
 
   
 

 
 

 
Abstract 

 
To perform registration of structured point clouds with 

large rotation and small overlaps, this paper presents an 
algorithm based on the direction angles and the projection 
information of dense points. This algorithm fully employs 
the geometric information of structured environment. It 
consists of two parts: rotation estimation and translation 
estimation. For rotation estimation, a direction angle is 
defined for a point cloud and then the rotation matrix is 
obtained by comparing the difference between the 
distributions of angles. For translation estimation, the point 
clouds are projected onto three orthogonal planes and then 
a correlation operation is performed on the projection 
images to calculate the translation vector. Experiments 
have been conducted on several datasets. Experimental 
results demonstrate that the proposed algorithm 
outperforms the state-of-the-art approaches in terms of 
both accuracy and efficiency.  

1. Introduction 
Point cloud registration has been extensively 

investigated in the past three decades [1-4]. The task of 
point cloud registration is to calculate the rotation matrix 
and translation vector to minimize the alignment error 
between two point clouds. Point cloud registration plays an 
important role in a number of applications including 
Simultaneous Localization And Mapping (SLAM) [5-7], 
3D reconstruction [8, 9], and object detection/recognition 
[10, 11]. Although remarkable progress has been achieved, 
3D point cloud registration remains a challenging problem, 
especially for point clouds with small overlaps. 

The Iterative Closest Point (ICP) algorithm [12] and its 
variants [13-16] have been frequently used to perform 3D 
point cloud registration. ICP uses a least square method to 
achieve optimal matching between two point clouds. Yang 
et al. [15] proposed a Global Optimal ICP (Go-ICP) method 
for point cloud registration. Serafin et al. [13] used normal 
features to obtain more accurate point correspondence, 
resulting in an improved registration accuracy for 
large-scale point clouds. Pomerleau et al. [17] developed a 
fast ICP algorithm for real-time SLAM. The  

 
(a)                      (b)                  (c)                       (d) 

Figure 1.  The workflow of the proposed algorithm. (a) Point 
clouds for registration. (b) Direction angle histograms of point 
cloud B for rotation estimation (Sec. 2.1). (c) Projection images of 
point cloud B for translation estimation (Sec. 2.2). (d) Registration  

results. (Figure best seen in color.) 
 

key step of these methods is to determine the point 
correspondence, which requires a large overlap between 
two point clouds [14, 17]. However, in real scenes, it is 
difficult to accurately search corresponding points without 
any prior information. Moreover, the ICP algorithm and its 
variants are sensitive to initial alignment. That is, these 
algorithms are more suitable for the registration of point 
clouds with a small rotation transformation [14, 17].  

Another way to achieve point cloud registration is the 
probabilistic methods. It is shown that probabilistic 
methods [1, 18-21] outperform the ICP algorithm in the 
presence of noise and outliers. Jian et al. [19] used a 
Gaussian Mixture Model (GMM) to address the point cloud 
registration problem. Evangelidis et al. [21] proposed a 
generative model based on multiple GMMs for joint 
registration of multiple point clouds. Myronenko et al. [18] 
proposed a Coherent Point Drift (CPD) algorithm to 
achieve high registration accuracy by maximizing the 
likelihood between the two GMMs of point clouds. 
Meanwhile, Myronenko et al. [18] also proposed a Fast 
Gauss Transform based CPD algorithm (FGT-CPD). Lu et 
al. [20] proposed an Accelerated Coherent Point Drift 
(ACPD) algorithm to achieve fast registration. 
Experimental results show that the computational 
complexity of these probabilistic methods is high, 
especially for large-scale point clouds [20]. 

