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Abstract—The strong radiative forcing by atmospheric
methane has stimulated interest in identifying natural and an-
thropogenic sources of this potent greenhouse gas. Point sources
are important targets for quantification, and anthropogenic
targets have potential for emissions reduction. Methane point
source plume detection and concentration retrieval have been
previously demonstrated using data from the Airborne Visible
InfraRed Imaging Spectrometer Next Generation (AVIRIS-NG).
Current quantitative methods have tradeoffs between computa-
tional requirements and retrieval accuracy, creating obstacles for
processing real-time data or large datasets from flight campaigns.
We present a new computationally efficient algorithm that applies
sparsity and an albedo correction to matched filter retrieval
of trace gas concentration-pathlength. The new algorithm was
tested using AVIRIS-NG data acquired over several point source
plumes in Ahmedabad, India. The algorithm was validated using
simulated AVIRIS-NG data including synthetic plumes of known
methane concentration. Sparsity and albedo correction together
reduced the root mean squared error of retrieved methane
concentration-pathlength enhancement by 60.7% compared with
a previous robust matched filter method. Background noise
was reduced by a factor of 2.64. The new algorithm was
able to process the entire 300 flightline 2016 AVIRIS-NG India
campaign in just over 8 hours on a desktop computer with GPU
acceleration.

Index Terms—Methane Mapping, Plume Detection, AVIRIS-
NG, Greenhouse Gas Emissions

I. INTRODUCTION

M
ETHANE (CH4) is a powerful greenhouse gas with

a global warming potential 28 times more powerful

than CO2 [1], [2]. This increased warming potential makes
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methane responsible for 20% of the radiative forcing from

anthropogenic emissions despite being only 4% of the carbon

mass flux [3], [4]. After a short stable period from 1999 to

2006, atmospheric methane concentration has continued to rise

[5]–[7], fueling uncertainty about the partitioning between nat-

ural and anthropogenic sources in the global methane budget

[1], [8], [9]. Anthropogenic methane sources are dominated

by point source emitters in the energy, industrial, agricul-

tural, and waste management sectors [10]–[12]. Reduction of

anthropogenic methane emissions offers the potential for a

rapid reduction in global radiative forcing [7], but requires

identification and mitigation of point source emitters.

Remote sensing has emerged as a valuable platform for

studying methane emissions at various spatial scales [13], [14].

A variety of satellite instruments for methane measurement

have been launched [15]–[18]; however, the spatial resolu-

tion of these instruments (kilometers to tens of kilometers)

is insufficient for studying individual point sources [19].

Airborne instruments, with a typical spatial resolution less

than 10 meters, are well suited for studying individual point

sources [20], [21], and the large imaging footprint provided by

airborne imaging spectrometers enables the mapping of entire

point source methane plumes. The Airborne Visible/Infrared

Imaging Spectrometer Next Generation (AVIRIS-NG) has a

demonstrated ability to detect and retrieve concentrations of

methane plumes using reflected solar radiance in the shortwave

infrared (SWIR; 1400-2500 nm) [22]–[24].

Methane detections and concentration retrievals using SWIR

imaging spectrometer data utilize the strong methane absorp-

tion features in this spectral region. Detection of trace gas

plumes from imaging spectrometer data largely builds upon

the work of Funk et al. [25], with subsequent improvements

regarding techniques to avoid signal contamination [26], [27].

Band ratios have also been used to identify plume locations

[22], [23], [28]. Matched filter and band-ratio methods benefit

from the ability to sieve through large amounts of data, but

they have been inadequate for accurately retrieving methane

concentration until the application of a unit absorption spec-

trum by Thompson et al. [23]. Thompson et al. demonstrated

real-time concentration retrieval, but this method has not

yet been fully validated. Iterative maximum a posteriori dif-

ferential optical absorption spectroscopy (IMAP-DOAS) has

also been used to estimate gas concentrations from imaging
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spectrometer data [19]–[21], [29]. However, to date the use of

IMAP-DOAS to estimate gas concentration for full scenes and

real-time mapping of methane plumes has not been practical

because of its high computational requirements.

In this paper, we present a new algorithm that applies spar-

sity and albedo correction to retrieval of local enhancements

in methane concentration from imaging spectrometer data.

This algorithm draws from the rich heritage of matched filters

for plume detection, and allows accurate retrieval for large

datasets from flight campaigns or real-time retrieval. We apply

this algorithm to real AVIRIS-NG data and to synthetic images

for validation.

II. METHODS

This section describes the techniques we implement for

retrieving methane concentration from SWIR radiance mea-

sured by an imaging spectrometer, beginning with previously

reported matched filters (Section II-A) and then reporting our

improvements using sparsity (Sec. II-B) and spatial conformity

(Sec. II-C). Details of the parameters that are used within these

techniques are subsequently discussed, including the target

spectrum (Sec. II-D) and background data statistical estimates

(Sec. II-E). Finally, we describe experimental (Sec. II-F) and

validation (Sec. II-G) datasets used for our evaluation of the

reported techniques.

