
Fast and Accurate Static Data-Race Detection for
Concurrent Programs

Vineet Kahlon1, Yu Yang2, Sriram Sankaranarayanan1, and Aarti Gupta11 NEC Labs, Princeton, USA.2 University of Utah, Salt Lake City, USA.

Abstract. We present new techniques for fast, accurate and scalable static data
race detection in concurrent programs. Focusing our analysis on Linux device
drivers allowed us to identify the unique challenges posed by debugging large-
scale real-life code and also pinpointed drawbacks in existing race warning gen-
eration methods. This motivated the development of new techniques that helped
us in improving both the scalability as well as the accuracy of each of the three
main steps in a race warning generation system. The first and most crucial step is
the automatic discovery of shared variables. Towards that end, we present a new,
efficient dataflow algorithm for shared variable detection which is more effective
than existing correlation-based techniques that failed todetect the shared vari-
ables responsible for data races in majority of the drivers in our benchmark suite.
Secondly, accuracy of race warning generation strongly hinges on the precision
of the pointer analysis used to compute aliases for lock pointers. We formulate
a new scalable context sensitive alias analysis that effectively combines a divide
and conquer strategy with function summarization and is demonstrably more ef-
ficient than existing BDD-based techniques. Finally, we provide a new warning
reduction technique that leverages lock acquisition patterns to yield provably bet-
ter warning reduction than existing lockset based methods.

1 Introduction

The widespread use of concurrent software in modern day computing systems neces-
sitates the development of effective debugging methodologies for multi-threaded soft-
ware. Concurrent programs, however, are behaviorally complex involving subtle inter-
actions between threads which makes them hard to analyze manually. This motivates
the use of automated formal methods to reason about such systems. Particularly notori-
ous to catch are errors arising out of data race violations. Adata race occurs when two
different threads in a given program can simultaneously access a shared variable, with
at least one of the accesses being a write operation. Checking for data races is often a
critical first step in the debugging of concurrent programs.Indeed, the presence of data
races in a program typically renders its behavior non-deterministic thereby making it
difficult to reason about it for more complex and interestingproperties.

In this paper, we develop techniques for data race detectionthat are efficient, scal-
able and accurate. In order to identify the practical challenges posed by the debugging
of large-scale real-life code, we focused our analysis on detecting data races in Linux
device drivers. A careful study of bug reports and CVS logs atkernel.org revealed

that the two main reasons for the presence of data races in drivers are incorrect lock-
ing and timing related issues. Since timing related data races are hard to analyze at the
software level, we chose to focus only on locking related bugs.

The classical approach to data race detection involves three steps. The first and most
critical step is the automatic discovery of shared variables, i.e., variables which can be
accessed by two or more threads. Control locations where these shared variable are
read or written determine potential locations where data races can arise. In fact, lock-
ing related data races arise if a common shared variable is accessed at simultaneously
reachable program locations in two different threads wheredisjoint sets of locks are
held. Since locks are typically accessed via pointers, in order to determine these lock-
sets at program locations of interest, in the second step, a must-pointer alias analysis
is carried out. Finally, the main drawback of static analysis is that a large number of
bogus data race warnings can often be generated which do not correspond to true bugs.
The last step, therefore, is to use warning reduction and ranking techniques in order to
either filter out bogus warnings or prioritize them based on the degree of confidence.

The challenge lies in carrying out race detection while satisfying the conflicting
goals of scalability and accuracy both of which depend on various factors. Key among
them are (i) accuracy of shared variable discovery, and (ii)accuracy and scalability of
the alias analyses for determining shared variables (may aliases) and locksets (must
aliases). Wrongly labeling a variable as shared renders allwarnings generated for it
bogus. On the other hand, if we miss reporting a variable as shared then we fail to
generate warnings for a genuine data race involving this variable.

Considerable research have been devoted to automatic shared variable discovery [7,
14]. However, most existing techniques are based on the underlying assumption that
when accessing shared variables, concurrent programs almost always follow alocking
disciplineby associating with each shared variablev a lock lv which needs to be ac-
quired before any access tov. Existing techniques focus on computing this association
between locks and variables. Towards that end, various correlation based techniques
have been developed – both statistical [7] and constraint based [14]. An advantage of
statistical techniques is that they are scalable and do not depend on an alias analysis
which can often be a bottleneck. However, the failure of correlation based techniques
to detect the shared variables responsible for data races inmajority of the drivers (8 out
of 10) in our suite exposed the fact that their main weakness turns out to be this very
reliance on the existence of locking discipline. Indeed, many data races arise precisely
when the locking discipline is violated. Furthermore, it turns out that in most of the
drivers that we considered, the original implementations correctly followed lock disci-
pline. Data race bugs were introduced only when the programswere later modified by
adding new code either for optimization purposes or in orderto fix bugs. Typically, this
newly added code was a “hack” that introduced lock-free accesses to shared variables
that weren’t present in the original code. Since the only occurrences of these variables
were in regions unguarded by locks, no meaningful correlations could be developed for
them and was the key reason why correlation-based techniques [7, 14] failed to identify
these variables as shared.

