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Abstract

Depth estimation is an important computer vision prob-

lem with many practical applications to mobile devices.

While many solutions have been proposed for this task, they

are usually very computationally expensive and thus are not

applicable for on-device inference. To address this problem,

we introduce the first Mobile AI challenge, where the tar-

get is to develop an end-to-end deep learning-based depth

estimation solutions that can demonstrate a nearly real-

time performance on smartphones and IoT platforms. For

this, the participants were provided with a new large-scale

dataset containing RGB-depth image pairs obtained with

a dedicated stereo ZED camera producing high-resolution

depth maps for objects located at up to 50 meters. The run-

time of all models was evaluated on the popular Raspberry

Pi 4 platform with a mobile ARM-based Broadcom chipset.

The proposed solutions can generate VGA resolution depth

maps at up to 10 FPS on the Raspberry Pi 4 while achieving

high fidelity results, and are compatible with any Android or

Linux-based mobile devices. A detailed description of all

models developed in the challenge is provided in this paper.

1. Introduction

A wide spread of various depth-guided problems related

to augmented reality, gesture recognition, object segmenta-

tion, autonomous driving and bokeh effect rendering tasks

has created a strong demand for fast and efficient single-

image depth estimation approaches that can run on portable
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low-power hardware. While many accurate deep learning-

based solutions have been proposed for this problem in the

past [46, 16, 14, 47, 48, 42, 15, 10], they were optimized for

high fidelity results only while not taking into account com-

putational efficiency and mobile-related constraints, which

is essential for tasks related to image processing [23, 24, 37]

on mobile devices. This results in solutions requiring pow-

erful high-end GPUs and consuming gigabytes of RAM

when processing even low-resolution input data, thus being

incompatible with resource-constrained mobile hardware.

In this challenge, we change the current depth estimation

benchmarking paradigm by using a new depth estimation

dataset collected in the wild and by imposing additional

efficiency-related constraints on the designed solutions.

When it comes to the deployment of AI-based solutions

on portable devices, one needs to take care of the particu-

larities of mobile CPUs, NPUs and GPUs to design an effi-

cient model. An extensive overview of mobile AI acceler-

ation hardware and its performance is provided in [33, 30].

According to the results reported in these papers, the latest

mobile NPUs are already approaching the results of mid-

range desktop GPUs released not long ago. However, there

are still two major issues that prevent a straightforward de-

ployment of neural networks on mobile devices: a restricted

amount of RAM, and a limited and not always efficient sup-

port for many common deep learning layers and operators.

These two problems make it impossible to process high

resolution data with standard NN models, thus requiring a

careful adaptation of each architecture to the restrictions of

mobile AI hardware. Such optimizations can include net-

work pruning and compression [11, 26, 45, 49, 53], 16-bit

/ 8-bit [11, 40, 39, 73] and low-bit [9, 65, 38, 50] quantiza-

tion, device- or NPU-specific adaptations, platform-aware

neural architecture search [20, 60, 70, 66], etc.

While many challenges and works targeted at efficient

deep learning models have been proposed recently, the eval-

uation of the obtained solutions is generally performed on

1

https://ai-benchmark.com/workshops/mai/2021/


Figure 1. The original RGB image and the corresponding depth map obtained with the ZED 3D camera.

desktop CPUs and GPUs, making the developed solutions

not practical due to the above mentioned issues. To address

this problem, we introduce the first Mobile AI Workshop and

Challenges, where all deep learning solutions are developed

for and evaluated on real low-power devices. In this com-

petition, the participating teams were provided with a novel

depth estimation dataset containing over 8 thousand RGB-

depth image pairs collected in the wild with a stereo ZED

3D camera. Within the challenge, the participants were

evaluating the runtime and tuning their models on the Rasp-

berry Pi 4 ARM based single-board computer used as a tar-

get platform for many embedded machine learning projects.

The final score of each submitted solution was based on the

runtime and fidelity results, thus balancing between the im-

age reconstruction quality and efficiency of the proposed

model. Finally, all developed solutions are fully compati-

ble with the TensorFlow Lite framework [62], thus can be

deployed and accelerated on any mobile platform providing

AI acceleration through the Android Neural Networks API

(NNAPI) [5] or custom TFLite delegates [12].