Most of the aforementioned algorithms require an initial 
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alignment, and can only work on point clouds with a large 
overlap. Recently, a number of local feature based 
algorithms have been proposed [10, 22] to address the local 
optimization problem faced by the ICP and probabilistic 
based methods. However, feature extraction and matching 
is computationally expensive. Developing a fast and 
accurate registration algorithm for point clouds with small 
overlaps and large rotation is highly demanded. Therefore, 
this paper proposes a novel algorithm to handle this 
problem using the geometric information of structured 
environment (see Fig. 1). From Fig. 1, it can be observed 
that the rotation between two point clouds (as shown in Fig. 
1(a)) can be inferred from their direction angles (as shown 
in Fig. 1(b)). Meanwhile, the translation between two point 
clouds can be inferred from their projection images (as 
shown in Fig. 1(c)). Based on this observation, our 
registration algorithm is decomposed into two parts: 
rotation estimation and translation estimation. For rotation 
estimation, a direction angle is first defined and the 
statistics information of the direction angles is used to 
obtain the rotation matrix. For translation estimation, the 
point cloud is projected onto three coordinate planes and the 
the translation vector is then extracted by calculating the 
correlation between the corresponding projection images. 
The proposed algorithm does not require any initial 
alignment, and can be implemented efficiently as it does 
not have to calculate the point correspondences. A set of 
experiments have been conducted on indoor point clouds. 
Experimental results show that the proposed algorithm 
outperforms ICP and FGT- CPD on point clouds with small 
overlaps.  

The rest of this paper is organized as follows. Section 2 
introduces our direction angle distribution based 
registration algorithm. Section 3 presents the comparative 
experimental results and analyses. Section 4 concludes this 
paper. 

2. Point cloud registration 
Let P  and Q  to be two point clouds for registration, 

( , , )p p p

i i i ix y z p P , 1, 2, ,i n  ， ( , , )q q q

j j j jx y z q Q , 

1, 2, ,j m   are the points in P  and Q ,  p
in  and 

 q
jn  are the normals of the points. The task of a 

registration algorithm is to estimate the rotation matrix 
 3SOR  and the translation vector 3t  between the 

two given point clouds to minimize the alignment error E : 

  2

*, i j
i

E   R Rt p t q                  (1) 

Point *jq Q  denotes the corresponding point of ip .  
A registration algorithm is usually designed to minimize 

the error defined by Eq. 1. To obtain the optimal results, the 

point correspondence relationship between two point 
clouds has to be determined. However, this process is 
difficult and also time-consuming.  

It is observed that point clouds of indoor scenes usually 
have several planes perpendicular to each other, e.g., the 
floor and walls (as shown in Fig. 1). The angle between the 
corresponding planes before and after a certain rotation in 
the scene contains the information of the global rotation 
transformation. Similarly, the position of corresponding 
planes contains the information of the global translation. As 
a result, the angular and positional relationship between the 
corresponding planes can be used to estimate the 
transformation between two point clouds. Consequently, 
this clue can be used for point cloud registration in 
structured scenes. By using the plane correspondence 
information for registration, no point correspondence is 
required anymore, and the efficiency can be significantly 
improved. Since normal vectors explicitly gives the planar 
information of a scene, the direction angle histogram of 
normals can be used to estimate the rotation between two 
point clouds (see Fig. 1(b)), and the projection can be used 
to calculate the translation (see Fig. 1(c)). Since planes 
cannot be completely occluded in a scene, the proposed 
algorithm is expected to be robust to small overlaps and 
large occlusion. 

2.1. Direction angle distribution based rotation 
estimation 

The rotation between two point clouds can be 
decomposed into three rotation angles around three 
orthogonal axes. The angular transformation between two 
planes can be calculated from their normal vectors. 
Actually a rotation problem in the Cartesian coordinate 
system can be converted to a translation problem of angle 
parameters in the polar coordinate system. Consequently, 
we first extract the angles of surface normals and then 
achieve rotation estimation using these angles. 