A. Matched Filter

The radiance measured by the sensor is modeled as a

function of the concentration of methane α and a target spec-

trum t based on the spectral signature of methane absorption

s, corrupted by additive zero-mean colored Gaussian noise

with covariance C capturing the background. Let L0 be the

ambient at-sensor radiance with background concentrations of

an absorbing gas, but no enhancement. The effect of methane

enhancement is given by the Beer-Lambert absorption law,

L(α, s) = L0e
−αs. A quadratic optimization problem is

formulated by linearizing the Beer-Lambert absorption law in

the Gaussian model using a first-order Taylor series expansion:

L0e
−αs

≈ L0 − αts(L0). (1)

The radiance-dependent target spectrum ts(L0) can be cre-

ated from the absorption spectrum of methane [23], radia-

tive transfer simulations of transmittance [22], or radiative

transfer simulation of changes in radiance with changes in

methane concentration. We use the latter approach, described

in section II-D. Following [25], we use the mean at-sensor

radiance µ to approximate L0, the unknown nonenhanced

ambient at-sensor radiance. To simplify notation, given that we

are interested in a single gas with unchanging characteristic

absorption s, we drop the subscript in −ts and assume

negative values, leaving the target spectrum as simply t. The

Gaussian log-likelihood becomes

α̂i = argmin
αi

N
∑

i

[

dT
2 C

−1d2

]

(2)

d2 = Li − (µ+ αit(µ))

given t(µ), C, and µ. The minimizer of the above log-

likelihood is exactly given by

α̂i =
(Li − µ)

T
C−1 (t(µ))

(t(µ))
T
C−1 (t(µ))

. (3)

This minimizer is the same robust matched filter used by [30]

for signature detection in hyperspectral data. Strategies for

estimating C and µ are discussed in section II-E.

B. Sparsity Prior

High-dimensional multivariate models are generally difficult

to fit reliably due to the large number of potential free pa-

rameters. However, one can recover numerical leverage in the

case of sparse data that can be represented by elements with

only a handful of nonzero values. This property of sparsity is

well studied in diverse statistical disciplines, with applications

ranging across fields of regression and nonlinear inverse prob-

lems. Sparsity is used in many techniques within statistics,

such as the least absolute shrinkage and selection operator

(LASSO). Compressed sensing techniques in image processing

use sparse priors to reduce the required measurement time,

sampling rate, or consumption of any limited resource during

acquisition [31]. In medical imaging, reconstruction methods

for magnetic resonance imaging and computed tomography

extensively use compressed sensing techniques to reduce scan

time and harmful radiation doses to patients [32]. Applications

in photography, radio astronomy, and electron microscopy also

use compressed sensing [33]–[35]. Compressed sensing in

the imaging sciences is more thoroughly reviewed by [36].

The LASSO technique using ℓ1 sparsity originated in the

geophysics literature [37]. Practical applications of sparsity are

particularly focused on ℓp penalties for 1 ≤ p < 2, because

these norms induce sparsity and are convex, giving globally

unique solutions. In contrast with optimizations using ℓ2 priors

such as ridge regression, ℓ1 regularized optimization problems

have no closed-form solution and iterative methods must be

employed.

We hypothesize that methane enhancement within airborne

imaging spectrometer data should generally exhibit sparsity.

The typical AVIRIS-NG scene has approximately 600 pixels

in the cross-track direction and several thousand pixels along-

track, totaling to several million pixels. Even with multiple

point source enhancements that may occupy a few thousand

pixels in a scene, these pixels represent a small fraction of

the total scene. We formalize this intuition as a sparse prior

on the matched filter optimization. The number of enhanced

pixels within an image is directly measured by the ℓ0 counting

norm. The count of pixels containing any enhancement can be

included as an additional term in the matched filter optimiza-

tion problem (2) to yield the minimal number of enhanced

pixels. However, ℓ0 is impractical for optimization because it

is not convex and requires an exhaustive combinatorial search

for the solution [38].

Relaxing the ℓ0 norm to ℓ1 as a convex surrogate norm

transforms the problem to a convex optimization with efficient

solutions [39]. The ℓ1 norm is the closest convex relaxation

of the ℓ0 norm. Furthermore, [40] shows that reweighted ℓ1
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minimization helps rectify ℓ1’s dependence on magnitude and

tractably solves a relative of the nonconvex ℓ0 problem through

iterations of convex ℓ1 solutions with updating weights. We

introduce this reweighted ℓ1 minimization scheme on the same

matched filter problem:

α̂k
i = argmin

αi

N
∑

i

[

dT
4 C

k−1
d4 + wk

i

∥

∥αk
i

∥

∥

1

]

(4)

d4 = Li − αk
i t(µ

k)− µk

where αi is the gas enhancement of the i-th pixel, C and µ are

the empirical covariance and mean, t(µ) is a target radiance

spectrum that depends on an approximated ambient at-sensor

radiance µ, and the regularization weights for the k-th iteration

are

wk
i =

1

αk−1
i + ǫ

(5)

where ǫ > 0 is a sufficiently small real scalar for numerical

stability when there is no gas enhancement (α is zero).

The reweighted ℓ1 method requires a solution to the ℓ1-

regularized problem for each iteration of reweighting. We use

the iterative shrinkage-thresholding algorithm (ISTA) because

of its simplicity [41]. The combination of these two iterative

methods allows us to alternate iterations and jointly optimize

the weights wi and concentrations αi for a solution. The

total computational expense is reduced because an optimal ℓ1
solution is not computed at each reweighting iteration. ISTA

is straightforward to implement, building upon the closed-

form solution to the unconstrained optimization problem (3)

with only a decrease by the regularization parameter w and

subsequent thresholding. Gas enhancements are non-negative,

so the thresholding is further simplified to allow only positive

enhancement values. The reweighted ℓ1 ISTA approach thus

iterates independently for each pixel i as

α̂k
i = max

(

(

Li − µk
)T

Ck−1 (
t(µk)

)

− wk
i

(t(µk))
T
Ck−1

(t(µk))
, 0

)

(6)

where Ck and µk are recalculated for each reweighting

iteration.

C. Albedo Correction

Trace gas enhancement is more difficult to detect in pixels

acquired over low-albedo surfaces. While trace gas absorption

as a percentage of ambient at-sensor radiance is independent

of albedo, the absorption signal in terms of absolute radiance

is reduced as surface albedo decreases. In principle, this albedo

effect is addressed by construction of the target spectrum,

which represents the change in radiance for a unit change

in methane enhancement, incorporating surface reflectance.

