfam database [40], a set of 50 families was selected for which

the number of representative sequences is high enough to allow for

a meaningful statistical analysis (average length SLT~173:48
residues, average number of sequences per alignment

SMT~32660:2), cf. the Methods section. For each family, 4

measures were determined: DI in mean-field approximation, DI

and Frobenius norm (FN) in the Gaussian model, Average-

product-corrected mutual information (MI) as described in [41].

As mentioned above, the FN in the Gaussian model is the same as

that computed in the mean-field approximation of the discrete

DCA model. Each measure was used to rank residue position pairs

(only pairs which are at least 5 positions apart in the chain are

considered), and high-ranking pairs are evaluated according to

their spatial proximity in exemplary protein structures. A cutoff of

8 Å minimal distance between heavy atoms for contacts was

chosen, in agreement with [10] and [42]. The best overall results

are obtained with FN, as already noted in [15]; however, it is

interesting to note that the Gaussian DI score is comparable to,

and even slightly better then the mean-field DI score, which gives

an important indication regarding the accuracy of the underlying

probabilistic model: this in turn is relevant for subsequent analysis

(see next section). Somewhat surprisingly, we also found that the

optimal overall value of the pseudo-count parameter is strongly

dependent on which scoring function is used: we explored the

whole range 0,1ð Þ in steps of 0:1, and found that the optimum for

the FN score was at 0:8, while for the DI score it was at 0:2.

As a second test we ran on the same data-set a direct

comparison between our method’s best score, PSICOV [12] and

plmDCA [15]. Fig. 2 shows that our method’s performance is

comparable to that of PSICOV (and even marginally better after

the first 50 inferred couplings), and that the two methods are

slightly better for the first 10 predicted contacts (with a 100%

accuracy on the first contact). At ten predicted contacts, the true

positive average is about 95% for all three methods. From ten

predicted pairs on, both our method and PSICOV perform

slightly worse than plmDCA: at 100 predicted contacts, the true

positive rate is about 72% for PSICOV, 77% for the Gaussian

model and 80% for plmDCA. A sample of running times for the

three methods and different problem sizes, reported in Table 1,

shows that our code can be at least an order of magnitude faster

then PSICOV, and two orders of magnitude faster then plmDCA.

These results suggest that our method is a good candidate for large

scale problems of inference of protein contacts.

Visual inspection of the predicted contacts does not reveal any

significant bias with respect to the residue position, nor with

respect to the sencondary or tertiary structures of the proteins. As

an example, in Fig. 3 we show the first 40 predicted contacts (39

out of which are true positives) for the protein familiy PF00069

(Protein kinase domain) using the Gaussian DCA methods with

the FN score: the pictures seem to indicate a sparse, fair sampling

across the set of all true contacts.

Finally, we have used the SK/RR data set containing 8,998

cognate SK/RR pairs, cf. Methods, to predict inter-protein

residue-residue contacts. Results can be compared with those

presented in [18], where the original message-passing DCA was

applied to the same data-set, and 9 true contact prediction were

reported before the first false positive appeared. In Fig. 4, results

are shown for mean-field and Gaussian DCA, using the DI score:

both methods improve substantially over the message-passing

scheme (20 true positive predictions at specificity equal to one), but

are highly comparable (with a little but not significant advantage of

the Gaussian scheme). Again, we find that the improved efficiency

and analytical tractability of Gaussian DCA comes at no cost for

the predictive power.

Predicting interactions between proteins in bacterial
signal transduction

A typical bacterium uses, on average, about 20 two-component

signal transduction systems to sense external signals, and to trigger

Multivariate Gaussian Modeling of Protein Families
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a specific response. In bacteria living in complex environments,

the number of different TCS may even reach 200. While the

signals and consequently the mechanisms of signal detection vary

strongly from one TCS to another, the internal phosphotransfer

mechanism from the SK to the RR, which activates the RR, is

widely conserved across bacteria: A majority of the kinase domains

of SK belong to the protein domain family HisKA (PF00512), all

RR to family Response_reg (PF00072) [40], cf. the Methods section.

Despite their closely related functionality, the interactions in the

different pathways have to be highly specific, to induce the correct

specific answer for each recognized external signal.