 
2.1.1 2D direction angle  

Given a 2D direction vector 2( , )x y Pt  
where 2 2 0x y  , and a reference direction vector 

 1,0x N  on the XY plane, the 2D direction angle of Pt  
is defined as: 

 

arctan , if  0 & 0

, arctan π, if  0

arctan 2π, if  0 & 0

a

x

y

x

y
y

x

y
D y x

x

y
y

x

       
      

 
       

 

  (2) 

where  arctan   denotes the arctangent function. 
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Figure 2 shows the aD values of several selected points 
located on a unit circle. It is clear that the angle is within the 
range of  0,2π  and can be repeated with a period of 2π . 
Actually, the direction angle on the XY plane represents the 
rotation angle around the Z axis. Figure 3 shows the 

aD values over a region on the XY plane where x is within 
 1,1  and y is within  1,1 . It can be seen from Fig. 3 
that the angle function has a monotonous nature in a certain 
region.  

 
Figure 2. The 2D direction angle of several selected points located 

on a unit circle. 
 

 
Figure 3. The 2D direction angle of points located on the XY 

plane. (Figure best seen in color.) 
 

2.1.2 3D direction angle  
Let  , ,x y zn n nn  be the normal vector of 3D point 

3( , , )x y z Qt , n  uniquely determines the tangent plane 
of Qt . Then, n  is projected onto three coordinate planes, 
resulting in three projection directions  ,XY x yn nn , 

 ,YZ y zn nn ,  ,XZ x zn nn . Next, a direction angle aD  
can be obtained on each coordinate plane.  

We define the direction angle ZR of normal n on the XY 
plane as:  

  2 2, , if  0Z a y x x yR D n n n n                (3) 
Similarly, the direction angle of normal n  on the YZ 

plane is defined as XR : 

  2 2, , if  0X a z y z yR D n n n n                 (4) 
The direction angle of normal n  on the XZ plane is 

defined as YR : 

  2 2, , if  0Y a z x z xR D n n n n                 (5) 
The three angles XR , YR  and ZR  can be used to 

determine the rotation matrix. 
Based on Eqs. (3-5) and the properties of the arctangent 

function, it can be derived that:  

  

    

    

    

2 2

2 2

2 2

tan tan , , if  0

tan tan , , if  0

tan tan , , if  0

y
Z a y x x y

x

z
X a z y z y

y

z
Y a z x x z

x

n
R D n n n n

n

n
R D n n n n

n

n
R D n n n n

n


   


    


    


      (6) 

If the point Qt  is rotated around the Z axis by an angle , 
then the new normal of point Qt  is:  

 cos sin , sin cos ,x y x yn n n n z     n =    (7) 
Based on Eq. (3), the new direction angle on the XY 

plane is calculated as: 
 sin cos , cos sinZ a x y x yR D n n n n           (8) 

Combining Eqs. (6) and (8), it can be derived that: 

 

sin cos
tan

cos sin

tan

x y
Z

x y

Z

n n
R

n n

R

 
 




 



 

                      (9) 

Similarly, if the point Qt is rotated around the X axis by 
angle  , the new direction angle on the YZ plane is 

XR that is: 

 tan tanX XR R                          (10) 
If the point Qt is rotated around the Y axis by angle  , 

the new direction angle on the XZ plane is YR that is: 
 tan tanY YR R                          (11) 

Considering the periodicity property of direction angles, 
we have  

 
 
 

mod ,2π

mod ,2π

mod ,2π

X X

Y Y

Z Z

R R

R R

R R







  


  
   

                    (12) 

where  mod  denote the modulo operation. 

We define the difference between angles  0, 2πb  and 

 0, 2πa  as  ,D a b : 

   
, if   0 2π

,
2π , if   0 2π

a b b a
D a b

b a a b

   
      

     (13) 

Combining Eqs. (12) with (13), we have: 
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 
 
 

,
,
,

X X

Y Y

Z Z

D

D

D

R R

R R

R R

















 

                            (14) 

Consequently, we can obtain the rotation angles 
 ,  ,  based on Eq. (14). 

 
2.1.3 Direction angle histogram based rotation 

estimation 
If we directly use the direction angles to calculate the 

rotation angles by Eq. (14), we have to know the exact point 
correspondences for XR and XR , YR and YR , ZR and ZR  
in two point clouds. However, it is not easy to obtain these 
exact point correspondences in practice. Instead, we can 
generate the statistical information of XR , YR , and ZR for 
each point cloud, and then estimate the rotation using these 
statistics (e.g., histograms). 