However, recall that, for simplicity, a single target spectrum is

used for many flightlines, and for all the pixels within those

flightlines. This single target spectrum is estimated using the

mean of the background distribution. A per-pixel estimate of

the target spectrum that accounts for local albedo could be

more accurate.

We compensate for this nonspecificity effect in our opti-

mization by scaling the target spectrum by a pixel’s observed

albedo factor, because the absorbed radiance in Beer-Lambert

transmission is directly dependent on the initial radiance in

the absence of the absorber. The scalar albedo factor ri is

calculated from the spectral mean µ and the radiance spectrum

Li of the i-th pixel

ri =
LT

i µ

µTµ
(7)

which then scales the target spectrum t(µ). Scaling in this

manner results in the solution being normalized by the albedo

term. This normalization is similar to per-pixel normalization

in the Adaptive Coherence Estimator used in hyperspectral

analysis [42], [43]. Additionally, the regularization is scaled

by the albedo factor to decrease the regularization of low-

signal regions while increasing confidence in retrievals over

high-signal regions. In practice, the scalar albedo factor ri
is factored out of the target spectrum function, yielding the

following optimization problem:

α̂k
i = argmin

αi

N
∑

i

[

dT
8 C

k−1
d8 + ri w

k
i

∥

∥αk
i

∥

∥

1

]

. (8)

d8 = Li − riα
k
i t(µ

k)− µk

We again solve this problem with reweighted ℓ1 and ISTA.

The algorithm in Fig. 1 details the procedure for iteratively

calculating the optimum gas enhancement solution for the

original matched filter, the sparse solution, and this albedo-

corrected solution.

1: procedure ALBEDOREWEIGHTL1FILTER(D, s, Niter)

2: Initialize µ0 = 1
N

∑N

i Li

3: Initialize C0 = 1
N

∑N

i

(

Li − µ0
)T (

Li − µ0
)

4: for all i do

5: Set ri =
LT

i
µ

µTµ

6: Initialize α0
i =

(Li−µ0)
T
C0−1(µ0

⊙s)
ri(µ0⊙s)TC0−1(µ0⊙s)

7: end for

8: for k = 1 to Niter do

9: wk = 1
αk−1+ǫ

10: µk = 1
N

∑N

i

(

Li − riα
k−1
i µk−1 ⊙ s

)

11: for all i do

12: Let dCi = Li − riα
k−1
i µk ⊙ s− µk

13: end for

14: Ck = 1
N

∑N

i dCid
T
Ci

15: for all i do

16: αk
i = max

(

(Li−µk)
T
Ck−1(µk

⊙s)−wk

i

ri(µk⊙s)TCk−1(µk⊙s)
, 0

)

17: end for

18: end for

19: return αNiter

20: end procedure

Fig. 1. Algorithm to calculate gas enhancement concentration with albedo-
corrected reweighted ℓ1 sparsity. For results without sparsity, enforce wk = 0.
For results without albedo correction, set ri = 1.
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D. Target Spectrum Generation

Matched filter methods use a target spectrum that captures

the spectral shape of trace gas absorption. We base our target

spectrum on radiative transfer simulations, which determine

the change in radiance corresponding to a change in methane

enhancement above background. We define a unit absorption

spectrum s as the change in radiance for a 1 ppm increase in

methane concentration over a pathlength of 1 m. This spectrum

was created using atmospheric radiative transfer simulations

in MODTRAN6 [44]. A background methane concentration

of 1.85 ppm was assumed, and concentration was uniformly

enhanced within a 500 m layer at the surface. Accounting

for absorption on both the downwelling and upwelling paths,

enhancements ranged from 0 to 10000 ppm·m. Simulations

used a 100% surface albedo, which was necessary to allow

s to be rescaled by mean radiance at each wavelength (9).

Sensor height was set to 8 km – the altitude at which AVIRIS-

NG was flown for the test scene described in section II-F.

A tropical atmospheric profile with rural aerosol scattering

was assumed, and visibility was set to 23 km. At-sensor radi-

ance simulated using MODTRAN was convolved to AVIRIS-

NG bands using band center wavelengths and full width-

half maxima provided with AVIRIS-NG data. For each band,

concentration multiplied by pathlength (measured in ppm·m)

was regressed against the natural log of radiance across the

range of enhancements, and the slope of the best-fit line

provided the unit absorption value for that band (Fig. 2d).

This unit absorption spectrum s has unit of (ppm·m)−1.

The target spectrum scales the unit absorption spectrum by

the mean radiance at each wavelength:

ts(µ) = µ⊙ s (9)

where ⊙ is element-wise multiplication of the vectors. As µ

has units of µW·cm−2 ·sr−1 ·nm−1 for AVIRIS-NG data, the

target spectrum has units µW ·cm−2 ·sr−1 ·nm−1(ppm ·m)−1.

Since the target spectrum is a scaled change in radiance

due to a 1 ppm increase in concentration over a pathlength

of 1 m, αi is the enhancement above the background of a

combined concentration-pathlength with units of ppm·m. This

measurement unit reflects an inherent ambiguity in radiative

retrieval: a low-concentration enhancement that persists over a

long pathlength is radiatively equivalent to a high enhancement

over a short pathlength.

E. Strategies for Estimating C and µ

In the matched filter model, the Gaussian modeling param-

eters C and µ describe the background signal of the data.

Any contamination of the target spectrum into these param-

eters, especially contamination in the covariance matrix C,

degrades the detection ability of a matched filter [26]. Various

techniques have been reported in the literature for covariance

estimation and inversion [30].

For the robust matched filter method, we estimate the

covariance with a robust approach described by Theiler [45]

with a mean Mahalanobis approximation. This robust covari-

ance estimation requires an exhaustive search through many

proposed shrinkage values for the one that best minimizes

the average leave-one-out negative log likelihood. For our

iterative estimations, we use an iterative approach that allows

us to directly remove any gas enhancement signals from

these values. An iterative approach is less computationally

demanding than an exhaustive search and ensures that the

background covariance is not contaminated by the target.