This challenge is a part of the MAI 2021 Workshop and

Challenges consisting of the following competitions:

• Learned Smartphone ISP on Mobile NPUs [22]

• Real Image Denoising on Mobile GPUs [21]

• Quantized Image Super-Resolution on Edge SoC NPUs [31]

• Real-Time Video Super-Resolution on Mobile GPUs [28]

• Single-Image Depth Estimation on Mobile Devices

• Quantized Camera Scene Detection on Smartphones [25]

• High Dynamic Range Image Processing on Mobile NPUs

The results obtained in the other competitions and the de-

scription of the proposed solutions can be found in the cor-

responding challenge papers.

2. Challenge

To develop an efficient and practical solution for mobile-

related tasks, one needs the following major components:

1. A high-quality and large-scale dataset that can be used

to train and evaluate the solution;

2. An efficient way to check the runtime and debug the

model locally without any constraints;

3. An ability to regularly test the runtime of the designed

neural network on the target mobile platform or device.

This challenge addresses all the above issues. Real train-

ing data, tools, and runtime evaluation options provided to

the challenge participants are described in the next sections.

2.1. Dataset

To get real and diverse data for the considered challenge,

a novel dataset consisting of RGB-depth image pairs was

collected using the ZED stereo camera1 capable of shooting

2K images. It demonstrates an average depth estimation

error of less than 0.2m for objects located closer than 8 me-

ters [55], while more coarse predictions are also available

for distances of up to 50 meters. Around 8.3K image pairs

were collected in the wild over several weeks in a variety of

places. For this challenge, the obtained images were down-

scaled to VGA resolution (640×480 pixels) that is typically

used on mobile devices for different depth-related tasks.

The original RGB images were then considered as inputs,

and the corresponding 16-bit depth maps — as targets. A

sample RGB-depth image pair from the collected dataset is

demonstrated in Fig. 1.

1https://www.stereolabs.com/zed/
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Figure 2. Loading and running custom TensorFlow Lite models with AI Benchmark application. The currently supported acceleration

options include Android NNAPI, TFLite GPU, Hexagon NN, Samsung Eden and MediaTek Neuron delegates as well as CPU inference

through TFLite or XNNPACK backends. The latest app version can be downloaded at https://ai-benchmark.com/download

2.2. Local Runtime Evaluation

When developing AI solutions for mobile devices, it is

vital to be able to test the designed models and debug all

emerging issues locally on available devices. For this, the

participants were provided with the AI Benchmark applica-

tion [30, 33] that allows to load any custom TensorFlow Lite

model and run it on any Android device with all supported

acceleration options. This tool contains the latest versions

of Android NNAPI, TFLite GPU, Hexagon NN, Samsung

Eden and MediaTek Neuron delegates, therefore supporting

all current mobile platforms and providing the users with

the ability to execute neural networks on smartphone NPUs,

APUs, DSPs, GPUs and CPUs.

To load and run a custom TensorFlow Lite model, one

needs to follow the next steps:

1. Download AI Benchmark from the official website2 or

from the Google Play3 and run its standard tests.

2. After the end of the tests, enter the PRO Mode and

select the Custom Model tab there.

3. Rename the exported TFLite model to model.tflite and

put it into the Download folder of the device.

4. Select mode type (INT8, FP16, or FP32), the desired

acceleration/inference options and run the model.

These steps are also illustrated in Fig. 2.

2https://ai-benchmark.com/download
3https://play.google.com/store/apps/details?id=

org.benchmark.demo

2.3. Runtime Evaluation on the Target Platform

In this challenge, we use the Raspberry Pi 4 single-board

computer as our target runtime evaluation platform. It is

based on the Broadcom BCM2711 chipset containing four

Cortex-A72 ARM cores clocked at 1.5 GHz and demon-

strates AI Benchmark scores comparable to entry-level An-

droid smartphone SoCs [6]. The Raspberry Pi 4 supports

the majority of Linux distributions, Windows 10 IoT build

as well as Android operating system. In this competition,

the runtime of all solutions was tested using the official

TensorFlow Lite 2.5.0 Linux build [63] containing many

important performance optimizations for the above chipset,

the default Raspberry Pi OS was installed on the device.

Within the challenge, the participants were able to upload

their TFLite models to the runtime validation server con-

nected to a real Raspberry Pi 4 board and get instantaneous

feedback: the runtime of their solution or an error log if the

model contains some incompatible operations. The same

setup was also used for the final runtime evaluation.