Let  aR  be a set of direction angles within the range of 

 0,2π , the histogram  aH R  of  aR  is defines as: 

  , , 1,2, ,n bin
a k k binH R H R k n               (15) 

where n
kH is the number of points with direction angles 

falling into the bin determined by bin
kR . In this paper, the 

number of bins binn  is set to 3600.  
Let  aR  be the direction angles for the points after a 

rotation (with a rotation angle of  ), then we have: 
 mod ,2πa aR R                      (16) 

We therefore have: 
 

 
,

mod , 2π

n bin
a k k

bin bin
k k

H R H R

R R 

     
  

                (17) 

Let  XR ,  YR ,  ZR  to be the sets of direction angles 
of the whole point cloud, then we can obtain the rotation 
angle based on Eqs. (14) and (17):  

 
 
 

,

,

,

bin bin
Xk Xk

bin bin
Yk Yk

bin bin
Zk Zk

D

D

D

R R

R R

R R













 
 




                       (18) 

Consequently, we can easily calculate the rotation angles 
 ,  ,   from the direction angle histograms using Eq. 
(18). Figure 4 shows an example of the direction angle 
histograms for an indoor point cloud. The direction angle 
histograms of the given point cloud are shown in Fig. 4(a). 
We then rotate the point cloud by angles of π 6 , π 3 , 
π 2  round the X, Y, Z axes, respectively. The direction 
angle histograms of the rotated point clouds are shown in 

Fig. 4(b). It can be seen that the differences between the 
peaks of the direction angle histograms of XR , YR  and 

ZR  are π 6 , π 3 , π 2 , which is the same as the rotation 
angles between the original point cloud and the 
transformed point cloud. Therefore, the rotation around an 
axis can be determined by our histogram based algorithm 
without using any point correspondences. 

 

   
 
(a) Three direction angle histograms of the original point cloud. 

 

   
 

(b) Three direction angle histograms of the rotated point cloud. 
Figure 4. An illustration of the direction angle histograms. (Figure 

best seen in color.) 
 

Since a 3D rotation consists of three rotations around the 
X, Y and Z axes, the three rotation angles can therefore be 
estimated through an iterative approach. The whole process 
for rotation estimation is summarized in Algorithm 1. 

2.2. Correlation based translation estimation 
Once the accurate rotation is obtained, we then have to 

estimate the translation between two point clouds. A simple 
approach is to translate the centers of the two point clouds 
to the same position. However, this method only works well 
for highly overlapped point clouds. In practice, the point 
clouds acquired from real scenes usually have a small 
overlap, which makes the centers of the two point clouds 
significantly different. Figure 5 shows two point clouds 
with translation only (see Fig. 5(a)) and their projections on 
three planes (see Figs. 5(b-d)). Figure 5(b) shows the 
projection of the points with Z values ranging from 0.3m to 
1m. Figure 5(c) shows the projection of the points with Y 
values ranging from -1m to -2m. Figure 5(d) shows the 
projection of the points with X values ranging from 3m to 
9m. From Fig. 5, it can be seen that the translation of the 
wall and the floor planes can clearly be represented by their 
projection on the three coordinate planes. Consequently, we 
can estimate the translation vector using projection.  
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Algorithm 1 Direction Angle Based Rotation Estimation 
Input: point clouds P  and Q , the max number of iterations 

iterN  

1: Calculate the histograms  P
XH ,  P

YH ,  P
ZH  of P  

using the normals of points in P . 
2: Set the rotation matrix *R  to be an identity matrix, set the 

iteration number 0itern  .  
3: while iter itern N  do 
4:      Calculate the histogram  Q

ZH  of Q . 