In order to ensure that no shared variable fails detection, we use a very liberal cri-
terion to categorize variables as such. Our shared variabledetection routine is based

2

on the premise that all shared variables are either global variables of threads, aliases
thereof, pointers passed as parameters to API functions or escape variables. Further-
more, we are only interested in identifying precisely the subset of variables from the
above set that are written to in the given program as only these can participate in a data
race. The main challenge here is that since global variablescan be accessed via local
pointers we need to track aliasing assignments leading to such local pointers. An ad-
ditional complication is that not all assignments to aliases of global variables result in
meaningful updates to global variables. Indeed, in a sequence of pointer assignmentsp1 = p; :::; q = pk, starting at a pointerp to a global structureS, say, we see that
assignments in the above sequence merely pass aliasing information without updating
the value of any (scalar) variable. If, however, the above sequence is followed by an
assignment of the formq ! f = exp to a fieldf of S, then it is a genuine update
to f thus making it a variable of interest. We show that such update sequences can be
detected via an efficient dataflow analysis. In fact, in most Linux drivers, data global to
a thread is usually stored as global structures having a large number number of fields –
typically 50 to 100. Only a small fraction of these are actually used for storing shared
data which our new algorithm was able to isolate with high precision. Declaring all the
fields of a global structure as shared would simply generate too many bogus warnings.

The second step in static race detection is to accurately determine locksets at pro-
gram locations where shared variables are accessed. Since locks are typically accessed
via pointers, this requires computation of must-aliases for these lock pointers. The ac-
curacy of warning generation is therefore directly dependent on the precision of the
must-alias pointer analysis. Moreover, for the sake of accuracy it is imperative that lock
aliases be computed context sensitively. This is because most must-aliases inC pro-
grams arise from parameter passing of pointer arguments in functions, which alias to
different pointers in different contexts. The result is that a context sensitive alias analy-
sis produces drastically lesser bogus warnings than a context insensitive one. However,
the key drawback of a context sensitive alias analysis is scalability as the number of
possible contexts in a large program can easily explode. In recent years, considerable
research has been devoted to ameliorating this problem by storing contexts symboli-
cally using data structures like BDDs. Implementation of BDD-based context sensitive
pointer analysis like BDDBDDB [18] have been shown to give good results for Java
programs [13, 12]. However,C programs, which are less structured than Java programs,
typically have too many pointer variables and complex aliasing relations between them
which, in our experience, became hard to handle using BDDBDDB as the program
size grew. We therefore propose a new technique for scalablecontext sensitive pointer
analysis that combines:

(i) Divide and Conquer which leverages the fact that we can partition the set of
all pointers in a program into disjoint classes such that each pointer can only alias to a
pointer within its class. While, in general, aliasing is notan equivalence relation, many
widely used pointer analyses like Steensgaard [16] generate equivalence relations that
are over-approximations of aliasing. Since we use this initial pointer analysis only for
partitioning, scalability is more critical than accuracy and this is precisely what Steens-
gaard’s analysis offers. There are two important consequences of this partitioning. First,
since we are only interested in lock pointers, and since lockpointers can only alias to

3

other lock pointers, we can ignore non-lock pointers. This drastically cuts down on
the number of pointers we need to consider for our analysis. Secondly, since a given
lock pointer can, in general, be aliased to a small subset of the total set of lock pointers,
Steensgaard analysis provides us with a further decomposition of the set of lock pointers
into yet smaller partitions. A second and more accurate context-sensitive alias analysis
in then carried out on these final partitions and even though expensive in general, it
becomes scalable on these small classes.

(ii) Procedure Summarizationwhich exploits locality of reference, viz., the fact
that locks and shared variables are accessed in a small fraction of functions. Our new
summarization based must alias analysis procedure therefore needs to compute sum-
maries only for these small number of functions thereby making our approach appli-
cable to large programs. We emphasize that procedure summarization is extremely im-
portant in making any static analyses scalable. Indeed, typical real-life code has a large
number of small functions that can be called from many different contexts. A non-
summarization based technique like BDDBDDB can be overwhelmed as the program
size grows. It is important to note that it is the synergy resulting by combining the two
techniques that enables us to achieve scalability. Indeed,it is divide and conquer which
allows us to exploit locality of reference thereby making summarization viable.