A big fraction of SK and RR genes belonging to the same TCS

pathway are co-localized in joint operons; the identification of the

correct interaction partner is therefore trivial: such pairs are called

cognate SK/RR. However, about 30% of all SK and 55% of all

RR are so-called orphan proteins: their genes are isolated from

potential interaction partners in the genome. While a large

fraction of the RR are expected to be involved in other signal-

transduction processes like chemotaxis, for each of the SK at least

one target RR is expected to exist. It is a major challenge in

systems biology to identify these partners, and to unveil the

signaling networks acting in the bacteria. A step in this direction

was taken in [17,18], where co-evolutionary information extracted

from cognate pairs is used to predict, with some success, orphan

interaction partners.

An approach based on message-passing DCA [18] was tested in

two well-studied model bacteria, namely Caulobacter crescentus (CC)

and Bacillus subtilis (BS), where several orphan interactions are

known experimentally [43–45]. The degree of accuracy of the

method can be evinced from figure 4 of [18]: for CC, all known

interactions between DivL, PleC, DivJ and CC_1062 with DivK

and PleD are correctly reconstructed by the ranking obtained from

the co-evolutionary scoring. Only in the case of the pair CenK-

CenR, the signal is not sufficiently strong. For BS all the 5 orphan

kinases KinA-B-C-D-E are known to interact with the RR Spo0F,

which was clearly visible in co-evolutionary analysis in all but the

KinB case.

The method proposed here for orphans pairing relies on the

Gaussian approximation and on the definition of the score L, cf.

Eq. 15 in Methods, which equals the log-odds ratio between the

probabilities of two orphan sequences in the interacting model

(inferred from cognate SK/RR alignments) and a non-interacting

model (inferred independently from the two MSAs of the SK and

the RR families). It is worth stressing at this point that all estimates

of the likelihood score parameters are learned only on the cognates

set. Ranked by L, orphans interactions in CC are shown in Fig. 5.

Results are very similar to those mentioned for [18]: known

interactions are well reproduced for orphan kinases PleC and

DivJ, while for CC_1062 and DivL the signal for an interaction

with DivK, though present, is less clear. Finally, predictions for

CC_0586 are identical in both studies but neither one is able to

identify the CenK-CenR interaction. Fig. 6 shows predictions for

orphan interactions in BS: observed interactions between KinA,

KinB, KinC, KinD, KinE and Spo0F are manifest. This means

that while predictions in CC are slightly less accurate compared to

the message-passing strategy, predictions in BS show a greater

accuracy.

Figure 1. True positive rate plotted against number of predicted pairs. Results are shown for four different different scoring techniques:
Frobenius norm (as described in [15], pseudo-count set to 0:8, blue); Gaussian direct information (as described in the text, APC-corrected, pseudo-
count set to 0:2, red); mean-field direct information (as described in [10], pseudo-count set to 0:5, orange) and APC-corrected mutual information (as
described in [41], green). The true positive rate is an arithmetic mean over 50 Pfam families (see Table 2 for the list); thin lines represent standard
deviations.
doi:10.1371/journal.pone.0092721.g001
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Discussion

In this work we have derived a multivariate Gaussian approach

to co-evolutionary analysis, whereby we cast the problem of the

inference of contacts in MSAs, as well as candidate interacting

partners within two MSAs of interacting proteins, into a simple

Bayesian formalism, under the hypothesis of normal inverse

Wishart distribution of the Gaussian parameters.

The major advantage of this method is the very simple structure

of the resulting probability distribution, which allows to derive

analytical expressions for many relevant quantities (e.g. likelihoods

and posterior probabilities). As a result, the computations

performed with this model can be very efficient, as demonstrated

by the code accompanying this paper.

Furthermore, our tests indicate that the prediction accuracy of

residue contacts using the Gaussian model is comparable or

superior to that achieved using the mean-field Potts model of [10],

or by using the PSICOV method of [12] with default settings;

accuracy in pairing interaction partners is comparable to that

achieved in [18].