5:      Compare the positions of the peaks in  P
ZH  and 

 Q
ZH  to obtain the rotation angle z  and the 

rotation matrix ZR  around the Z axis;  
6:        ZRQ = Q , * *

Z R R R ; 

7:         Calculate the rotation angles x , y  around the X , 

Y axes following the similar approach as for z ; 
9:         1iter itern n  ; 
10: end while 
11: return rotation matrix *R . 

 
In this paper, we use a correlation operation to calculate 

the translation vector. The main steps are as follows. First, 
the two point clouds are projected onto the three coordinate 
planes to generate three projection images. Second, the 
correlation operation is used to obtain the plane translation 
between the two projection images. Third, the translations 
in all planes are averaged to obtain the final 3D translation. 

   
(a)                                              (b) 

   
(c)                                              (d)  

Figure 5. Two point clouds with a translation of (0.1m, 0.2m, 
0.3m) and their projections on three coordinate planes. (a) The 
point clouds. (b) Projection on the XY plane. (c) Projection on the 
XZ plane. (d) Projection on the YZ plane. ( Figure best seen in  

color.) 

Point Cloud Projection.  First, the center of the point 
cloud is translated to the origin of the coordinate system, 
and the points whose Z values are within a certain range 
(e.g. from 0.3m to 1m) are projected onto the XY plane. The 
points within that range obviously represent the structure of 
the scene, as shown in Fig. 5(b). Second, the XY plane is 
partitioned into several bins and the number of projection 
points in each bin is counted, resulting in a projection image 
(see Fig. 6 (a)). Similarly, the point cloud are then projected 
on the YZ and XZ planes to obtain another two projection 
images, respectively (see Figs. 6 (b-c)). 

  

   
 

Figure 6. An illustration of point cloud projection. (a) Projection 
on the XY plane. (b) Projection on the YZ plane. (c) Projection on 

the XZ plane. 
 

Translation Estimation.  The correlation operation is 
performed on the projection image on the XY plane and the 
translation in the XY space is determined as 

 , , 0xy x yT C C  , where  ,x yC C  is the position with the  
maximum correlation being achieved. Following a similar 
approach, we can extract the translation yzT  in the YZ 
space and the translation xzT  in the XZ space. The overall 
translation is finally obtained by averaging the three 
translations: 

 1
2 xy yz zxT T T T                         (19) 

3. Experiments 
To test the performance of our algorithm, a set of 

experiments were conducted. Our algorithm was also 
compared with several state-of-the-art approaches 
including FGT-CPD [18] and two ICP variants, i.e., ICP 
using “point-to-point” metric [12] (denoted by ICP) and 
ICP using “point-to-plane” metric [14] (denoted by ICPL). 
The experiments were performed on several indoor datasets. 
All experiments were conducted using MATLAB 2015b on 
a PC with 2.5GHz Intel Core i7 CPU and 8G RAM. 

3.1. Experiment setup 
To test the performance of a registration algorithm, we 

measure the pairwise alignment error between the 
ground-truth pose and the estimated pose using Relative 
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Rotational Error (RRE) RE  and Relative Translational 
Error (RTE) TE , which is similar to [20]. RRE is calculated 
calculated as: 

 

 

3

1

1

R
i

T E

E angle i

angle F R R










                       (20) 

where TR  is the ground-truth rotation matrix, ER  is the 
estimated rotation matrix, and  F   transforms a rotation 
matrix to three Euler angles. RRE is actually the sum of the 
absolute differences in three Euler angles. 

RTE is calculated as: 

2T T EE T T                               (21) 
where TT  is the ground-truth translation vector and ET  is 
the estimated translation vector.  

3.2. Robustness to rotation and translation 
In this section, we tested the performance of our 

algorithm with respect to different rigid transformations 
(including rotation and translation) of point clouds. We 
selected 100 point clouds with an average overlap of about 
60% from the office dataset [23] for experiments. The 
dataset consists of a sequence of RGB and depth images 
acquired with a handheld Microsoft Kinect sensor. The 
point clouds generated from the depth images have about 
280000 points in average. This dataset also contains the 
ground-truth camera poses obtained by a KinectFusion 
system [24]. Figure 7 shows a model of the office scene 
reconstructed by KinectFusion [24].  

