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Fast and accurate sCMOS noise correction for
fluorescence microscopy
Biagio Mandracchia 1, Xuanwen Hua 1, Changliang Guo1, Jeonghwan Son1, Tara Urner1 & Shu Jia 1*

The rapid development of scientific CMOS (sCMOS) technology has greatly advanced optical

microscopy for biomedical research with superior sensitivity, resolution, field-of-view, and

frame rates. However, for sCMOS sensors, the parallel charge-voltage conversion and dif-

ferent responsivity at each pixel induces extra readout and pattern noise compared to charge-

coupled devices (CCD) and electron-multiplying CCD (EM-CCD) sensors. This can produce

artifacts, deteriorate imaging capability, and hinder quantification of fluorescent signals,

thereby compromising strategies to reduce photo-damage to live samples. Here, we propose

a content-adaptive algorithm for the automatic correction of sCMOS-related noise (ACsN)

for fluorescence microscopy. ACsN combines camera physics and layered sparse filtering to

significantly reduce the most relevant noise sources in a sCMOS sensor while preserving the

fine details of the signal. The method improves the camera performance, enabling fast, low-

light and quantitative optical microscopy with video-rate denoising for a broad range of

imaging conditions and modalities.
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T
he accurate acquisition of diverse anatomical and dynamic
traits within a cell that span spatiotemporal scales provides
insights into the fundamentals of living organisms. In this

context, scientific complementary metal-oxide semiconductor
(sCMOS) cameras have rapidly been gaining popularity in optical
microscopy for their higher frame rates, wider field-of-view, and
lower electrical noise, compared to charge-coupled devices (CCD)
or electron-multiplying CCDs (EM-CCD) cameras1,2.

Physically, both CCD and CMOS cameras accumulate a signal
charge in each pixel proportional to the local illumination
intensity. When the exposure is complete, a CCD camera trans-
fers each pixel’s charge budget sequentially to a common output
structure. This structure converts the charge to a voltage and
sends it off-chip, so that most functions take place in the camera’s
printed circuit board. Instead, in a CMOS imager, the charge-
voltage conversion takes place in each pixel and most functions
are integrated on the chip. Such difference in the readout tech-
nique has several implications in the capabilities and limitations
of these two sensor architectures3,4.

To date, a new generation of sCMOS cameras approaches the
imaging performance of a true low-light detector, with a low
readout noise (1–2 e-) at extremely rapid readout rate (up to 560
MHz)5. However, the readout technique remains unchanged, and
thereby individual pixels are still characterized by different off-
sets, variances and gains, so that they appear to flicker even when
there are no expected incident photons4,6. The extra noise source,
combined with other major sources such as readout and photon
shot noise, reduces the image quality and impairs fast and
quantitative imaging using sCMOS cameras7,8.

So far, various efforts have been made to minimize the influ-
ence of the noise sources correlated to acquisition devices, espe-
cially in low-light conditions9–12. However, the classic
assumptions of white noise become invalid at low-photon counts
for CMOS and sCMOS sensors13 (Supplementary Note 1). To
fully address the CMOS-related noise, different methods have
been implemented to estimate the detector’s response using either
a camera calibration prior to acquisition8,14,15 or the statistical
analysis of the processed data16–18. However, these methods do
not effectively remove the camera noise in many practical cases,
either because of a tradeoff between noise correction and detail
preservation15 or the lack of a precise knowledge concerning the
imaging system or the noise statistics18,19.

Here, we introduce a content-adaptive algorithm for the
automatic correction of sCMOS-related noise (ACsN) for fluor-
escence microscopy. ACsN combines camera physics and layered
sparse filtering to address the most relevant noise sources in a
sCMOS sensor while preserving the fine details of the signal. In
particular, contrary to other approaches, ACsN is based on a
theoretical model that performs a joint estimation of the noise
variance using frequency analysis, which results in a robust and
efficient performance for input sequences with low-photon bud-
gets. Furthermore, ACsN probes the intrinsic self-similarity in
space and time of fluorescent specimens, achieving quantitative
image restoration with substantially enhanced accuracy and
runtime. Using this method, we have demonstrated significant
improvements in both fluorescence microscopy images and their
downstream analysis in a wide range of imaging conditions and
modalities.

Results
ACsN algorithmic framework. ACsN combines camera cali-
bration, noise estimation and sparse filtering to correct the most
relevant noise sources generated by a sCMOS camera (Fig. 1a and
Supplementary Notes 1 and 2.1). In particular, ACsN first cor-
rects the fixed-pattern noise using a map of the offset and gain of

the sCMOS pixels. The presence of the fixed-pattern noise in
sCMOS cameras generates in different pixels (p) a different
number of photoelectrons from the same number of impinging
photons (Sp). This effect is proportional to the illumination level
and can be modeled as a multiplicative factor γp applied to the
parameter of the Poisson-distributed variable Sp. At the same
time, during the analog-to-digital (AD) conversion, the voltage
produced by each pixel is read as the difference from a reference
level, which represents the absence of light. In practice, this
reference voltage is assigned a positive value that is responsible
for a bias (βp) in the measured intensity values. Therefore, the
acquisition of a sCMOS camera can be modeled by the equa-
tion:20

Zp ¼ γpPois Sp τð Þ
n o

þ N 0; σRð Þ þ βp; ð1Þ

where Zp is the value of the pixel p, τ the exposure time, and N
(0, σR) the Gaussian-distributed readout noise of mean μR= 0 and
standard deviation σR. Considering the practicality of fluorescence
microscopy, in this model we have omitted the contribution of
dark current, which can be disregarded for exposure times below
1 s, and the quantization noise due to the AD conversion, which
is negligible compared to the readout noise3,21 (Supplementary
Note 2.2).