Figure 2. True positive rate plotted against number of predicted pairs. Data for plmDCA [15] (green) and PSICOV version 1.11 [12] (red) was
obtained using the code provided by the authors with standard parameters as found in the distributed code, except that PSICOV was run with the -o
flag to override the check against insufficient effective number of sequences. The true positive rate is an arithmetic mean over 50 Pfam families (see
Table 2 for the list); thin lines represent standard deviations.
doi:10.1371/journal.pone.0092721.g002

Table 1. Running times in seconds for a representative sample of proteins with varying length (N) and sequences in alignment
(M), using different algorithms.

PF00014 PF00025 PF00026 PF00078

N 53 175 317 214

M 4915 5460 4762 172360

Gaussian DCA (parallel) 0.7 5.3 16.3 534.8

Gaussian DCA (non-parallel) 1.7 12.7 52.1 3583.4

PSICOV 11.7 1141.9 5442.7 10965.1

plmDCA 433.2 6980.7 37364.8 303331.0

Since the Gaussian DCA code is parallelized, we show two series of results, one in which we used 8 cores and one in which we forced the code to run on a single core,
for the sake of comparing with the non-parallel code of PSICOV and plmDCA. These benchmarks were taken on a 48-core cluster of 2100:130 MHz AMD Opteron 6172
processors running Linux 3.5.0; PSICOV version 1.11 was used, compiled with gcc 4.7.2 at -O3 optimization level; plmDCA was run with MATLAB version r2011b.
Gaussian DCA timings shown are taken using the Julia version of the code, using Julia version 0.2.
doi:10.1371/journal.pone.0092721.t001
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The simplicity and tractability of the model also suggests further

directions for improvement. For example, the whole posterior

distribution of relevant observables such as the DI could be studied

and, possibly, used to provide more insight into the kind of

predictions presented here (in particular, it could be used to

measure the confidence on the predictions). Also, suitably

designed, more informative priors (e.g. carrying biologically

relevant information) could further enhance the prediction power

of the method, although it is not obvious how to set a prior directly

on the predicted interaction strengths, whereas with other methods

– notably plmDCA [15] and PSICOV [12] – this should be

straightforward. Finally, we observe that the log-likelihood score

for interaction partners does not require an interaction model to

be known in advance: the interaction partners can be identified

across the whole families by optimizing the score of the joint

alignment as a function of the mapping between potentially

interacting partners, thus allowing to infer both the interacting

elements and their inter-protein contacts at once.

Materials and Methods

Data
Input data is given as multiple sequence alignments of protein

domains. For the first question (inference of residue-residue

contacts in protein domains), we directly use MSAs downloaded

from the Pfam database version 27.0 [40,46], which are generated

by aligning successively sequences to profile hidden Markov

models (HMMs) [47] generated from curated seed alignments. We

have selected 50 domain families, which were chosen according to

the following criteria: (i) each family contains at least 2,000

sequences, to provide sufficient statistics for statistical inference; (ii)

each family has at least one member sequence with an

experimentally resolved high-resolution crystal structure available

from the Protein Data Bank (PDB) [48], for assessing a posteriori the

predictive quality of the purely sequence-based inference. The

average sequence length of these 50 MSAs is SLT^173 residues,

the longest sequences are those of family PF00012 whose profile

HMM contains 602 residues. The list of included protein domains,

together with their PDB structure, is provided in Table 2.

Following [12], we discarded the sequences in which the

fraction of gaps was larger then 0:9. However, in [12], an

additional pre-processing stage was applied, in which a target

sequence is chosen as the one for which prediction of contacts is

desired, and all residue positions in the alignment (i.e. columns in

the alignment matrix X ) where the target sequence alignment has

gaps are removed. We did not find this pre-processing step to

improve the prediction, for either PSICOV or our model, and

therefore all results presented in this work do not include this

additional filtering.

For the second question (identification of interaction partners),

we have used the data of [18], thus having the possibility to

directly compare with previous results. In summary (for details see

[18]), this data comes from 769 bacterial genomes, scanned using

HMMER2 with the Pfam 22.0 HMMs for the Sensor Kinase (SK)

domain HisKA (PF00512) and for the Response Regulator domain

Response_reg (PF00072) [49], resulting in 12,814 SK and

20,368 RR sequences.