The mean and covariance are calculated with their canonical

formulas after subtracting the current signal estimate from

the data. First, the mean is calculated from the data with the

removal of the most recent enhancement estimates αk−1
i :

µk =
1

N

N
∑

i

(

Li − αk−1
i t(µk−1)

)

. (10)

The covariance is then calculated with updated mean µk and

the most recent enhancement estimates αk−1
i :

Ck =
1

N

N
∑

i

d11d
T
11. (11)

d11 = Li − αk−1
i t(µk)− µk

Due to the slightly nonuniform response of individual

detectors in pushbroom instruments, models applied to data

from pushbroom instruments have estimated the covariance

independently for each detector [23], [46]. Practically, each

flightline image is partitioned by the detector element that

collected the image pixel’s data, and each partition is pro-

cessed independently. This detector correspondence is pre-

served along the image columns (direction of flight) in the

non-orthorectified data. Full partitioning by the detector natu-

rally leads to more computational work, because covariance

and mean calculations are repeated within the independent

matched filter processes for each individual detector-wise

partition of the image data. To ease this computational load,

we introduce a collection of multiple adjacent detectors’

pixels into a single partition for processing. This approach is

especially useful for short flightlines where the limited sample

size leads to a less accurate background model. The number

of adjacent detectors grouped into a single processing partition

is a trade-off among the sample size for estimating the back-

ground model, the background model’s accurate description of

individual detector variations, and the reduced computational

complexity of having fewer partitions. In our experiments, this

detector grouping is applied across five adjacent detectors for

unmodified instrument data. Detector grouping is not applied

in experiments using simulated data for better quantitative

comparison to previous work. For the convergence experiment,

we group all detectors into one partition for the simplicity of

having a single optimization energy.

F. Experimental Data

The NASA AVIRIS-NG sensor is a pushbroom-design

imaging spectrometer operated by the Jet Propulsion Labo-

ratory (JPL) covering a spectral range of 380-2510 nm with

bands centered at approximately 5 nm intervals [47]. For

this study, AVIRIS-NG was integrated into an Indian Space

Research Organisation (ISRO) B-200 King Air for flights over

India. Fifty-seven sites in India were selected for the Phase
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1 campaign, which took place from December 2015 through

March 2016. More than 300 flightlines were flown, covering

a variety of forests, coastal margins, urban areas, agricultural

areas, and sites of interest for geological and hydrological

investigations. Approximate spatial resolution ranged between

3.3 m and 8.2 m, depending on the altitude of the aircraft and

topography. Data were transformed from digital numbers to

radiance units via standard practice calibration methods and

corrections for spectral response function tails as in [48].

From the India dataset, we choose one flightline to high-

light for its diverse set of test environments: flightline

ang20160211t075004, flown over Ahmedabad, includes

a variety of land cover types and suspected methane sources.

This flightline contains agricultural and urban land uses and

has several low albedo water features. The urban areas contain

surfaces that correspond with spectral “confusers”, as high-

lighted by [19]. Suspected methane sources include petroleum

infrastructure, a landfill, and wastewater treatment plant tanks.

This flightline was processed with the three filtering meth-

ods: (1) the robust matched filter as a reference (“RMF”;

sec. II-A), (2) the reweighted-ℓ1 matched filter method

(“RWL1”; sec. II-B), and (3) the albedo-corrected reweighted-

ℓ1 matched filter (“Albedo-Corrected RWL1”; sec. II-C).

These methods were applied on images partitioned such that

the pixels from five adjacent detectors are processed in one

filter instance. Thirty iterations were used for the iterative

methods. As the total number of detectors is indivisible by five,

the pixels from the fewer remaining detectors were processed

together. The target spectrum used for detection was generated

following the description in section II-D.

G. Simulated Gas Enhancements

An AVIRIS-NG surface-reflectance image from an adjacent

flightline ang20160214t051014 with no apparent methane

plumes was used to create a validation radiance image with

known methane concentration-pathlength values [19], [49].

Data from the flightline were atmospherically corrected to

apparent surface reflectance by the Jet Propulsion Laboratory

using the process described by [50]. SWIR reflectance values

between 1480 and 1800 nm and between 2080 and 2450

nm were extracted for smoothing; these wavelength ranges

were selected to include methane absorption features but

avoid water vapor and carbon dioxide absorption features.

Reflectance values were spectrally smoothed using a fourth-

degree polynomial Savitzky-Golay filter with a width of 21

bands to remove high-frequency signal and noise [51], [52].

This smoothing process preserved broad spectral features

like lignocellulose absorption [53], but it eliminated narrow

spectral features caused by atmospheric correction residuals

and absorptions by surface materials that are easily confused

with methane absorption [19]. Fig. 2a demonstrates how

smoothing preserved broad absorption features expressed by

surface materials. The three reflectance spectra shown are from

example pixels containing senesced vegetation, which exhibits

lignocellulose absorption; an urban impervious surface, which

exhibits carbonate absorption; and a painted tennis court,

which exhibits hydrocarbon absorption. Broader lignocellulose

0

0.1

0.2

0.3

0.4

1450 1650 1850 2050 2250 2450

R
e
fl
e
ct

a
n

ce

Wavelength (nm)

Senesced Veg

Impervious

Paint

0.0

0.5

1.0

1.5

2.0

2.5

1450 1650 1850 2050 2250 2450

R
a
d

ia
n

ce
 (

µ
W

cm
-2

sr
-1

n
m

-1
)

Wavelength (nm)

Senesced Veg

Impervious

Paint

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

1450 1650 1850 2050 2250 2450

R
a
d

ia
n

ce
 (

µ
W

cm
-2

sr
-1

n
m

-1
)

Wavelength (nm)