Since the fixed-pattern noise depends only on the camera
circuitry, βp and γp can be estimated through a one-time
calibration (see Methods). However, a careful assessment of both
the Gaussian-distributed readout noise, N(0, σR), and the
fluctuation due to the Poisson-distributed photon shot noise,
Pois{Sp(τ)}, is necessary to obtain an accurate estimate of the
underlying signal Sp. To perform this assessment, we devised a
noise model that allows for a joint estimation of the noise
variance by analyzing the frequency response of the microscopy
system. This is based on the fact that the Poisson distribution of
the photon shot noise can be feasibly approximated by a Gaussian
distribution when the photon flux is >3 photons per pixel22. In
particular, the error introduced by approximating the Poisson
variance, σ2P , with a Gaussian variance, σ2G, becomes <1% when
the photon flux is more than 5 photons per pixel (Supplementary
Note 2.3). Notably, the abovementioned conditions on the
photon flux are usually satisfied for many applications in
fluorescence microscopy23,24. Therefore, we consider the
camera-related noise as the result of the sum of two independent
Gaussian-distributed random variables, whose variance is
σ2N ¼ σ2R þ σ2G. Such a distribution consists of a constant power
spectral density, while the signals coming from the sample are
contained within the optical transfer function (OTF)25. There-
fore, we take advantage of the knowledge of the optical system to
evaluate the pixel fluctuation outside the OTF, which is due to
noise only, and then we use the value obtained to derive σN in the
original image (Supplementary Note 2.3).

Next, the algorithm uses these noise statistics for a non-local
assessment of the self-similarity of the sample and to perform
collaborative sparse filtering on the input sequence. Unlike
previous implementations of collaborative filtering, we adopted a
layered approach that sequentially probes the image self-
similarity in space and time in order to enhance noise correction
without sacrificing accuracy and runtime. In brief, the filter
decomposes the image in patches and sorts them into three-
dimensional (3D) groups according to their similarity26. Then, it
employs a 3D transform to process each group all at once. The
denoising is performed by hard-thresholding and enhanced by
the fact that, due to the similarity between the patches, the 3D
transform results in an even sparser representation of the original
patches, whereas the noise power spectrum remains constant27.
Afterwards, the denoised patches are returned to their original
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locations to form an intermediate image. At this point, the
collaborative filter is run a second time but replacing the hard-
thresholding with a Wiener filter. The filter is performed using
both the noisy and intermediate images and generates the final
denoised image (Supplementary Note 2.4). It should be noted that
the spatial variation of the noise across the image may affect the
performance of the Wiener filter. However, this is considerably
mitigated by the use of patch-based processing, which, compared
to the whole image, enhances the intensity uniformity within
individual patch groups, exhibiting a great stability against
spatially variant noise9.

Finally, another collaborative filter is performed looking for
similar patches also in the neighboring frames. This way,
lingering noise can be further reduced taking advantage of the
sample self-similarity in time while preserving the temporal
resolution18 (Supplementary Note 2.5).

Characterization of ACsN. Next, we characterized the perfor-
mance of ACsN using both numerical and experimental data.
Notably, ACsN collaborative filtering depends on the estimation
of σN, as well as on the choice of the parameters in the algo-
rithm28, which were chosen in order to optimize both the noise
correction and runtime (Supplementary Note 3.1). We observed
that our strategy can significantly attenuate the detrimental effect
of camera noise, avoiding loss of image resolution, especially in
presence of highly spatially variant noise (Supplementary
Note 3.2). Moreover, the camera noise can induce temporal
fluctuations of the pixel values that are not related to the sample,
thus affecting the quantitative analysis of time-lapse data. ACsN
denoising reduces this effect by approximately one order of
magnitude, with residual fluctuations comparable to that of an
ideal camera (Fig. 1b–g and Supplementary Note 3.3). Further-
more, it should be noted that at low-photon counts, the sample’s
details start to be comparable with the noise fluctuations and

become harder to retrieve. Thus, the performance of image
restoration is intrinsically related to the photon flux of the input
image. Nonetheless, using both simulations and experimental
data, we verified a robust ACsN noise correction at low-light
levels down to 5–10 photons per pixel (Supplementary Note 3.4).

Furthermore, we validated the performance of ACsN under
various sampling rates normally adopted for fluorescence
microscopy. In practice, a sampling rate close to the Nyquist
criterion represents a good tradeoff between signal to noise ratio
(SNR) and detail preservation. Here, examining numerically and
experimentally across a wide range of sampling rates, we
demonstrated the viability of ACsN for low SNR with over-
sampling and no noticeable loss of signals with under-sampling
(Supplementary Note 3.5).

Unlike natural images, fluorescent images of biological samples
are highly specified, exhibiting precisely labeled molecular targets
or structures in cells. Therefore, each fluorescent image usually
features specific objects recurring across the field of view, which
supplies sufficient non-local self-similarity to make the algorithm
notably efficient for fluorescence microscopy. With numerical
and experimental data, we characterized the dependence of the
ACsN performance on the usage of self-similarity of an input
image (Supplementary Note 3.6). Furthermore, as shown in the
following, we quantitatively assessed a variety of non-biological
and biological samples to verify the viability of the method,
spanning various dimensionality, morphology, randomness and
density, such as caliber targets, fluorescent particles, single
molecules, microtubules, actin filaments, mitochondria, filopodia,
lamellipodia, and small animals.