A total of 8,998 SK-RR pairs are found to be cognates, i.e. to be

coded by genes in common operons, while the rest are so-called

orphans. For statistical inference, cognates sequences are concat-

enated into a single MSA, each line containing exactly one SK and

its cognate RR.

A binary representation of MSA
The data we use are MSAs for large protein-domain families.

An MSA provides a M|L-dimensional array A~ am
l

� �m~1,...,M

l~1,...,L
:

each row contains one of the M aligned homologous protein

sequences of length L. Sequence alignments are formed by the

Q~20 different amino-acids, and may contain alignment gaps,

Figure 3. First 40 predicted contacts for the PF00069 family (Protein Kinase domain) with Gaussian DCA, using the same settings as
for Fig. 2. The left panel shows the predicted contacts overlaid on the PDB structure 3fz1 (figure produced using the PyMOL software [51]); the right
panel shows the predicted pairs overlaid on the contact map (true contacts as obtained by setting the threshold at 8 Å are shown in black). In both
panels, the color code is the following: the first 10 predicted contacts are depicted in green, the next 10 contacts in yellow, the last 20 contacts in
grey; the only false positive contact (occurring as the 24th predicted pair) is shown in red.
doi:10.1371/journal.pone.0092721.g003
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and therefore the total alphabet size is Qz1~21. For simplicity,

we denote amino-acids by numbers 1, . . . ,20, and the gap by 21.

Here we consider a modified representation, similar to that

used in [12], which turns out to be more practical for the

multivariate modeling we are going to propose (cf. Fig. 7). The

MSA is transformed into a M| Q:Lð Þ-dimensional array X~

xm
i

� �m~1,...,M

i~1,...,QL
over a binary alphabet f0,1g. More precisely, each

residue position in the original alignment is mapped to Q binary

variables, each one associated with one standard amino-acid,

taking value one if the amino-acid is present in the alignment, and

zero if it is absent; the gap is represented by Q zeros (i.e. no amino-

acid is present). Consequently, at most one of the Q variables can

be one for a given residue position. For each sequence, the new

variables are collected in one row vector, i.e. xm
l{1ð ÞQza~da,am

l
for

l~1, . . . ,L and a~1, . . . ,Q. The Kronecker symbol da,b equals

one for a~b, and zero otherwise.

Denoting the row length of X as N~QL, we introduce its

empirical mean x~ xið Þi~1,...,N and the empirical covariance

matrix C X ,mð Þ~ C X ,mð Þij
� �

i,j~1,...,N
for given mean m~

mið Þi~1,...,N :

xi~
1

M

XM
m~1

xm
i , ð1Þ

Cij X ,mð Þ~ 1

M

XM
m~1

xm
i {mi

� �
xm

j {mj

� �
: ð2Þ

The empirical covariance is thus C~C X ,xð Þ. Note that the

entry xi, with i~ l{1ð ÞQza, measures the fraction of proteins

having amino-acid a[f1, . . . ,Qg at position l[f1, . . . ,Lg. Simi-

larly, the entry Cij X ,0ð Þ of the correlation matrix, with

i~ k{1ð ÞQza and j~ l{1ð ÞQzb, is the fraction of proteins

which show simultaneously amino-acid a in position k and b in

position l.
The Gaussian model. We develop our multivariate Gauss-

ian approach by approximating the binary variables as real-valued

variables. Even though the former are highly structured, due to the

fact that at most one amino-acid is present in each position of each

sequence, we will not enforce these constraints on the model.

Instead, we shall rely on the fact that the constraint is present by

construction in the input data, and that as a consequence we have,

for any residue position l and any two states a and b with a=b:

Figure 4. DI-ranking-induced mean true positive rate for
predicting inter-protein contacts in the SK/RR complex, for
both mean-field DCA (blue curve) and multivariate Gaussian
DCA (red curve).
doi:10.1371/journal.pone.0092721.g004

Figure 5. Partner prediction for Caulobacter crescentus orphan two-component proteins by the conditional probability method.
Experimentally known interaction partners [44,45] are shown in red. Green dots correspond to partner predictions suggested in [18]. As for [18], the
overall performance of the algorithm is good, except for the prediction on CenK-CenR interaction.
doi:10.1371/journal.pone.0092721.g005
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C l{1ð ÞQza, l{1ð ÞQzb~{x l{1ð ÞQzax l{1ð ÞQzbƒ0 ð3Þ

i.e. two different amino-acids at the same site are anti-correlated.