 
Figure 7. A model of the office scene.  

For each pair of test point clouds, we apply different 
rotations and translations to one of the two point clouds. 
The registration results are shown in Tables 1-2, with the 
best results shown in bold face.  

First, we only apply different levels of rotations to the 
point clouds. The rotation angles around each axis is set to 
30°, 60°, 90°, and 120°, respectively. The translation 
between the point clouds is set to 0. We set the max number 
of iterations as 3iterN   in our experiments. The RRE 
results achieved by different algorithms are shown in Table 
1. From Table 1, we can see that the proposed algorithm 
achieves a very high accuracy on point clouds in the 
presence of rotation, especially when the rotation is large. 
The RRE is as small as 1.91° when the rotation between 

point clouds is 90°. The ICP and ICPL algorithm obtains 
the similar performance. That is because the scene for test 
contains a large number of planes with similar features, and 
the point correspondence cannot be accurately estimated. 
Meanwhile, when the rotation is large than 60°, the error 
achieved by FGT-CPD increases dramatically. That is 
because the structured point cloud cannot be well modeled 
by GMM. In contrast, the proposed algorithm achieved the 
best performance. The large number of planes in the scene 
highly support our rotation estimation based on the 
direction angle histograms.  

Second, we only apply different levels of translations to 
the point clouds. The translations along each axis is set to 
0.1m, 0.2m, 0.3m, and 0.4m, respectively. No rotation is 
applied to the two point clouds. In our algorithm, we set the 
bin size to be 0.02m for generating projection images. The 
RTE results achieved by different algorithms are shown in 
Table 2. From Table 2, it can be seen that our algorithm 
achieves almost the same RTE results under different levels 
of translations and it outperforms other methods on all tests. 
That is because, the other methods address the translation 
estimation problem by assuming that the centers of two 
point clouds are located at the same position. Note that, the 
ICP used here is the original one without rejecting point 
pairs with large distance. Therefore the RTE of ICP and 
FGT-CPD is almost same as the distance between their 
centers. However, this assumption does not hold for most 
practical scenarios, where only a small overlapped part can 
be found between the two point clouds. In our algorithm, 
the translation is estimated from the projections of planes 
(i.e. floor and walls), and the translation can be accurately 
estimated using these projections on the coordinate planes. 

 Relative Rotational Error (°) 

Rotation 30° 60° 90° 120° 

FGT-CPD [18] 6.97 6.97 45.83 43.73 

ICP [12] 8.04 5.53 12.57 17.95 

ICPL [14] 8.70 12.12 11.40 10.48 

Proposed 2.81 2.82 1.91 4.94 
Table 1. Registration results on point clouds with rotations only. 

(The best results are shown in bold.) 
 

 Relative Translation Error (m) 

Translation 0.1m 0.2m 0.3m 0.4m 

FGT-CPD [18] 0.471 0.459 0.449 0.440 

ICP [12] 0.481 0.465 0.457 0.452 

ICPL [14] 0.603 0.593 0.573 0.554 

Proposed 0.043 0.042 0.043 0.043 
Table 2. Registration results of point clouds with translations only. 

(The best results are shown in bold.) 
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(a) Scene 1                                    (b) Scene 2                                        (c) Scene 3                                   (d) Scene 4   

Figure 8. The point clouds with different degrees of overlaps. (Figure best seen in color.) 
 

 Relative Rotational Error (°) Relative Translation Error (m) 

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 1 Scene 2 Scene 3 Scene 4 

FGT-CPD [18] 4.76 1.70 5.85 7.32 0.186 0.194 0.219 0.431 

ICP [12] 64.76 78.24 88.06 91.19 1.334 1.453 1.509 1.487 

ICPL [14] 1.40 100.81 137.89 5.89 0.029 1.218 1.694 0.321 

Proposed 1.64 1.01 4.39 1.16 0.030 0.0131 0.083 0.080 
Table 3. Registration results on point clouds with different degrees of overlaps. 