Wide-field microscopy. Wide-field microscopy, especially total
internal reflection fluorescence (TIRF) microscopy, is one of the
most widely used techniques in cell imaging29. TIRF uses the
phenomenon of total internal reflection of light at the glass/water
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Fig. 1 ACsN concept and performance. a Concept of the ACsN algorithm. The input image is scaled with the pixel gain and offset maps of the camera in

order to remove the fixed-pattern noise (FP). Then, using the experimental parameters, the OTF boundary is calculated and used to produce a high-pass

filtered image, from which the noise estimation (NE) is obtained. Finally, sparse filtering (SF) is performed to generate the denoised image. b Comparison
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dashed line represents the ideal camera performance. To generate this plot three different sets of images of HeLa microtubules were used. The error bars

represent the temporal standard deviation (STD) evaluated over 100 images. c, d Fluctuation maps, i.e., STD evaluated over 100 sCMOS images acquired

at a 10-ms exposure time before (c) and after (d) ACsN denoising. Intensities are expressed in analog-to-digital units (ADU). e, f Zoomed-in images of the

areas marked by the white squares in c and d, respectively. g Temporal fluctuation of the intensity values of the pixels corresponding to the circled areas

(1 and 2) in e and f, respectively. The values from the original and denoised images are plotted in gray and red, respectively. Scale bars: 500 nm (a), 1 µm
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interface in order to create an evanescent wave that propagates
only for a few hundreds of nanometers across the coverslip. This
allows the selective excitation of the fluorescent labels at the
bottom of the sample (Supplementary Fig. 1a). However, in case
of weak fluorescent emitters, low-light intensity or a short
exposure time, sCMOS-related noise becomes severe and dete-
riorates image quality (Supplementary Fig. 1b). ACsN denoising
can effectively reduce such contribution and recover the undis-
torted signals from the noise, allowing faster acquisition without
compromising the underlying signal (Supplementary Fig. 1c, d).

We demonstrated ACsN denoising of wide-field microscopy in
both epi-fluorescence and TIRF configurations using various fixed,
live and multi-color sub-cellular samples, including microtubules
(Fig. 1 and Supplementary Fig. 1), mitochondria (Fig. 2 and
Supplementary Movies 1 and 2), and F-actin (Fig. 2). The use of
ACsN can maintain the same image quality with a shorter
exposure time (i.e., better temporal resolution) and a lower
excitation level (i.e., less photo-damage). The performance is, thus,
limited primarily by the photo-physics of the fluorescent emitters.
Using quantitative metrics, we showed that the method can recover
wide-field images with a photon budget two orders of magnitude
lower with no loss of image quality (Supplementary Table 1).

Deconvolution and light-field microscopy. Image deconvolution
is widely used in optical microscopy, from the restoration of low-

quality images to the improvement of super-resolution techni-
ques30. However, noise can easily degrade the performance of
many common algorithms by producing deconvolution artifacts.
Instead, we observed a remarkable reduction of such artifacts in
deconvolved images by employing ACsN denoising prior to dif-
ferent methods based on Richardson–Lucy algorithm31, machine
learning32, and radial fluctuation33 (Supplementary Note 4.1).
The enhancement of image restoration is reflected also by an
improvement of the global image quality, evaluated using metrics
such as the Resolution Scaled Pearson’s coefficient (RSP)34. For
example, combining ACsN and radial fluctuation, we generated
super-resolution images with a better RSP value at a temporal
resolution up to two orders of magnitude higher than currently
reported33 (Supplementary Fig. 2).

Image deconvolution is also at the basis of three-dimensional
reconstruction in light-field microscopy (LFM). LFM employs a
microlens array in a microscopy system to obtain both the two-
dimensional (2D) spatial and 2D angular information of the
incident light, allowing for computational reconstruction of the
full 3D volume of a specimen from a single camera frame35.
However, the deconvolution-based reconstruction process is
highly sensitive to the SNR, especially due to LFM’s wide-field,
volumetric, and fast imaging scheme. For this reason, the use
of ACsN to correct the noise in the raw images (Fig. 3a, b)
results in clearly noticeable improvement in the 3D light-field
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Fig. 2 ACsN noise correction improves wide-field fluorescence microscopy. a Epi-fluorescence imaging of mitochondria in fixed bovine pulmonary artery

endothelial (BPAE) cells at an exposure time of 1 ms. b The same image in a after ACsN denoising. c–f Zoomed-in images of the corresponding boxed
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white box in g. i–n Zoomed-in images of the corresponding regions marked in the solid yellow box in g at different time points of 200ms (i, l), 800ms

(j, m), and 1200ms (k, n). o, p Dual-color image, respectively, before (o) and after (p) ACsN denoising of F-actin (cyan) and mitochondria (orange) in

fixed BPAE cells obtained by TIRF microscopy with an exposure time of 2 ms. q, r Cross-sectional intensity profiles of (o) and (p) along the corresponding

dashed line in o, respectively, showing substantially denoised and better resolved cellular structures. Scale bars: 10 μm (b), 3 μm (f), 4 μm (h, p), 1 μm

(h, inset) and (l).
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reconstructions (Fig. 3c, d). Indeed, the presence of the noise
leads to the miscalculation of the 3D object or the propagation
of non-fluorophore-associated peaks. The former affects the
sampling along the axial dimension and can result in an uneven
axial resolution (Fig. 3e, f). The latter produces additional
background that covers the fluorescence signal, impairing also
the lateral resolution (Fig. 3g–i). Using ACsN, both deficiencies
can be mitigated, resulting in substantially improved 3D
volumetric rendering of cellular structures.

Single-molecule localization microscopy. To validate the feasi-
bility of ACsN for single-molecule localization microscopy
(SMLM)36, we performed STORM imaging of mitochondria in
HeLa cells (Supplementary Fig. 3). The effect of sCMOS-related
noise in single-molecule localization can be seen in two aspects:
the presence of false negatives, due to the loss of weakly emitting
molecules covered by noise (Supplementary Fig. 3c, d), and the
presence of false positives, due to the hot pixels or simply the
noise distribution (Supplementary Fig. 3e, f). Removing the noise
from the raw single-molecule data allows for suppression of both
types of localization errors, resulting in significantly improved
STORM image quality and metrics such as the RSP and the
Resolution Scaled Error (RSE)34 (Fig. 4a, b). Also, such improved
efficiency of localization leads to a better contrast and the
appearance of features not clearly visible in the reconstruction
without denoising (Fig. 4c–f). Furthermore, the reduction of pixel
fluctuations unrelated to the sample permits to obtain a map of
the fluorophores’ blinking rate that can be used to alleviate the
effects of imperfect labeling (Supplementary Fig. 4).