Therefore, we shall let the parameter inference machinery work

out suitable couplings between different amino-acid values at the

same site, which generate these observed anti-correlations.

The multivariate Gaussian model and the Bayesian inference of

its parameters are well-studied subjects in statistics, thus here we

only briefly review the main ideas behind our approach, referring

to [50] for details. The multivariate Gaussian distribution is

parametrized by a mean vector m~ mið Þi~1,...,N and a covariance

matrix S~ Sij

� �
i,j~1,...,N

. Its probability density is

P(xjm,S)~(2p)
{N

2 jSj{
1
2 exp {

1

2
(x{m)TS{1(x{m)

� �
, ð4Þ

jSj being the determinant of S, and it turns out that the Q|Q
block

ekl a,bð Þ~{ S{1
� �

k{1ð ÞQza, l{1ð ÞQzb
ð5Þ

(with k,l[ 1, . . . ,Lf g and a,b[ 1, . . . ,Qf g) plays the role of the

direct interaction term in DCA between residues k and l.
Assuming for the moment statistical independence of the M
different protein sequences in the MSA, the probability of the data

X under the model (i.e. the likelihood) reads

P X Dm,Sð Þ~ P
M

m~1
P xmDm,Sð Þ

~ 2pð Þ{
NM

2 DSD{
M
2 exp {

M

2
tr S{1C X ,mð Þ
� �� �

,

ð6Þ

with C X ,mð Þ given by Eq. 2.

When the empirical covariance C is full rank, the likelihood

attains its maximum at m~x and S~C, which constitute the

parameter estimates within the maximum likelihood approach.

However, due to the under-sampling of the sequence space, C is

typically rank deficient and this inference method is unfeasible. To

estimate proper parameters, we make use of a Bayesian inference

method, which needs the introduction of a prior distribution over

m and S. The required estimate is then computed as the mean of

the resulting posterior, which is the parameter distribution

conditioned to the data. As we have already mentioned, a

convenient prior is the conjugate prior, which gives a posterior

with the same structure as the prior but identified by different

parameters accounting for the data contribution. The conjugate

prior of the multivariate Gaussian distribution is the normal-

inverse-Wishart (NIW) distribution. A NIW prior has the form

p m,Sð Þ~p mjSð Þp Sð Þ, where

p mjSð Þ~(2p)
{N

2 k
N
2 jSj{

1
2 exp {

k

2
m{gð ÞTS{1 m{gð Þ

h i
ð7Þ

is a multivariate Gaussian distribution on m with covariance matrix

S=k and prior mean g~ gið Þi~1,...,N . The parameter k has the

meaning of number of prior measurements. The prior on S is the

inverse-Wishart distribution

p Sð Þ~ 1

Z
Sj j{

nzNz1
2 exp {

1

2
tr LS{1
� �� �

, ð8Þ

where Z is a normalizing constant:

Z~2
nN
2 p

N(N{1)
4 DLD{

n
2 P

N

n~1
C

nz1{n

2

� 	
, ð9Þ

C being Euler’s Gamma function. The parameters n and

L~ Lij

� �
i,j~1,...,N

are the degree of freedom and the scale matrix,

Figure 6. Partner prediction for Bacillus subtilis orphan two-component proteins. All 5 orphan kinases, KinA-E, are known to phosphorylate
Spo0F, which is displayed in red and is always the maximally scoring protein in the RR set.
doi:10.1371/journal.pone.0092721.g006
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Table 2. 50 Pfam families used in the benchmarks, together with their associated PDB entries.