 

     
(a) The point clouds for registration                           (b) The ground truth                                          (c) Our result 

     
(e) ICP result                                                      (f) ICPL result                                            (g) FGT-CPD result 

Figure 9. Registration results on two large-scale point clouds. (Figure best seen in color.) 
 

3.3. Robustness to different overlaps 
In this section, we test the registration performance of 

our algorithm on point clouds with different degrees of 
overlaps.  

Since the point clouds in the office dataset have almost 
the same degree of overlap, we acquired a new dataset in an 

office using Kinect. The ground-truth camera poses were 
obtained using the Real-Time Appearance-Based Mapping 
(RTAB-MAP) method [25]. Several pairs of point clouds 
with different degrees of overlaps were used for our test, an 
illustration of the point clouds is shown in Fig. 8. The 
rotation angles around the X, Y, and Z axes were set to 30°, 
30°, 30°, respectively, and the translation was set to (0.1m, 
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0.1m, 0.1m). The final registration results are shown in 
Table 3, with the best results shown in bold face. 

From Table 3, we can see that the registration 
performance of all these algorithms decreases as the overlap 
between point clouds is reduced. The proposed algorithm 
obtains the best performance on all scenes except Scene 1, it 
achieves acceptable performance even on point clouds with 
a very small overlap (i.e. Scene 4). For the most challenging 
case given by Scene 4, our algorithm achieves a small RRE 
of 1.16°, which is even better than the performance 
achieved by ICPL on the easiest case (Scene 1). This clearly 
demonstrates the robustness of our algorithm with respect 
to small overlaps. 

For the ICP algorithms, insufficient point 
correspondences can be found between two point clouds 
when the overlap is small. Similarly, for FGT-CPD, a 
particular probabilistic model cannot be generated for two 
point clouds with small overlaps. In contrast, the proposed 
algorithm fully employs the statistical information of 
surface normals, it is not necessary to extract a set of 
corresponding points from the overlapping areas, and the 
robustness of the algorithm is therefore improved. 

3.4. Results on LiDAR point clouds 
These methods were further tested on two large-scale 

LiDAR point clouds given by [26]. These point clouds were 
acquired from an apartment, with a rotation of (10°, 20°, 
30°) and a translation of (0.1m, 0.1m, 0.1m). The 
registration results are shown in Fig. 9. It can be shown that 
our algorithm also achieves good registration results on 
large-scale structured point clouds. It can be seen from Fig. 
9 that our algorithm achieves better performance compared 
to the other methods.  

3.5. Computational time 
In this section, we calculated the computational time of 

each algorithm for registering two point clouds from the 
office dataset, the results are shown in Table 4. It can be 
observed that the proposed algorithm achieved the fastest 
performance when the number of points is about 280000, 
followed by FGT-CPD. The proposed algorithm 
outperforms the other methods by an order of magnitude, it 
takes only 25.6s for point cloud registration. In contrast, 
ICP is the slowest algorithm, it takes more than 300s to 
register two point clouds. The computational burden of 
FGT-CPD is mainly due to the construction of GMM 
models. For ICP, the process for determining the 
corresponding points is very time-consuming. In contrast, 
our algorithm uses the histograms of surface normals, 
which can be generated very efficiently.  

FGT-CPD[18] ICP[12] ICPL [14] Proposed  
184.5 s 313.3 s 391.4 s 25.6 s 
Table 4. The registration time for different algorithms. 

4. Conclusion  
This paper has presented a novel algorithm for point 

cloud registration. The rotation between two point clouds is 
estimated by iteratively generating histograms of direction 
angles. The translation between two point clouds is 
estimated by projecting the rotated point clouds onto three 
coordinate planes. The proposed algorithm has been tested 
on three different datasets. Experimental results show that 
our registration algorithm achieves both high accuracy and 
efficiency, it is also very robust to small overlaps. It 
outperforms several existing methods including ICP and 
FGT-CPD. 
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