2.4. Challenge Phases

The challenge consisted of the following phases:

I. Development: the participants get access to the data

and AI Benchmark app, and are able to train the mod-

els and evaluate their runtime locally;

II. Validation: the participants can upload their models to

the remote server to check the fidelity scores on the

validation dataset, to get the runtime on the target plat-
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Team Author Framework Model Size, MB si-RMSE↓ RMSE↓ LOG10↓ REL↓ Runtime, ms ↓ Final Score

Tencent GY-Lab Parkzyzhang PyTorch / TensorFlow 3.4 0.2836 3.56 0.1121 0.2690 97 129.41

SMART KX SMART PyTorch / TensorFlow 15.0 0.2602 3.25 0.1043 0.2678 1197 14.51

Airia-Team1 dujinhua TensorFlow 64.9 0.2408 3.00 0.0904 0.2389 1933 11.75

YTL Jacob.Yao PyTorch / TensorFlow 56.2 0.2902 3.91 0.1551 0.4700 1275 8.98

CFL2 jey PyTorch / TensorFlow 9.6 0.2761 9.68 2.3393 0.9951 772 5.5

HIT-AIIA zhyl Keras / TensorFlow 56.0 0.2332 2.72 0.0831 0.2189 6146 4.11

weichi weichi TensorFlow 0.5 0.4659 7.56 0.4493 0.5992 582 1.72

MonoVision Palace shayanj TensorFlow 15.3 0.3543 4.16 0.1441 0.3862 3466 1.36

3dv oppo fanhuanhuan PyTorch / TensorFlow 187 0.2678 5.96 0.3300 0.5152 26494 0.59

MegaUe faustChok Keras / TensorFlow 118 0.3737 9.08 0.9605 0.8573 9392 0.38

Table 1. MAI 2021 Monocular Depth Estimation challenge results and final rankings. The runtime values were obtained on 640×480 px

images on the Raspberry Pi 4 device. Team Tencent GY-Lab is the challenge winner, the best fidelity results are obtained by team HIT-AIIA.

form, and to compare their results on the validation

leaderboard;

III. Testing: the participants submit their final results,

codes, TensorFlow Lite models, and factsheets.

2.5. Scoring System

All solutions were evaluated using the following metrics:

• Root Mean Squared Error (RMSE) measuring the ab-

solute depth estimation accuracy,

• Scale Invariant Root Mean Squared Error (si-RMSE)

measuring the quality of relative depth estimation (rel-

ative position of the objects),

• Average log
10

and Relative (REL) errors [48],

• The runtime on the target Raspberry Pi 4 device.

The score of each final submission was evaluated based

on the next formula (C is a constant normalization factor):

Final Score =
2−20·si-RMSE

C · runtime
,

During the final challenge phase, the participants did not

have access to the test dataset. Instead, they had to submit

their final TensorFlow Lite models that were subsequently

used by the challenge organizers to check both the runtime

and the fidelity results of each submission under identical

conditions. This approach solved all the issues related to

model overfitting, reproducibility of the results, and consis-

tency of the obtained runtime/accuracy values.

3. Challenge Results

From above 140 registered participants, 10 teams entered

the final phase and submitted valid results, TFLite mod-

els, codes, executables and factsheets. Table 1 summarizes

the final challenge results and reports si-RMSE, RMSE,

LOG10 and REL measures and runtime numbers for each

submitted solution on the final test dataset and on the target

evaluation platform. The proposed methods are described in

section 4, and the team members and affiliations are listed

in Appendix A.

3.1. Results and Discussion

All proposed solutions are relying on the encoder-

decoder based architecture as it allows both to perform

heavy image manipulations and to reduce the computational

complexity of the model by doing the majority of process-

ing at lower scales / resolutions. Nearly all models used

standard image classification models in their encoder mod-

ule extracting features from the input images. Teams Ten-

cent GY-Lab, SMART, Airia-Team1 and CFL2 adopted Mo-

bileNets for this as they are already optimized for low-

power devices and can achieve a very good runtime on

the majority of mobile platforms. The best fidelity results

were, however, obtained by team HIT-AIIA that used the

EfficientNet-B1 network for feature generation. To improve

the models’ accuracy, skip connections between the encoder

and decoder blocks were added in almost all architectures.

Another popular approach resulting in better depth predic-

tion was to use knowledge distillation: a larger model was

first trained for the same task, and then its outputs or inter-

mediate features were used as additional targets for the final

small network. In particular, this approach was used by the

challenge winner, team Tencent GY-Lab, that outperformed

all other methods by a huge margin, being able to get both

good fidelity scores and to achieve more than 10 FPS on

the target Raspberry Pi 4 device. Notably, this solution is a

magnitude faster than the FastDepth [69] model known as

one of the most efficient ones for this task.