Pfam ID Description PDB

PF00001 7 transmembrane receptor (rhodopsin family) 1f88, 2rh1

PF00004 ATPase family associated with various cellular activities (AAA) 2p65, 1d2n

PF00006 ATP synthase alpha/beta family, nucleotide-binding domain 2r9v

PF00009 Elongation factor Tu GTP binding domain 1skq, 1xb2

PF00011 Hsp20/alpha crystallin family 2bol

PF00012 Hsp70 protein 2qxl

PF00013 KH domain 1wvn

PF00014 Kunitz/Bovine pancreatic trypsin inhibitor domain 5pti

PF00016 Ribulose bisphosphate carboxylase large chain, catalytic domain 1svd

PF00017 SH2 domain 1o47

PF00018 SH3 domain 2hda, 1shg

PF00025 ADP-ribosylation factor family 1fzq

PF00026 Eukaryotic aspartyl protease 3er5

PF00027 Cyclic nucleotide-binding domain 3fhi

PF00028 Cadherin domain 2o72

PF00032 Cytochrome b(C-terminal)/b6/petD 1zrt

PF00035 Double-stranded RNA binding motif 1o0w

PF00041 Fibronectin type III domain 1bqu

PF00042 Globin 1cp0

PF00043 Glutathione S-transferase, C-terminal domain 6gsu

PF00044 Glyceraldehyde 3-phosphate dehydrogenase, NAD binding domain 1crw

PF00046 Homeobox domain 2vi6

PF00056 Lactate/malate dehydrogenase, NAD binding domain 1a5z

PF00059 Lectin C-type domain 1lit

PF00064 Neuraminidase 1a4g

PF00069 Protein kinase domain 3fz1

PF00071 Ras family 5p21

PF00072 Response regulator receiver domain 1nxw

PF00073 Picornavirus capsid protein 2r06

PF00075 RNase H 1f21

PF00077 Retroviral aspartyl protease 1a94

PF00078 Reverse transcriptase (RNA-dependent DNA polymerase) 1dlo

PF00079 Serpin (serine protease inhibitor) 1lj5

PF00081 Iron/manganese superoxide dismutases, alpha-hairpin domain 3bfr

PF00082 Subtilase family 1p7v

PF00084 Sushi domain (SCR repeat) 1elv

PF00085 Thioredoxin 3gnj

PF00089 Trypsin 3tgi

PF00091 Tubulin/FtsZ family, GTPase domain 2r75

PF00092 Von Willebrand factor type A domain 1atz

PF00102 Protein-tyrosine phosphatase 1pty

PF00104 Ligand-binding domain of nuclear hormone receptor 1a28

PF00105 Zinc finger, C4 type (two domains) 1gdc

PF00106 Short chain dehydrogenase 1a27

PF00107 Zinc-binding dehydrogenase 1a71

PF00108 Thiolase, N-terminal domain 3goa

PF00109 Beta-ketoacyl synthase, N-terminal domain 1ox0

PF00111 2Fe-2S iron-sulfur cluster binding domain 1a70

PF00112 Papain family cysteine protease 1o0e

PF00113 Enolase, C-terminal TIM barrel domain 2al2

doi:10.1371/journal.pone.0092721.t002
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respectively, shaping the inverse-Wishart distribution. The condi-

tion for this distribution to be integrable is nwN{1. The

posterior p m,SjXð Þ, proportional to P X jm,Sð Þ:p m,Sð Þ, is still a

NIW distribution, as one can easily verify starting from Eqs. 6, 7

and 8. The posterior distribution p m,SjXð Þ is characterized by

parameters k
0
, g
0
, n
0
, and L

0
given by the formulae

k
0
~kzM,

g
0
~

k

kzM
gz

M

kzM
x,

n
0
~nzM,

L
0
~LzMCz

kM

kzM
x{gð Þ x{gð ÞT :

8>>>>>>><
>>>>>>>:

ð10Þ

The mean values of m and S under the NIW prior are g and

L= n{N{1ð Þ, and, similarly, their expected values under the

NIW posterior are g
0

and L
0
= n

0
{N{1

� �
, respectively. Our

estimates of the mean vector and the covariance matrix, that with

a slight abuse of notation we shall still denote by m and S for the

sake of simplicity, are thus

m~g
0
~

k

kzM
gz

M

kzM
x ð11Þ

and

S~
L
0

n
0
{N{1

~
LzMCz kM

kzM
x{gð ÞT x{gð Þ

nzM{N{1
: ð12Þ

The NIW posterior is maximum at m~g
0

and S~

L
0
=(n

0
zNz1), with the consequence that the maximum a posteriori

estimate would provide the same estimate of m and an estimate of

S that only differs from the previous one by a scale factor.