Like single-molecule imaging, the localization precision in
single-particle tracking (SPT) is closely related to the number of
photons detected. Therefore, one critical factor affecting the
performance of SPT is the SNR of the image data37. We showed
that ACsN can be used to minimize the localization errors

responsible for misidentification of particles and erroneous
trajectories (Fig. 4g, h and Supplementary Movie 3). This SNR
improvement results in a better particle localization accuracy, i.e.,
a better estimation of the bead’s lateral displacement with sub-
pixel sensitivity. This can be of great use also in biplane SPT,
where the accuracy of the 3D tracking depends on the quality of
the out-of-focus image38 (Fig. 4i, Supplementary Movie 4, and
Supplementary Note 4.2).

Fluorescence microscopy with low-cost CMOS cameras.
Recently, the advances of high-end industrial-grade CMOS
cameras have sparked the interest of the scientific community at
the possibility to approach the performance of sCMOS cameras at
a more affordable price39–42. It has been shown that such CMOS
cameras can be utilized for SMLM imaging41,42. However, the
lower quantum efficiency and the higher readout noise limit the
image quality and the general usability for quantitative biome-
dical research in many areas. Addressing the challenge with a
proper denoising strategy would provide a critical and timely
solution to transform the industrial-grade cameras for broader
imaging applications. Here, we first implemented ACsN with a
high-end industrial-grade camera for wide-field microscopy using
both epi- and TIRF illumination (Fig. 5a–h). In both configura-
tions, ACsN denoising substantially improved the image quality,
achieving prominent agreement with the images obtained by the
sCMOS camera (Supplementary Figs. 5 and 6, and Supplemen-
tary Table 2).

The single-photon-excitation-based miniaturized microscope,
or miniscope, has been developed to perform wide-field calcium
imaging in freely behaving animals43–45. The required miniatur-
ization was achieved by replacing compound objective lenses with
a gradient-index (GRIN) rod lens, which offers several advan-
tages, including low cost, light weight, and relatively high-
numerical aperture. These features of the miniscope enable

0 0.9 1.8

Y (µm)

0

0.5

1

In
te

n
s
it
y
 (

a
.u

.)

498 nm

e Raw

YZ

f ACsN

YZ

g Raw

h ACsN

i

d ACsN

z
 (

µ
m

)

0

3
a Raw b ACsN c Raw

Fig. 3 ACsN denoising improves the quality of 3D reconstruction in light-field microscopy. a, b Raw light-field images of microtubules in a HeLa cell

before (a) and after (b) ACsN processing. Insets show the zoomed-in microlens images of the corresponding boxed regions, where noise has been

substantially reduced as seen in b. c, d Three-dimensional (3D) reconstructed images obtained from a and b, respectively. The depth information is coded

according to the color scale bar. Insets show the zoomed-in images of the corresponding white dashed boxed regions, where better image quality

and improved 3D resolution are observed after ACsN denoising. e, f Cross-sections on the YZ plane corresponding to the red dashed lines in c and

d, respectively, where microtubule structures are better resolved with reduced artifacts using ACsN. g, h Zoomed-in images of the red solid boxed regions

in c and d, respectively, at z= 1.4 μm, where microtubule structures are better resolved using ACsN. i Cross-sectional profiles of (g, gray) and (h, red)

corresponding to the white dashed lines in g, h, respectively. Filaments covered by non-fluorophore-associated background noise are resolved using ACsN.

Scale bars: 8 µm (b, d), 800 nm (b, inset), 3 µm (d, inset), 1 µm (e, g).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13841-8 ARTICLE

NATURE COMMUNICATIONS |           (2020) 11:94 | https://doi.org/10.1038/s41467-019-13841-8 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


minimally invasive imaging of a significant volume of the brain
with a cellular-level resolution during complex behavioral,
cognitive and emotional states46–48. However, the low-cost
CMOS sensor (MT9V032C12STM, ON Semiconductor, price ~
$15) currently adopted yields a poor image quality in order to
obtain a relatively high imaging speed, which can be severely
restrictive for broader applications in cell imaging. Here, we
validated the feasibility of ACsN for the miniscope sensor by
performing single-photon-excitation-based, wide-field imaging of
GFP-stained calcein in live Adipocytes (Fig. 5i–p).

Selective plane illumination microscopy. In contrast to wide-
field microscopy, selective plane illumination microscopy (SPIM)
illuminates the sample with a sheet of light perpendicular to the

direction of observation. This avoids unnecessary illumination,
permitting an unparalleled long-term imaging of dynamic bio-
logical specimens49–51. Lattice light-sheet microscopy (LLSM)
further optimizes the optical system by illuminating the sample
with multiple plane waves that sculpt a propagation-invariant
optical lattice52. However, while new strategies are being inves-
tigated to deal with sample-related issues53,54, camera noise
remains the most relevant limitation to SPIM and LLSM imaging
capabilities due to their relatively low-background signal.

We first demonstrated that ACsN denoising can overcome this
limitation by performing a SPIM volumetric scan of a fixed brine
shrimp. Here, we enhanced the self-similarity using 3D sparse
filtering along the scan direction. After ACsN processing, we
observed that noise-canceling makes the sample’s details stand
out better in each individual slice (Supplementary Fig. 7). In
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particular, the correction of the fixed-pattern noise is especially
noticeable in the maximum intensity projection images (Fig. 6a, e
and Supplementary Movie 5). In addition, it is remarkable to
observe a clear improvement in the orthogonal cross-sections of
the scanned volume (Fig. 6b–d, f–h), allowing for a better
assessment of the sample’s 3D structures.