To further benchmark the efficiency of the designed so-

lutions, we additionally tested their performance on several

popular smartphone chipsets. The runtime results demon-

strated in Table 2 were measured with the AI Benchmark

using the TFLite GPU delegate [43] compatible with all

mobile devices supporting OpenCL or OpenGL 3.0+. In

almost all cases, the runtime of the proposed networks is

less than half a second except for the solution from 3dv

oppo: due to the issues caused by PyTorch to TFLite con-

version, it contains several ops supported neither by TFLite

delegates nor by Android NNAPI, thus this model was ex-

ecuted on CPU, same as networks from Airia-Team1 and

CFL2. The solution from team Tencent GY-Lab demon-

strated more than 75 FPS on all considered SoCs, thus be-
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Mobile SoC Snapdragon 888 Snapdragon 855 Dimensity 1000 Dimensity 800 Exynos 2100 Exynos 990 Kirin 990 5G Kirin 980

GPU Adreno 660, ms Adreno 640, ms Mali-G77 MP9, ms Mali-G57 MP4, ms Mali-G78 MP14, ms Mali-G77 MP11, ms Mali-G76 MP16, ms Mali-G76 MP10, ms

Tencent GY-Lab 3.5 5.7 8.6 13 5.7 12 8.8 9.3

SMART 33 60 65 106 37 53 48 58

Airia-Team1 ∗ 283 321 295 447 248 270 337 351

YTL 35 70 71 104 36 52 54 65

CFL2 ∗ 121 179 186 277 117 170 179 188

HIT-AIIA 95 175 149 320 101 137 142 183

weichi 7.1 11 23 43 13 18 18 22

MonoVision Palace 77 128 119 247 71 97 101 129

3dv oppo ∗ 3672 4346 4053 4832 4071 3649 3753 4107

MegaUe 141 288 245 547 182 234 209 266

Table 2. The speed of the proposed solutions on several popular mobile GPUs. The runtime was measured with the AI Benchmark app

using the TFLite GPU delegate [43]. ∗ Solutions from teams Airia-Team1, CFL2 and 3dv oppo are not compatible with neither TFLite

delegates nor Android NNAPI due to the issues related to PyTorch → TFLite conversion, thus were executed on mobile CPUs.

ing able to generate depth maps in real-time on all modern

chipsets, including the low-end ones. We can conclude that

this architecture is now defining a new efficiency standard

for depth estimation on mobile and embedded systems. The

model from team HIT-AIIA, demonstrating the best accu-

racy in this challenge, is able to achieve at least 7 FPS on all

tested SoCs, thus being applicable for tasks where the pre-

cision of the predicted depth maps is critical. It should be

also mentioned that all models were additionally tested on

NPUs / DSPs of the considered chipsets, though the results

were either the same or worse since not all TFLite layers

and operations are currently optimized for specialized AI

hardware.

4. Challenge Methods

This section describes solutions submitted by all teams par-

ticipating in the final stage of the MAI 2021 Monocular

Depth Estimation challenge.

4.1. Tencent GY­Lab

Team Tencent GY-Lab proposed a U-Net like architec-

ture presented in Fig. 3, where a MobileNet-V3 [20] based

encoder is used for dense feature extraction. To reduce the

amount of computations, the input image is first resized

from 640×480 to 160×128 pixels and then passed to the en-

coder module consisting of five blocks. The outputs of each

block are processed by the Feature Fusion Module (FFM)

that concatenates them with the decoder feature maps to

get better fidelity results. The authors use one additional

nearest neighbor resizing layer on top of the model to up-

scale the output to the target resolution. Knowledge dis-

tillation [19] is further used to improve the quality of the

reconstructed depth maps: a bigger ViT-Large [13] was first

trained on the same dataset and then its features obtained

before the last activation function were used to guide the

smaller network. This process allowed to decrease the si-

RMSE score from 0.3304 to 0.3141. The proposed model

was therefore trained to minimize a combination of the dis-

tillation loss (computed as L2 norm between its features

from the last convolutional layer and the above mentioned

features from the larger model), and the depth estimation

loss proposed in [44]. The network parameters were op-

timized for 500 epochs using Adam [41] with a learning

rate of 8e− 3 and a polynomial decay with a power of 0.9.