Senesced Veg

Impervious

Paint

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

1450 1650 1850 2050 2250 2450

U
n

it 
A

b
so

rp
tio

n
 (

p
p

m
-m

-1
)

Wavelength (nm)

a b

c d

Fig. 2. a) Reflectance for three example pixels from flightline
ang20160214t051014. Lighter background colors indicate original re-
flectance values, and darker colors indicate reflectance smoothed by Savitzsky-
Golay filtering. The arrow indicates a hydrocarbon absorption signature that
was mostly removed by filtering. b) Simulated radiance values for the same
three pixels. c) Residual between measured radiance and simulated radiance
for the same three pixels. The simulated radiance values have had artificial
noise added. d) The unit absorption spectrum used for enhancement retrieval,
representing the change in the natural log of radiance for a 1 ppm·m change
in methane concentration-pathlength.

and carbonate absorption features were preserved by filtering,

but a finer hydrocarbon absorption expressed by the painted

surface, indicated by the arrow, was mostly eliminated by

filtering (Fig. 2a).

MODTRAN6 simulations varying both surface albedo and

methane concentration-pathlength were used to generate a

reflectance-to-radiance lookup table [49], with MODTRAN

inputs matching flightline parameters. An urban atmospheric

profile with a visibility of 12 km was empirically found to most

closely replicate measured radiance. For each band within

each pixel, bilinear interpolation was used to determine the

simulated radiance value from the lookup table, based on the

reflectance value of that band and the concentration-pathlength

enhancement, if present. Gaussian random noise was added to

the radiance spectra [49] based on a model of the AVIRIS-

NG instrument, which includes photon and read noise for each

band (R. Green, personal communication).

Simulated radiance had a mean absolute error of 3.0% at

2134 nm when compared to measured radiance (Fig. 2b,c).

Simulated radiance was mostly higher than the measured

radiance from 1480 to 1800 nm and mostly lower from

2080 to 2450 nm (Fig. 2c). Beyond those differences due

to sensor noise, we attribute differences between simulated

and measured radiance to aerosol scattering. MODTRAN

urban aerosol properties may poorly approximate aerosols in a

tropical urban environment. The linear shape of these residuals

from 2080 to 2450 nm should result in negligible impacts

on concentration-pathlength enhancement retrieval, due to the

relatively fine spectral features of the methane unit absorption

spectrum (Fig. 2).

Two simulated images were produced using flightline
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ang20160214t051014, using two different methods for

determining concentration-pathlength enhancement. In the first

simulated image, large eddy simulation (LES) was used to

simulate realistic concentration-pathlength values based on an

emission rate of 300 kg hr−1 and a 4 m s−1 surface wind

[54]. LES simulations were run at 5 m spatial resolution,

vertically integrated to produce concentration-pathlength, and

then spatially resampled to match the 8.1 m spatial resolution

of this flightline. In the second simulated image, methane

concentration-pathlength was enhanced in a randomly selected

1% of pixels, with a uniformly random enhancement between

0 and 10000 ppm·m. Enhancements in this image spanned

a larger concentration-pathlength range than provided by the

LES plumes. The resulting simulated radiance images with

known methane concentration-pathlength were processed to

retrieve methane enhancements with the three filters us-

ing the same experimental procedure as for the unmodified

Ahmedabad flightline, but with no detector grouping. For

the randomly simulated enhancements, we also processed the

image with additional matched filter variants with successive

inclusion of iterative covariance estimation, albedo correction,

and sparsity. The same simulated radiance image is used for all

the filter algorithms within each simulation experiment (LES

plume and random enhancement).

III. RESULTS

A. Implementation Details

We implemented each matched filter method in MATLAB.

The albedo-corrected reweighted ℓ1 method was also imple-

mented in Python1, using PyTorch for strong GPU acceleration

[55]. All processing was performed on a dual-socket Xeon

E5-2640 2.60GHz workstation with 256 GB of memory and a

Nvidia Quadro GV100 GPU. Portions of each flightline cen-

sored by the Indian military were skipped during processing.

B. Retrieval of Known Methane Point Sources

The methane retrievals with both ℓ1 methods de-

creased background noise in the Ahmedabad flightline

ang20160211t075004 (Fig. 3). Enhancements were more

visible regardless of size due to increased contrast against the

background. The standard deviation of a background region

without obvious methane enhancements over a representative

urban area was 331.75 ppm·m for the reference robust matched

filter (“Reference RMF”), 182.06 ppm·m for the reweighted-ℓ1
matched filter (“RWL1”), and 158.09 ppm·m for the albedo-

corrected reweighted-ℓ1 matched filter (“Albedo-Corrected

RWL1”). The standard deviation for a background region with

agricultural land cover was 294.08 ppm·m for the Reference

RMF, 129.61 ppm·m for the RWL1MF, and 129.43 ppm·m

for the Albedo-Corrected RWL1MF. The background noise

level over water was notably lower for the RWL1 matched

filter with a standard deviation of 162.32 ppm·m, compared

to 245.08 ppm·m for the Albedo-Corrected RWL1MF and

288.69 ppm·m for the Reference RMF. False positives re-

mained similar across the matched filter results and coincided

1Source code available: https://www.github.com/markusfoote/mag1c.

Fig. 3. Matched filter results from a subset of flightline
ang20160211t075004. The top row compares a true color composite
from the radiance image and the albedo factor from the albedo-corrected
RWL1 matched filter method. The bottom row compares the three matched
filter methods. Reference RMF: Reference Robust Matched Filter, RWL1MF:
Reweighted-ℓ1 Matched Filter, Albedo-Corr. RWL1MF: Albedo-Corrected
Reweighted-ℓ1 Matched Filter.

with surface features consistent with known ‘confuser’ sur-

faces [19].

Five known plumes were contained within this flightline.