To validate ACsN processing for LLSM, we first imaged fixed
skin cells stained for Keratin with EGFP at different exposure
times (5, 10, and 20 ms) using a constant laser illumination power
of 27 mW (measured at the back focal plane of the illumination
objective). These images were acquired using the sample scan
mode and, accordingly, the slices had to be deskewed to retrieve

the original positions (see Methods). We performed such
operation before ACsN denoising in order to utilize the self-
similarity along z for 3D sparse filtering. We observed that the
image quality can be well maintained by denoising even after a
fourfold reduction of the exposure time (Supplementary Fig. 8
and Supplementary Table 3).

Furthermore, we demonstrated ACsN image restoration of
time-lapse live-cell LLSM imaging. First, we imaged live human
lung cancer cells (NCI-H1299 NSCLC) in the sample scan mode
with intervals of 18.4 s over more than 30 min (Fig. 6i–k,
Supplementary Fig. 9, and Supplementary Movies 6 and 7). As
stated above, the sample scan mode requires deskewing of
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Fig. 5 ACsN improves fluorescence microscopy with low-cost CMOS cameras. a TIRF image of F-actin in a fixed BPAE cell, taken at a frame rate of 38 Hz

(exposure time: 26ms). b The same image in a after ACsN denoising. c Epi-fluorescence imaging of mitochondria in a fixed bovine pulmonary artery

endothelial (BPAE) cell, taken at a frame rate of 38 Hz (exposure time: 26 ms). d The same image in c after ACsN denoising. e–h Zoomed-in images

corresponding to the boxed regions in a–d, showing the improvement of image quality after ACsN denoising. In particular, such improvement is

comparable to the images taken with sCMOS sensors, as shown in Supplementary Figs. 5 and 6. i, j Images of GFP-stained calcein in live Adipocytes

(lipocytes) taken with low-cost CMOS for miniaturized microscopy before (i) and after (j) ACsN denoising. The data were taken by immersing a miniscope

in live-cell culture. k–n Zoomed-in images of the corresponding boxed regions in i and j. o, p Plots of the cross-sectional intensity profiles of cellular

structures before (gray) and after (red) ACsN denoising along the dashed lines in k, l and m, n, respectively. Scale bars: 10 μm (a, c), 4 μm (e, g), 50 μm

(i), 20 μm (k).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13841-8 ARTICLE

NATURE COMMUNICATIONS |           (2020) 11:94 | https://doi.org/10.1038/s41467-019-13841-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the volumetric slices, which increases the size of the dataset
and, then, the processing complexity. In contrast to the previous
case, however, for time-lapse imaging we were able to utilize
the temporal self-similarity, which yields a more efficient
noise correction compared to the volumetric one55. Therefore,
we denoised the time-lapse volumetric scans by processing the
corresponding temporal stacks of each individual slice. This way,
ACsN could be used before deskewing, effectively preserving the
denoising performance while saving the computational time
(Supplementary Fig. 10). Next, we observed the movement of
endogenous F-actin in live mouse embryonic fibroblasts using
LLSM in the sheet scan mode (see Methods). Notably, this mode
does not produce any shift between the slices, and the volumetric
information can be retrieved without deskewing (Supplementary

Fig. 11). In particular, the movement of filopodia all around the
cell can be observed with higher clarity after denoising
(Supplementary Movie 8).

Discussion
Nowadays, many imaging methods rely on computational ana-
lysis to extract additional information from digital images.
However, even modest noise levels can introduce errors that
propagate through the processing pipeline, deteriorating the
quality of the final results. Here, we proposed a denoising method
designed for fluorescence microscopy. This is based on a theo-
retical noise model that effectively considers multiple noise
sources and allows for a joint estimation of the noise variance
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i Three-dimensional rendering of live human lung cancer cells (NCI-H1299 NSCLC) acquired with LLSM and processed with ACsN denoising. Zoomed-in

images of the area corresponding to the white box in i before (j) and after (k) ACsN denoising. The corresponding time-lapse sequence has been provided
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using high-frequency analysis. The algorithm is composed of
three components intrinsically linked to each other and critical
for the feasibility: camera calibration, noise estimation, and sparse
filtering. The camera calibration removes the spatially correlated
fixed-pattern noise and allows for a physics-based estimation of
the white noise. Such estimation reveals the spatial fluctuation of
the noise across the image, essential for the subsequent non-local
sparse filtering process. Finally, the use of patch-based sparse
filtering enhances intensity uniformity, facilitating the correction
of spatially varying noise.

During the last years, patch-based algorithms have been
extensively adopted in the processing of natural images. However,
the performance of the existing methods can be severely affected
by a low SNR56, hindering a real breakthrough in fluorescence
microscopy9. On the contrary, our implementation has sig-
nificantly advanced the approach by employing the inherent
characteristics of the imaging system and the fluorescent biolo-
gical samples. This improves ACsN noise correction by up to two
orders of magnitude in terms of the mean square error (MSE)
compared to general-purpose sparse filtering (Supplementary
Note 5). Furthermore, compared to the existing approaches that
address the noise correction of sCMOS cameras for wide-field
microscopy15, ACsN denoising shows a sevenfold improvement
in the MSE and up to two orders of magnitude improvement in
runtime, mainly because of the new noise model and algorithmic
scheme (Supplementary Notes 5 and 6).