The model was implemented and trained with PyTorch and

then converted to TensorFlow Lite using ONNX as an inter-

mediate representation. A more detailed description of the

proposed solution is provided in [74].

Figure 3. The model architecture and the structure of the Feature Fusion Module (FFM) proposed by team Tencent GY-Lab.
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Figure 4. An overview of the knowledge distillation strategy used by team SMART.

4.2. SMART

Same as the previous solution, team SMART used a

MobileNet-based encoder module for feature extraction and

applied knowledge distillation to train the network. The

architecture of the proposed solution is demonstrated in

Fig. 5: the standard FastDepth [69] architecture with a

MobileNet-V1 backbone is used for the main (student)

model. The larger teacher network consists of a ResNeSt-

101 [72] based encoder and a decoder block [71] with the

adaptive output layer on top of it. The representation ability

of a pre-trained teacher model is transferred to the student

network via knowledge distillation: a pairwise distillation

loss is adopted to force the student network to output fea-

ture maps that are similar to the outputs of the correspond-

ing layers of the teacher network. The distillation loss is

computed in two steps (Fig. 4): let Ft ∈ R
h×w×c1 and

Fs ∈ R
h×w×c2 be the feature maps with the same spatial

resolution from the teacher and the student models, respec-

tively, then the affinity maps are first computed as:

aij =
fT
i fj

(‖fi‖2 × ‖fj‖2)
,

where f denotes one row of the feature map (Ft or Fs).

Next, the mean square error is computed between the affin-

ity maps obtained for student and teacher models:

Lpa(S, T ) =
1

w × h

∑

i

∑

j

(asij − atij)
2.

Besides that above knowledge distillation loss, two other

metrics are used to train the student model. The scale in-

variant loss [14] is used to measure the discrepancy between

the output of the student network and the ground truth depth

map:

Ls (d, d
∗) =

1

n

∑

i

g2i −
1

n2
(
∑

i

gi)
2,

where d and d∗ are the predicted and the ground truth depth

maps, and gi = log di − log d∗i is the corresponding error

in log space. Finally, the scale-invariant gradient matching

loss [57] is defined as:

Lreg (d, d
∗) =

1

M

K∑

k=1

M∑

i=1

(|∇xR
k
i |+ |∇yR

k
i |),

where Ri = d− d∗, and Rk denotes the difference between

the disparity maps at scale k = 1, 2, 3, 4 (the resolution of

the feature maps is halved at each level). The final loss

function is then defined as:

L = 10 · Ls (d, d
∗) + 0.1 · Lreg(d, d

∗) + 1000 · Lpa(S, T ).

The model was trained using Adam for 100 epochs with

an initial learning rate of 1e−3 and a polynomial decay with

a power of 0.9. A more detailed description of the model,

design choices and training procedure is provided in [68].

Figure 5. The architecture of the student and teacher models de-

veloped by team SMART.
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Figure 6. The architecture proposed by Airia-Team1 (top) and the

structure of the RFDB block (bottom). Conv-1 and Conv-3 stands

for 1×1 and 3×3 convolution, respectively.

4.3. Airia­Team1

Figure 6 demonstrates the architecture developed by

Airia-Team1. The authors proposed an encoder-decoder

model, where MobileNet-V3 [20] network is used for fea-

ture extraction, same as in the previous two solutions. The

resulting features are fed to three residual feature distilla-

tion blocks (RFDB), each one composed of three residual

blocks (SRB) and several convolutional and concatenation

layers. The refined features obtained after these blocks are

then passed to a 5-layer decoder producing the final pre-

dictions, several skip connections are additionally used to

speed-up the training. The pixel-wise depth loss [7] was

used as the target loss function. The model parameters were

optimized using Adam with a learning rate of 1e − 4 mul-

tiplied by 0.6 each 100 epochs. A batch size of 8 was used

during the training, random flips were additionally applied

for data augmentation.

4.4. YTL

The authors proposed a U-net based architecture where

the ResNet-18 [18] model is used for feature extraction. The

input RGB image was resized to 320×240 resolution and

then concatenated with an X/Y meshgrid (containing cen-

tered pixel coordinates) to form a 5-channel tensor passed

to the model. The output of the model was also upsampled

from 320×240 to the target 640×480 resolution using one

bilinear resize layer on top of it. The network was trained to

minimize a combination of the Mean Absolute Error (MAE)

and gradient losses using Adam optimizer.

4.5. CFL2

Figure 7. The PyDNet [3] architecture adopted by CFL2 team.