We report findings about these plumes for the albedo-corrected

reweighted ℓ1 matched filter. The largest plume in Fig. 3 was

from the Pirana landfill, which extended more than 5 km

over urban areas and had a peak methane enhancement of

6750 ppm·m. The smaller plume visible near the lower left

corner of Fig. 3 was from a storage tank and extended about

700 m downwind of the source over agricultural land. The

Fig. 4. Example retrievals of methane plumes in ang20160211t075004

using each retrieval method.

https://www.github.com/markusfoote/mag1c
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Fig. 5. Energy of Albedo-Corrected Reweighted-ℓ1 optimization for the
Ahmedabad flightline when run with all detectors grouped and 200 iterations.

peak methane enhancement for this plume was 8835 ppm·m.

Fig. 4 details the three remaining plumes. One plume was from

a storage tank at a wastewater treatment plant and extended

570 m over the industrial areas of the treatment plant itself.

The peak concentration within this plume was 6391 ppm·m.

The remaining two plumes were both from petroleum infras-

tructure. One plume extended 350 m over agricultural land

before exiting the flightline’s view with a peak enhancement

of 24681 ppm·m. The other plume extended 250 m over an

urban area with 7255 ppm·m peak enhancement.

We also show the convergence properties of the albedo-

corrected reweighted-ℓ1 matched filter algorithm using this

flightline. The energy defined by (8) was tracked during 200

iterations of the algorithm, with all 598 detectors processed

together (Fig. 5). The optimization attained stable convergence

within 20 iterations. All other experiments are run for 30

iterations, providing an additional margin on convergence.

C. Simulated Plume Retrievals

Simulated plumes overlaid on an image otherwise free

of obvious methane enhancement (ang20160214t051014,

also over Ahmedabad) provided a realistic retrieval situation

with known true concentration-pathlength. Overlaid simulated

plumes appeared more clearly with both ℓ1 methods than

with the reference robust matched filter (Fig. 6). The re-

trieved enhancement concentration-pathlength for each pixel

was compared to the simulation value in Fig. 7. This com-

parison revealed the ability of sparse matched filter methods

to significantly reduce background noise. The standard devi-

ation of background pixels with no simulated enhancement

over agricultural land was 238.8 ppm·m for the Reference

RMF, 86.58 ppm·m for the RWL1MF, and 90.35 ppm·m

for the Albedo-Corrected RWL1MF. These values represent

a reduction to 36.3% and 37.8% of the Reference RMF

agricultural background standard deviation for RWL1MF and

Albedo-Corrected RWL1MF agricultural background standard

deviations, respectively. This background standard deviation

for Albedo-Corrected RWL1MF is a factor of 2.64 reduction

over the Reference RMF agricultural background standard

deviation. The standard deviation of background pixels with

no simulated enhancement over urban areas was 255.1 ppm·m

for the Reference RMF, 106.7 ppm·m for the RWL1MF,

and 105.5 ppm·m for the Albedo-Corrected RWL1MF. These

values represent a reduction to 41.8% and 41.3% of the Refer-

ence RMF urban background standard deviation for RWL1MF

and Albedo-Corrected RWL1MF background standard devi-

ations, respectively. The background standard deviations for

Fig. 6. Example retrievals of simulated methane plumes using each retrieval
method.

Fig. 7. Retrieval of simulated methane enhancements for the plume overlay
simulated image. Each point represents a single pixel with simulated and
retrieved enhancement value. A linear regression for each algorithm is shown
in black. Only pixels with a simulated enhancement above the approximate
background noise of 100 ppm·m are included in these plots and regressions.
Red dashed lines have slope 1 and no offset for reference.

this simulated plume image are 58% (urban RWL1) to 81%

(agricultural Reference RMF) of the values from the previous

real flightline in section III-B. A small bias of the reweighted

ℓ1 methods toward lower concentration retrievals was evident

in the lower slopes for the linear regressions on pixels with

simulated enhancements. Pixels with extreme albedo factors

tended to have higher error, although this error was reduced

by the albedo correction. Enhancements were recovered most

reliably with the albedo-corrected filter with the highest

coefficient of determination. The histograms of simulated

nonenhanced background pixels showed that both reweighted-

ℓ1 methods produced lower background enhancements over

a smaller number of pixels relative to the Reference RMF

(Fig. 8).

D. Random Simulated Enhancement Retrievals

The randomly simulated enhancement revealed algo-

rithm behavior over a larger enhancement range – up to

10,000 ppm·m – and with uniform sampling of methane

enhancement. The proposed algorithm incorporates three sep-

arate improvements over the reference RMF [23]: albedo

correction, iterative with positivity constraint, and sparse ℓ1
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Fig. 8. Histograms for the nonenhanced pixels from the plume overlay
simulation for each retrieval method show the distribution of background
retrieved enhancement. Note the logarithmic scale of the pixel counts – the
Reference RMF distribution is Gaussian.

prior. We now present results showing the impact of these

individual improvements.

This random simulation image was processed with three

additional filter variants along with the three previous filter

methods. First, an albedo-only (traditional) matched filter

demonstrates the effects of albedo correction alone. The sec-

ond and third additional filters are iterative with positivity

constraint without a sparsity term. This iterative filter is used

both with and without albedo correction. These iterative meth-

ods demonstrate the effects of the iterative estimation with a

positivity constraint independent of sparsity (and albedo cor-

rection, for the variant without albedo correction). The features

included in each algorithm are summarized in Table I. The

application of an albedo correction factor for all algorithms is

controlled by restricting all ri = 1 in the algorithm provided

in Fig. 1. The iterative with positive constraint algorithms

exclude the sparse prior by setting w = 0 in Fig. 1. The

positivity constraint of the iterative algorithms (both with and

without sparsity) is applied within each iteration, before the

background mean and covariance are calculated. The positivity

constraint is necessary in the iterative algorithms to prevent

adding a methane signature to the covariance matrix and

instead only remove any methane signature that exists within

the original radiance data.