Unlike other denoising methods for microscopy that were
implemented for specific cases15,57,58, we demonstrated the broad
applicability of ACsN by showing its performance in diverse
experimental conditions, with different sensors, and for a wide
range of applications (Supplementary Table 4). In addition, we
have also demonstrated that the noise correction of sCMOS
images can result in a major improvement of the downstream
analysis. Finally, by processing time series of both fixed and live
samples, we observed a substantial reduction of pixel fluctuations
and, thus, of the measurement errors, allowing for accurate,
quantitative study of time-lapse data. In this regard, users should
be aware that such errors may not be completely removed, but we
observed that they are reduced to the error level or lower of an
ideal camera. This allows for an acceptable denoising accuracy
even at low-light intensity, down to 5–10 photons per pixel.
However, the determination of a minimum threshold for
denoising reliability under a lower photon flux may vary
depending on the validity of the noise model, as well as the
camera, specimen or imaging technique used. For this reason, we
recommend to calibrate and test the algorithm before applying it
to any new type of data. To help with this task, ACsN also
provides an evaluation of the restoration quality that allows users
to identify images where denoising may not be accurate (Sup-
plementary Note 7). Further guidelines for the usage of ACsN are
provided in Supplementary Note 8.

Lastly, the algorithm is accessible for future developments to
meet broader imaging conditions like the implementation of
features to handle multidimensional spatiotemporal data, the use
of GPU parallel processing, and the optimization of image
restoration for low-cost sensors. We anticipate that this tool can
be useful for any type of CMOS/sCMOS-based imaging where
quantitative analysis, fast runtime, and low-photon count are
desired.

Methods
Camera calibration. To calibrate the pixel-dependent offset of the CMOS cameras
used in this work, we disabled the automatic pixel correction to avoid automatic
replacement of hot pixels by the average of the neighboring pixels. Then, we
recorded a series of dark images and calculated the temporal mean for each pixel.
We used 10,000 frames for the ORCA-Flash-4.0 sCMOS (Hamamatsu Photonics)

and PCO.Edge, and 5000 frames for the Grasshopper 3 CMOS camera (GS3-
U3–51S5M-C, FLIR Imaging) and the Miniscope’s CMOS sensor
(MT9V032C12STM, Aptina-On Semiconductor). The amplification gain was
estimated from multiple sets recorded at different illumination intensities ranging
from ~20 to 500 photons per pixel. The gain for each pixel was calculated using the
relation:

gi ¼ argmin
X

K

k¼1

vki � vari
� �

� gi D
k
i � oi

� �� �2
; ð2Þ

where K is the total number of illumination levels acquired, k is the kth illumi-

nation sequence, Dk
i stands for the mean count in analog-to-digital units (ADU)

obtained from temporal averaging of all frames that are acquired during illumi-
nation sequence k in pixel i, oi, and vari are the mean and variance values for pixel

i, and vki stands for the temporal variance of the ADU counts for illumination
sequence k in pixel i8.

Quality metrics. To quantify the quality of image restoration for wide-field images
we used three popular metrics: mean square error (MSE), peak signal to noise ratio
(PSNR), and structural similarity index (SSIM). The MSE is an element-wise dif-
ference between two input images, where the ideal value is zero. The MSE is
computed by squaring the difference of corresponding pixels in each image X and
Y and taking the mean of the squared differences:

MSE X;Yð Þ ¼
1

N

X

N

p¼1

Xp � Yp

� �2

: ð3Þ

The PSNR is derived from the MSE, and indicates the ratio of the maximum
pixel intensity to the power of the distortion.

PSNRðX;YÞ ¼ 10 � log10
maxðYÞ2

MSEðX;YÞ

� �

: ð4Þ

The SSIM metric is widely adopted in image processing to evaluate image
fidelity from an objective point of view59. This index is an alternative to error
summation methods (like SNR or MSE) and it is supposed to give more
information about image distortion by the computation of local image structure,
luminance, and contrast into a single local quality score. In this metric, structures
are patterns of pixel intensities, especially among neighboring pixels, after
normalizing for luminance and contrast:

SSIMðX;YÞ ¼
2μXμY
� �

2σXYð Þ

μ2X þ μ2Yð Þ σ2X þ σ2Yð Þ
ð5Þ

where μX, μY, σX, σY, and σXY are the local means, standard deviations, and cross-
covariance for images X and Y. As the human visual system is good at perceiving
structure, the SSIM quality metric agrees more closely with the subjective
quality score.

To assess the quality improvement of image deconvolution and STORM
reconstructions, we used NanoJ-SQUIRREL to evaluate the resolution scaled error
(RSE) and the resolution scaled Pearson’s coefficient (RSP)34. The RSE is a metric
describing the root mean square error between a reference image and the
resolution- and intensity-scaled super-resolution image. It exhibits intensity-
dependence and as such, it is sensitive to any non-linear intensity scaling. Lower
values indicate better agreement. Instead, the RSP describes the Pearson correlation
coefficient between the reference image and the resolution scaled image. This
metric is independent of image intensity and normalized between −1 and 1, where
1 represents the ideal agreement.

Wide-field epi-fluorescence, TIRF, and STORM imaging. All the epi-fluores-
cence, TIRF, and STORM acquisitions were performed on an inverted optical
fluorescent microscope (Nikon Ti-U). A 647 nm laser (MPB) and a 405 nm laser
(OBIS) were used to excite and switch the reporter fluorophores (Alexa 647). The
lasers were coupled into an optical fiber (Thorlabs) and sent to the microscope. An
oil-immersion objective (NA 1.45, 100x Nikon CFI-PLAN Apo Lambda, Nikon)
was used to enable sub-cellular structure imaging. A lens with focal length of 20 cm
was used to focus the laser beam in different incident angles. TIRF illumination was
enabled to reduce the background introduced by the structures deep in the sample
and enhance the contrast of the acquired frames. The emitted fluorescence was
collected with a sCMOS camera (Hamamatsu ORCA 4.0 V3) at the right-side
camera port and with an industrial-grade CMOS camera (GS3-U3–51S5M-C, FLIR
Imaging) at the left-side camera port.