Team CFL2 based its solution on the PyDNet [56, 3]

model. The input image was downscaled to 256×256 pixels

and then passed to the MobileNetV2 [59] encoder. While

the original PyDNet model produces several outputs at mul-

tiple scales, the authors used only the highest one that cor-

responds to the target resolution to reduce the computa-

tional complexity of the model. Since the PyDNet is orig-

inally producing 128×128px images, they were addition-

ally upscaled to the target resolution using one bilinear re-

size layer. The scale invariant data loss [14] and the scale-

invariant gradient matching loss [57] were used to train the

model for 2M interations using Adam with a learning rate

of 1e− 4.

4.6. HIT­AIIA

Figure 8. EfficientNet-based model proposed by team HIT-AIIA.

The model proposed by HIT-AIIA is using the

EfficientNet-B1 network [61] as an encoder to extract fea-

tures from the input images (Fig. 8). The outputs from its

last layer are passed to the Non-Local block [67] that effec-

tively improves the accuracy of the model. The authors used

a combination of the bilinear upsampling, convolutional and

Leaky ReLU layers in the decoder module predicting the fi-

nal depth map. Additional skip connections were added to

7



speed-up the training process and improve the fidelity re-

sults. The model was trained to minimize RMSE loss func-

tion using Adam with a learning rate of 1e − 4 and a batch

size of 6. Image mirroring and flipping as well as color al-

teration were used for data augmentation.

4.7. weichi

Figure 9. An overview of the knowledge distillation strategy used

by team weichi.

Team weichi used the standard U-Net [58] architecture

with a reduced by a factor of 8 number of feature maps

in each layer. Same as in [52], the authors added batch

normalization after each convolution in the encoder block.

To improve the accuracy of the model, knowledge distilla-

tion [19] was additionally applied during the training pro-

cess: a larger U-Net model (with an increased number of

channels) was first trained on the same dataset using the

RMSE loss function. Next, the main student network was

minimizing a combination of the RMSE loss between its

outputs and the target depth maps, and the MSE loss be-

tween its outputs and the outputs of the larger network

(Fig. 9). Both models were trained using Adam optimizer

with a learning rate of 5e− 5 and a batch size of 16.

4.8. MonoVision Palace

Figure 10. DA-UNet architecture proposed by MonoVision Palace.

Team MVP proposed a Depth Attention UNet (DA-

UNet) architecture demonstrated in Fig. 10. The input im-

age was first passed to the EfficientNet-Edge-TPU-S [17]

model with removed hard-swish activations and squeeze-

and-excitation blocks to reduce the latency. Its outputs were

then processed by the decoder block composed of convolu-

tion, upsampling, Leaky ReLU and Gated Attention Blocks

(GA) [54] where ReLU and sigmoid activations were re-

placed with Leaky ReLUs and hard-sigmoid ops, respec-

tively. The model was trained using the same metrics as

in [4]: the point-wise L1 loss, the gradient L1 loss, and

the SSIM loss function. Adam was used to optimize the

model parameters for 30 epochs with an initial learning rate

of 1e−4 reduced by a magnitude after the 20th and the 25th

epoch.

4.9. 3dv oppo

Figure 11. BTS network architecture adopted by 3dv oppo team.

The authors directly used the BTS model [44] demon-

strated in Fig 11. This network is composed of the dense

feature extractor (the ResNet model), the contextual infor-

mation extractor (ASPP), the local planar guidance layers

and their dense connection for final depth estimation. The

same training setup and the target loss functions as in [44]

was used except for the learning rate that was set to 5e− 5.

4.10. MegaUe

Team MegaUe trained a standard U-Net like architec-

ture (Fig. 12) with one additional 2x image downsampling

and upsampling layers at the begging and at the top of the

model, respectively. The model was first pre-trained on

the MegaDepth dataset [46] using the same metrics as in

the original paper: the ordinal, data and gradient matching

losses. Then, the model was fine-tuned on the challenge

data using the last two loss functions.

5. Additional Literature

An overview of the past challenges on mobile-related

tasks together with the proposed solutions can be found in

the following papers:

8



Figure 12. U-Net model proposed by MegaUe team.

• Learned End-to-End ISP: [32, 36]

• Perceptual Image Enhancement: [35, 29]

• Image Super-Resolution: [35, 51, 8, 64]

• Bokeh Effect Rendering: [27, 34]

• Image Denoising: [1, 2]
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