As a first attempt of protein contact prediction by means of the

present model, we choose g and L to be as uninformative as

possible. In particular, since U~L= n{N{1ð Þ is the prior

estimate of S, it is natural to set g~ gið Þi~1,...,N and U~

Uij

� �
i,j~1,...,N

to the mean and the covariance matrix of uniformly

distributed samples. Therefore, we set gi~1= Qz1ð Þ for any i,
and U to a block-matrix composed of L|L blocks of size Q|Q
each, where the out-of-diagonal blocks are uniformly 0:

U k{1ð ÞQza, l{1ð ÞQzb~
d k,lð Þ
Qz1

d a,bð Þ{ 1

Qz1

� 	
, ð13Þ

where k,l[ 1, . . . ,Lf g and a,b[ 1, . . . ,Qf g, and d is the Kroneck-

er’s symbol. Moreover, we choose n~Nzkz1 in order to

reconcile Eq. 12 with the pseudo-count-corrected covariance

matrix of [10] with pseudo-count parameter . Indeed, identifying

with k= kzMð Þ, this instance allows us to recast the estimation

of S as

S~ Uz 1{ð ÞCz 1{ð Þ x{gð ÞT x{gð Þ ð14Þ

and J~S{1 becomes the same as in the mean-field Potts model.

Manifestly from here, the effect of the prior is enhanced by values

of close to 1 while it is negligible when approaches 0.

Interestingly, the Gaussian framework provides an interpretation

of the pseudo-count correction in terms of a prior distribution,

which may allow improving the inference issue by exploiting more

informative prior choices.

Reweighted frequency counts. The approach outlined in

the above sections assumes that the rows of the MSA matrix X , i.e.

the different protein sequences, form an independently and

identically distributed (i.i.d.) sample, drawn from the model

distribution, cf. Eq. 6. For biological sequence data this is not

true: there are strong sampling biases due to phylogenetic relations

between species, due to the sequencing of different strains of the

same species, and due to a non-random selection of sequenced

species. The sampling is therefore clustered in sequence space,

thereby introducing spurious non-functional correlations, whereas

other viable parts of sequence space (in the sense of sequences

which would fall into the same protein family) are statistically

underrepresented. To partially remove this sampling bias, we use

the same re-weighting scheme used in the PSICOV version 1.11

code [12] (which is the same as that used in [8,10], with an

additional pre-processing pass to estimate a value for the similarity

threshold; see File S1 for details). The procedure can be seen as

generalization of the elimination of repeated sequences.

Computing the ranking score. Contact prediction using

DCA relies on ranking pairs of residue positions 1ƒkvlƒL

according to their direct interaction strength. As mentioned

before, two positions interact via a Q|Q matrix ekl given by Eq.

5. To compare two position pairs kl and k
0
l
0
, we need to map

these matrices to a single scalar quantity. We have tested two

different transformations: the first one, following [8], is the so-

called direct information (DI), which measures the mutual

information induced only by the direct coupling ekl between two

positions k and l (for a more precise definition see File S1); the

second one, following [15], is the Frobenius norm (FN) of the sub-

matrix obtained by (i) changing the gauge of the interaction such

that the sum of each row and column is zero, and (ii) removing the

row and column corresponding to the gap symbol. In our

empirical tests (cf. Fig. 1), the FN score can reach a better overall

accuracy in residues contacts prediction; the DI score, however,

also achieves good results, is gauge-invariant, and has a clear

interpretation in terms of the underlying model: it is therefore a

useful indicator to compare the Gaussian model with the mean-

field approximation to the discrete model. In the multivariate

Gaussian setting, the DI can be calculated explicitly, as shown in

File S1, thus resulting in a gain in computation time as compared

to the mean-field DCA in [10], while achieving similar or better

performance (cf. Fig. 1).