HeLa cells (ATCC, Manassas, VA) were plated on a 35 mm MatTek glass-
bottom plate and incubated at 37°C with 5% CO2. After 16 h, the cells were fixed
for 10 min at 37°C using 4% formaldehyde (Electron Microscopy Sciences) resolved
in phosphate-buffered saline (PBS). The cells were then washed and incubated for
an hour in the 1 mL blocking solution 1% (vol/vol) bovine serum albumin (BSA)
(Santa Cruz Biotechnologies) and 0.25% (vol/vol) Triton X-100 prepared in PBS).
A focus lock was used to stabilize the microscopic stage during the image
acquisition. The infrared laser was separated by a beam splitter into two beams: one
was reflected by the glass-oil interface between the objective lens and the
microscope slide and then induced into a Thorlabs CMOS camera; the other was
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directed into the camera. The distance between two beam spots on the camera was
therefore sensitive to the position of the stage (i.e., the distance between the
objective lens and the microscope slide), and this information was fed back to a
piezo actuator (Mad City Labs) by the STORM software to correct the axial drift of
the stage.

Microtubules were stained with mouse anti-Tom20 (Santa Cruz
Biotechnologies F10, SC-17764) for 2 h while gently shaking at room temperature.
The second antibody was labeled with 1 mg/mL AlexaFluor 647-conjugated
AffiniPure Goat Anti-Mouse IgG (Jackson ImmunoResearch), followed by a one-
hour incubation at room temperature. A 5-min-each triple-washing step was
conducted with PBS after each staining and labeling step. The cells were placed in
imaging buffer (1 M Tris pH 8.0, 5 M NaCl, 1.0 N HCl, cyclooctane (COT),
cysteamine (MEA), 50% glucose) before imaging.

HEK 293 (ATCC, CRL-1573) cells used for live-cell imaging were kindly
provided by the Dahlman lab. Cells were cultured at 5% CO2 in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco) supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin-streptomycin. For mitochondrial imaging, cells
were treated with MitotackerTM Green (Invitrogen) at 100 nM for 30 min.

Commercially available prepared slides (FluoCells slide #1, ThermoFisher) were
used to image mitochondria and F-actin of bovine pulmonary artery endothelial
(BPAE) cells. Mitochondria were labeled with red-fluorescent MitoTracker Red
CMXRos and F-actin was stained using green-fluorescent Alexa Fluor 488
phalloidin.

In STORM image acquisition, the two lasers were activated simultaneously,
which enabled stochastic photoswichable fluorescence emitted from the samples.
The power of the 647 nm laser was set to 50 mW (measured on the coverglass
surface) in order to allow the fluorescent molecules to switch on and off at a high
rate for acquisition at a frame rate of 50 Hz.

Light-field microscopy. We constructed a custom high-resolution light-field
microscope (HR-LFM) on an epi-fluorescence microscope (Nikon Eclipse Ti-U)
using a 100 × objective (Nikon CFI-PLAN 100×, 1.45 NA)60. The sample stage was
controlled by a nano-positioning system (Prior). The samples were excited with
488-nm, 561-nm and 647-nm lasers (MPB Communications). The corresponding
emitted fluorescence was collected using dichroic mirrors (respectively, T495lpxr,
T560lpxr, and T660lpxr, Chroma) and emission filters (respectively ET525/50,
Chroma; FF02-617/73, Semrock; ET700/75, Chroma). The microlens array (MLA),
model S125-F30 by RPC Photonics, was aligned in a five-axis kinematic mount
(K5X1, Thorlabs). The light field was imaged using a 1:1 relay lens (Nikon AF-S
VR Micro-Nikkor 105 mm f/2.8G IF-ED) and recorded on a scientific com-
plementary metal-oxide-semiconductor (sCMOS) camera (ORCA-Flash4.0 V3,
Hamamatsu).

In the set-up, the MLA forms a defocused imaging relationship as 1/a+ 1/b > 1/fml,
where a and b denote the distances to the native image plane and the camera
sensor, respectively, and fml is the focal length of the MLA60. To reconstruct the
volumetric data, the Fresnel propagation of light by the distances of a and b, i.e., a
defocused point spread function (PSF), was established using the scalar diffraction
theory. Specifically, the final intensity image O(x″) at the camera plane is described

by O x00ð Þ ¼
R

h x00; pð Þ2
�

�

�

�g pð Þdp, where x00 ¼ x001 ; x002
� �

2 R2 represents the

coordinates x001 ; x002
� �

on the camera plane, and p 2 R3 is the position of a point

source in a volume in the object domain, whose combined intensities are
distributed according to g(p). h x00; pð Þ represents the complex-valued PSF, which
considers, sequentially, the light propagation through the high-NA objective,
Fresnel propagation of light by the distance of a, modulation induced by the MLA,
and another Fresnel propagation to the camera plane by the distance of b. In
practice, considering the discrete model, h x00; pð Þ is represented by the
measurement matrix H, whose elements hkj describe the projection of the light
arriving at the pixel O(j) of the camera from the kth voxel g(k) in the object space.
The volumetric information was then reconstructed employing the wave-optics
model based on an inverse-problem deconvolution framework60–62.

Single-particle tracking. We tracked the Brownian motion of 1-μm fluorescent
beads (ThermoFisher T7280) in deionized water using a commercial microscope
for single-molecule localization (Vutara 352, Bruker). We imaged the sample using
a water immersion objective (60×, NA 1.2) and recorded the particle motion at a
frame rate of 1 kHz (Hamamatsu ORCA 4.0 V3). To prepare the sample, we
applied 5 µl of a diluted Tetraspeck bead suspension (1:100) on top of a clean
microscope slide. We covered the sample with a coverslip and sealed it with nail
polish.