Retrieved methane enhancement values for pixels that had a

simulated enhancement above background are shown in Fig. 9.

Linear regressions of these enhanced pixels are shown on the

scatterplot for the result of each algorithm. Each horizontal

pair within Fig. 9 shows the effect of adding albedo correction

to each corresponding algorithm. Albedo correction reduced

the variance of retrieved methane concentration for retrievals

TABLE I
FEATURE SUMMARY FOR RETRIEVAL ALGORITHMS IN SECTION III-D

Iterative with Sparse Albedo

Algorithm Positive Constraint Prior Correction

Reference RMF †
× × ×

Albedo-Only MF × × �

Iter. Pos. w/o Albedo MF � × ×

Iter. Pos. w/ Albedo MF � × �

RWL1MF †
� � ×

Albedo-Corr. RWL1MF †
� � �

� – Feature included in algorithm. × – Unused feature.
†Algorithm also used in Section III-C.

Fig. 9. Scatterplots comparing simulated and retrieved methane enhancements
for randomly placed concentration-pathlength values ranging from 0 to 10000
ppm·m. Only pixels with a nonzero simulated enhancement are included in
these plots. Inset plots magnify the portion of each plot from 0 to 2500 ppm·m.
Points across all plots are colored according to the albedo factor value from
the albedo corrected methods. Black lines are linear regressions of the points
in each plot. Red dashed lines have slope 1 and no offset for reference.
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of simulated enhancement. The effects of albedo correction,

and the problem presented by varied surface albedo, are appar-

ent in the vertical color gradient of points in the non-albedo-

corrected plots that is less apparent in the plots produced from

albedo-corrected algorithms. The trend of low albedo causing

low retrieval (and high albedo causing high retrieval) was

reduced in the methods with albedo correction. Even pixels

with a low albedo factor (~0.2 – 0.3 of mean radiance) that are

notable outliers in the Reference RMF and RWL1MF results

are corrected and appeared within the main distribution of

retrievals in the albedo-corrected methods. Retrievals between

0-150 ppm·m are infrequent in the reweighted-ℓ1 methods

from the sparsity prior and a collection of zero-valued re-

trievals appear along the x-axis in these algorithms. This gap

is reduced with albedo correction and is not present in the

Reference RMF or Albedo-Only MF. The iterative positive-

constrained algorithms have no negative retrieval values, but

the bias of retrievals is increased. The albedo-corrected (tra-

ditional) matched filter has the lowest bias (71 ppm·m), while

the albedo-corrected reweighted-ℓ1 algorithm (85 ppm·m) and

Reference RMF (93 ppm·m) have similar biases. Although

the iterative with positive constraint algorithm with albedo

correction produced the best R2 for simulated-enhancement

pixels, this algorithm also had the largest bias (488 ppm·m).

Other albedo-corrected algorithms had very similar R2 values.

The reweighted-ℓ1 filter with albedo correction produced the

second most accurate values for both regression bias and slope,

with R2 comparable to the other well-performing algorithms.

The behavior of methane concentration retrievals for pixels

with no simulated methane enhancement is summarized in

Fig. 10. The iterative with positivity constraint algorithms had

pixel counts of zero enhancement similar to the traditional

matched filter methods. Reweighted-ℓ1 sparsity showed a

much larger increase in the number of pixels with retrieved

zero enhancement over the iterative with positivity constraint

algorithms and an order of magnitude decrease in the number

of pixels with low retrieved enhancement. Albedo correction

generally widened the distribution of methane enhancement

retrievals for nonenhanced pixels. Of the pixels with zero

simulated enhancement, the Albedo-Corrected RWL1MF al-

gorithm exactly estimated zero enhancement for 93.9%.

We quantified the error in retrieved methane enhancement

from the simulated value by the root mean squared error

(RMSE). Three RMSE values were calculated for each al-

gorithm’s result in Table II. The errors of the enhanced and

non-enhanced simulated values were calculated separately.

RMSE for pixels with a methane enhancement (pixels shown

in Fig. 9) is shown in column two. RMSE for pixels without a

methane enhancement (pixels represented in Fig. 10) is shown

in column three. Additionally, the total RMSE for all pixels,

both those with and without simulated methane enhancement,

is shown in column four, with the relative improvement of the

all-pixel RMSE over the Reference RMF method in column

five. For the pixels with a simulated methane enhancement,

the RMSE of all albedo-corrected algorithms decreased from

the corresponding algorithm without albedo correction. The

RMSE remained similar or increased for the nonenhanced

pixels with the inclusion of albedo correction. When using
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Fig. 10. Histograms for the nonenhanced pixels from the random enhance-
ment simulation for each retrieval method show the distribution of background
retrieved enhancement. Note the logarithmic scale of the pixel counts.

iterative statistic estimations with a positivity constraint, the

errors of enhanced pixels remained similar while nonenhanced

pixel errors nearly doubled. Although RMSE of enhanced

pixels slightly increased, the RMSE for nonenhanced pixels

significantly decreased for the albedo-corrected reweighted-ℓ1
algorithm. The all-pixel RMSE captured the overall perfor-

mance of each algorithm without classification of enhanced

pixels. The best RMSE was achieved with the albedo-corrected

sparse matched filter with a relative improvement over the

Reference RMF of 60.7%.