Figure 7. Illustration of the encoding of a sequence from
FASTA format to its intermediate numeric representation
(matrix A) to its final binarized representation (matrix X ). For
clarity, we restrict the alphabet to Q~3 amino-acids, A,C,Df g, plus the
gap. The alternation of white and gray cell backgrounds helps to track
the transformation (e.g. C?2?010). Typically, MSAs of protein families
are such that in every column (i.e. residue position) there appears a
number of distinct residues smaller than or equal to Q~20. Here, we
did not not consider a restriction of the alphabet to the residues
actually occurring, and we used instead the same encoding for all
residues.
doi:10.1371/journal.pone.0092721.g007
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We found empirically that both the DI and the FN scores

produce slightly better results in the residue contact prediction

tests when adjusted via average-product-correction (APC), as

described in [41].

Summary of the residue contact prediction steps
To summarize the previous sections, here we list the steps which

are taken in order to get from a MSA to the contact prediction:

N clean the MSA by removing inserts and keeping only matched

amino acids and deletions;

N remove the sequences for which 90% or more of the entries are

gaps;

N assign a weight to each sequence, and compute the reweighted

frequency counts C and x (see Eqs. 1 and 2, and Suporting File

S1);

N estimate the correlation matrix S by means of Eq. 14;

N compute S{1, and divide it in Q|Q blocks ekl (see Eq. 5);

N for each pair 1ƒk,lƒL, compute a score (DI or FN) from ekl ,

thus obtaining an L|L symmetric matrix S (with zero

diagonal);

N apply APC to the score matrix (i.e. subtract to each entry Skl

the product of the average score over k and the average score

over l, divided by the overall score average – the averages are

computed excluding the diagonal), and obtain an adjusted

score matrix SAPC
kl ;

N rank all pairs 1ƒkvlƒL, with l{kw4, in descending order

according to SAPC
kl .

A log-likelihood score for protein-protein interaction
In [18], DCA has been used to predict RR interaction partners

for orphan SK proteins in bacterial TCS, and to detect crosstalk

between different cognate SK/RR pairs. Relying on the improved

efficiency of the multivariate Gaussian approach presented here,

we can introduce a much clearer but similarly performing

definition of a protein-protein interaction score.

This score is based on the existence of a large set of known

interaction partners: we collect them in a unified MSA, in which

each row contains the concatenation of two interacting protein

sequences, and we encode them in a matrix denoted by XSKRR.

The encoded MSAs restricted to each of the single protein families

are denoted by XSK and XRR. We estimate model parameters SA

and mA for each of the three alignments XA, with A[fSK,

RR,SKRRg. Whereas the parameters for the two alignments of

single protein families describe the intra-domain co-evolution

inside each domain, the parameter matrix SSKRR, obtained from

the joint MSA, also models the inter-protein co-evolution.

In order to decide if two new sequences xSK and xRR interact,

we first introduce the sequence xSKRR as the (horizontal)

concatenation of xSK with xRR. Next we define a log-odds ratio

comparing the probability of these sequences under the joint

SKRR-model with the one under the separate models for SK and

RR, i.e. we calculate

L xSK,xRRð Þ~ log
P xSKRRjSSKRR,mSKRRð Þ

P xSKjSSK,mSKð ÞP xRRjSRR,mRRð Þ

~c{
1

2
xSKRR{mSKRRð ÞtS{1

SKRR xSKRR{mSKRRð Þ

z
1

2
xSK{mSKð ÞtS{1

SK xSK{mSKð Þ

z
1

2
xRR{mRRð ÞtS{1

RR xRR{mRRð Þ

ð15Þ

with c being a constant (i.e. not depending on the sequence

xSK,xRR) coming from the normalization of the multivariate

Gaussians. Intuitively, this score measures to what extent the two

sequences are coherent with the model of interacting SK/RR

sequences, as compared to a model which assumes them to be just

two arbitrary (and thus typically not interacting) SK and RR

sequences. In mathematical terms, it can also be seen as the log-

odds ratio between the conditional probability of xSK knowing

xRR, and the unconditioned probability of xSK.
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