Miniaturized microscopy. We used a lab-built miniaturized imaging system based
on the open-source miniscope protocol63,64. The illumination is provided by a 488
nm LED (LXML-PB01–0030, Lumileds), an excitation filter (FF01–480/40, Sem-
rock), and a collimating lens (45549, Edmund Optics). The light from the sample is
collected by a GRIN lens (0.5 NA, GT-IFRL-200-inf-50-NC, Grintech), reflected by
a dichroic mirror (FF506-Di03, Semrock) and imaged by an aspheric lens (D-ZK3,
Thorlabs) onto a CMOS sensor (MT9V032C12STM, ON Semiconductor).

Selective plane illumination microscopy. For selective plane illumination
microscopy, we used a commercial set-up (Zeiss Lightsheet Z.1). The system is
equipped with dual PCO.Edge sCMOS cameras for multiview acquisition, four
laser lines, and a CO2 incubator with temperature and humidity control. We used
the system to image an adult brine shrimp or artemia (Carolina Bioscience) fixed in
paraformaldehyde and stained with Eosin Y. We illuminated the sample with two
5 × / 0.1 NA objectives and detected the emission fluorescence with a 5 × / 0.16 NA.
The detection zoom inside the microscope was set to 1.4×, so that the total
magnification at the camera plane was 7×.

Lattice light-sheet microscopy. Lattice light-sheet microscopy images were
acquired using a 3i Lattice Light Sheet microscope. Here, lasers are individually
expanded in the laser launch to 2.5 mm, collimated and aligned to be co-linear. All
lines pass through an Acousto-Optic Tunable Filter (AOTF). Frequency mod-
ulation of the AOTF regulates the degree of higher order light that is transmitted,
thus regulating the laser power input into the system. Once in the Lattice Light
Sheet optical path, a set of cylindrical lenses expands the 2.5-mm input beam in X
to 25 mm to uniformly illuminate a stripe on the spatial light modulator (SLM).
The SLM is programmed to display binary images of user generated multi-Bessel
patterns generating an optical lattice of Bessel beams. The Bessel beam is projected
onto an annular mask, which filters the zeroth order, removes artifacts and
lengthens the sheet. The mask is serially conjugate to Z and X galvo mirrors, as
well as the rear pupil of the excitation objective, allowing the light sheet to be
translated in y and z and to rapidly oscillate in x for the dithered mode of
operation. The beam is focused through the illumination objective to create a
pattern of the Bessel beams at the sample plane that is conjugate to the projection
off of the SLM. This pattern is dithered by the X galvo to form the sheet of
illumination that is observed by the sCMOS camera (ORCA-Flash4.0 v2,
Hamamatsu), through the detection objective. The 25 × detection objective, in
conjunction with the 500-mm tube lens, gives a 62.5 × magnification at the
camera.

The volumetric data acquisition can be performed in two modalities: sample
scan or sheet scan. In sample scan mode the stage moves while the light sheet and
the objectives remain stationary. This mode allows to scan big areas but, since the
objective is tilted at an angle with respect to the axis of stage movement, the scan
produces a lateral offset between images from neighboring z planes. Therefore,
these images have to be shifted (or deskewed) in post-processing to retrieve the
original positions. In sheet scan mode, instead, the light sheet and objective are
moved in tandem so that there is no offset between the volumetric slices and no
deskewing operation is needed.

HaCaT keratinocytes were generously provided by Kowalczyk Lab at Emory
University. They were cultured in DMEM (Corning, Tewksbury, MA)
supplemented with 10% fetal bovine serum and 1% Antibiotic/ antimycotic. Cells
grown on 5-mm coverslips were transfected according to manufacturer’s
instruction with Viromer RED (OriGene, Rockville, MA). Briefly, plasmids were
incubated with Viromer RED transfection reagent and buffer for 20 min at room
temperature. This plasmid/reagent mix was then added to cells in culture dishes.
Cells were then fixed 24 h after transfection with 4% PFA for 15 min. The
mCherry-VAPB (human) plasmid construct was purchased from Addgene
(Plasmid #108126).

Mouse embryonic fibroblasts (MEFs) were generously provided by Chan lab at
Caltech. They were plated onto 5 mm matrigel-coated coverslips 24 h before
experimentation, at about 60–70% confluence. Cells were grown in DMEM+ 10%
FBS. The day of the experiment, the medium was swapped with imaging medium
(phenol red-free DMEM with HEPES, Gibco, Catalog #: 21063–029) along with
SiRActin dye (diluted to a 1 µM concentration; Cytoskeleton Inc, Cat. # CY-
SC001) at least 1 h before experimentation. Phenol red-free medium with
SiRActin dye was used throughout the LLSM imaging experiment and was not
washed out.

Human lung cancer cells (NCI-H1299 NSCLC, ATCC, Manassas, VA)
expressing gd2PAL-Dendra2 (Bassell lab, Emory University) were cultured on glass
coverslips in Roswell Park Memorial Institute (RPMI-1640) media supplemented
with 10% fetal bovine serum and 100 units/mL of penicillin/streptomycin, and
maintained at 37 °C and 5% CO2.

Simulations. To simulate noisy fluorescence images, we have used two different
freely available microtubules data sets15,65. In both cases, we have generated images
based on the parameters: NA= 1.4, wavelength= 700 nm, and pixel size= 100 nm.
The final images were generated by corrupting the signal with Poisson noise and
then adding sCMOS-related noise as described by Liu et al.15.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated and analyzed in this study are available from the corresponding

author upon request. Unprocessed example data are included in the Supplementary

Software.
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Code availability
The core package for ACsN is available as Supplementary Software. The code has been

written in MATLAB (MathWorks) and has been tested with versions 2014b, 2016a, and

2018a. In MATLAB, the software can be run from the command line or using its

graphical interface. A plugin to call ACsN directly from ImageJ is also available. To

install the package, unzip the compressed folder and follow the instructions in the file

readme.txt. For further information about the software, consult the help file (or in

MATLAB type: help ACSN). The latest version of the software can be found at: https://

github.com/ShuJiaLab/ACsN.
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