The cumulative effect of the iterative, positivity-constraint,

TABLE II
RMSE VALUES OF RETRIEVAL ALGORITHMS

RMSE (ppm·m)

Enhanced Non-Enhanced All Relative

Algorithm Pixels Pixels Pixels Improvement

Reference RMF 1951.075 237.188 306.094 0.0%

Albedo-Only MF 842.549 240.492 253.663 17.1%

Iter. Pos. w/o Albedo MF 2035.088 404.754 451.143 −47.3%

Iter. Pos. w/ Albedo MF 743.802 450.124 453.995 −48.3%

RWL1MF 2040.876 90.935 223.073 27.1%

Albedo-Corr. RWL1MF 826.744 87.759 120.197 60.7%
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Fig. 11. Scatterplot of Retrieved Methane Enhancement from Albedo-
Corrected RWL1 MF method versus from Reference RMF methods. The
dashed red line indicates a 1:1 relationship. The black line is a linear regression
of the data, with the equation of this best-fit line shown on the plot.

sparsity, and albedo-correction contributions over the Ref-

erence RMF is summarized in Fig. 11. The overall trend

of these contributions is to estimate a lower enhancement

than was produced by the reference matched filter method.

The change in retrieved enhancement was dependent on the

underlying albedo of the pixel. For pixels with a sufficiently

low albedo, the retrieval was increased. Negative retrievals

by the Reference RMF were mapped to zero in the albedo-

corrected sparse result.

E. India Dataset Processing

We processed the entire India Phase 1 campaign dataset

with the Albedo-Corrected Reweighted-ℓ1 MF algorithm. The

complete dataset, 2.4 TB of radiance files for 300 flightlines,

was processed in 8.3 hours using the GPU for computational

acceleration in a desktop workstation. Solely reading (and not

processing) the entire dataset under ideal conditions from hard

disk storage at 100 MBps would theoretically take 6.6 hours.

The total time to completion was limited by the speed of

reading the dataset from storage, which indicates that the

algorithm is suited for low-latency production of methane

detection data products for both real-time applications and

scalability to large flight campaigns and ground processing

of data from future spaceborne imaging spectrometers.

IV. DISCUSSION

Methane enhancement retrieval is improved over low albedo

surfaces with the albedo-corrected reweighted ℓ1 matched filter

algorithm. This improvement is implemented with minimal

computational expense over the similar reweighted ℓ1 matched

filter. Surfaces with albedo factors as low as 0.2 (1/5th of

the mean image partition radiance) are consistently corrected

to retrieve methane enhancements more accurately. The ran-

dom enhancement analysis (Sec. III-D) identifies sparsity

and albedo correction as complementary advancements to

increase the accuracy of trace gas enhancement retrievals. The

cumulative effect of these contributions for RMSE reduction is

greater than the sum of each contribution alone. As separable

contributions, applications that have computational constraints

could use only albedo correction to capture the associated

improvement on retrieval accuracy, without ℓ1 optimization

or robust statistics calculation. This would have the additional

benefit of preserving Gaussianity in the retrieval noise statistics

for the purposes of uncertainty assessment and propagation.

Images containing simulated plumes allowed a direct com-

parison between actual and retrieved enhancements, which

is not typically possible using imaging spectrometer data

acquired over real plumes. Despite including a radiance-

dependent noise function provided by JPL, the background

standard deviation from the matched filters applied to the

simulated plume image was 58-81% of that from matched

filters applied to the adjacent real flightline. This noise model

may not account for all noise present within the real data.

Despite lower error in the simulated image, our results still

consistently show that the sparse prior and albedo correction

reduced the background standard deviation to between 36.3%-

47.1% that of the reference robust matched filter in both real

and simulated data.

Accurate retrievals are also limited by variables that vary

within and between flightlines but are not accounted for in this

work. The method we used for generating a unit absorption

spectrum relies on radiative transfer simulations based on

specific geometric and atmospheric parameters. The change in

radiance with respect to a change in concentration-pathlength

will vary with parameters such as solar zenith angle, ground

elevation, and atmospheric water vapor concentration. For

more accurate retrieval of the concentration-pathlength en-

hancement, the unit absorption spectrum must thus be "tuned"

for individual images. For airborne remote sensing across

regions spanning tens of kilometers, a uniform unit absorption

spectrum may adequately represent variation in geometric and

atmospheric parameters. For potential future satellite missions,

use of a spatially varying unit absorption spectrum will be

essential to enhancement retrieval. To account for spatially

varying water vapor, water vapor abundance could be esti-

mated using traditional single-spectrum techniques (e.g. [48]).

Analysis of errors in enhancement retrieval resulting from unit

absorption spectrum assumptions should be a high priority for

future work. The ability of a uniform unit absorption spectrum

to detect methane enhanced pixels should not be affected by

errors in geometric and atmospheric parameters, even if these

errors result in a systematic bias in retrieved concentration-

pathlength.

Both the target spectrum and sparse prior are agnostic to

the specific gas species and wavelength range. Our target

spectrum generation method is applicable to any gas with

distinct absorption features, including other greenhouse gasses,

such as CO2, that have been successfully mapped using

AVIRIS and AVIRIS-NG [21], [49], [56]. Both our target

spectrum generation and sparse prior optimization methods are

directly applicable to trace gas retrievals using data from other

hyperspectral instruments. Our improvements impact other
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work in the remote sensing of methane, including flux estima-

tion [24], which depends on accurate concentration-pathlength

values. Additionally, automated plume detection with machine

learning will benefit from the decreased background noise.

V. CONCLUSION

Methane enhancement retrievals based on a matched filter

method benefit from albedo correction and sparse prior. The

sparse prior enforces the expectation that methane enhance-

ments are rare events within large flightlines. The albedo

correction provides more accurate concentration estimates over

surfaces of low reflectance. This approach requires no hyper-

parameters to be selected beyond the number of iterations, and

good convergence is achieved after 20 iterations. The iterative

method that is required for sparse optimization ensures that the

target signal does not corrupt the covariance matrix [57]. These

improvements produce methane enhancements that more ac-

curately predict the true enhancement values in validation

datasets. Additionally, methane plumes from point sources

are more discernible against the background noise with the

background standard deviation decreased by a factor of over

2.6 in the validation dataset.
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