Finally, one of the main weaknesses of using static race detection techniques is that
a large number of (bogus) race warnings can often be generated. In this paper, we show
that tracking lock acquisition patterns, instead of locksets, results in a warning reduc-
tion technique that is more accurate than existing lockset based techniques [8] in two
ways. First, by leveraging acquisition histories in addition to locksets we can filter out
warnings generated by lockset based technique at the warning generation stage itself.
Secondly, once the warnings are generated, we can use a dominator-based technique
that leverages acquisition histories to give provably better warning reduction than [8].
Additionally, by using ranking, we can guarantee that our reduction technique is sound,
viz., will not drop real data races in favor of bogus ones.

2 Shared Variable Discovery

So as not to miss any shared variable we use a very liberal definition of when a variable
is declared as such. Essentially, we are interested in allgenuinemodifications to global
variables, aliases thereof, pointers passed as parametersto API functions and escape
variables. A global variable of a thread that is directly written to is declared as shared.
Such variables can be determined merely by scanning throughthe program code. How-
ever, a global variable may also be accessed via a local pointer. Such a pointerq could
occur at the end of a chain of pointer assignmentsp1 = p; p2 = p1; :::; q = pk starting
at a pointerp to, say, a global structureS, which is either global or passed as a parameter
to an API function. Then any variablev modified via an access throughp is also a vari-
able of interest. However, simply declaring all pointers occurring in such sequence as
shared could lead to a lot of bogus warnings. Indeed, in the above sequence, the assign-
ments are not genuine updates but merely serve to propagate the values of fields ofS. If,
however, the above sequence is followed by an assignment of the formq ! f = exp,
whereexp is either a local variable or an expression other than simplepropagation of

4

a data value, it is a genuine update and should be declared a shared variable of interest.
The above discussion motivates the following definition.

Algorithm 1 Dataflow Analysis for Shared Variable Detection

1: InitializeVsh = ;, G to the set of global variables of threadT , in to the entry statement ofT , worklistW to the setf(in; G)g, and the set of processed tuplesPr to f(in; G)g.
2: repeat
3: Remove a tupletup = (st; Psh) fromW .
4: if st is of the formv = w wherev andw are program variablesthen
5: if w 2 Psh then
6: setPsh = Psh [fvg
7: else ifv 2 Psh then
8: setVsh = Vsh [fvg.
9: end if

10: else if st is of the formv = exp whereexp is an expression other than a simple variable
then

11: if v 2 Psh then
12: setVsh = Vsh [fvg.
13: end if
14: end if
15: for each successor statementst0 of st do
16: if there does not exist a tuple inPr of the form(st0; S), wherePsh � S, then
17: add(st0; Psh) to bothW andPr.
18: end if
19: end for
20: until W is empty
21: return Vsh
Definition 1. A sequence of assignmentsp1 = p; p2 = p1; :::; q = pk is called a
complete update sequence fromp to q iff for eachi, there do not exist any assignments
to pi (in the given program) after it is written and before it is read in the sequence.

Thus our goal is to detect complete update sequences fromp to q that are followed by
the modification of a scalar variable accessed viaq, wherep either points to a global
variable or is passed as a parameter to an API function. We determine such sequences
using our new dataflow analysis formulated as algorithm 1. Essentially, the procedure
propagates the assignments in complete update sequences asdiscussed above till it hits
a genuine update to a variable which is declared as shared. The algorithm keeps track
of the potential shared variable as the setPsh. To start with,Psh contains variables of
the given threadT that are pointers to global variables or passed as parameters to API
functions. A separate variableVsh keeps track of variables involving genuine updates
which are therefore declared as shared. Each assignment of the formv = w is a propa-
gation ifw 2 Psh. Thus ifv 62 Psh it is added toPsh (lines 4-6). A variablev 2 Psh is
included inVsh only if there is an assignment of the formv = w, wherev is potentially
shared butw is not and is therefore a local variable (lines 7-9), orv = exp, whereexp
is a genuine update as discussed above (lines 10-14).

5

3 Scalable Context Sensitive Alias Analysis

As noted in the introduction, once the shared variables havebeen identified, the key
bottleneck in generating accurate lockset based warnings is a scalable context-sensitive
must alias analysis which is required to determine locksetsat control locations where
shared variables are accessed. In this section, we propose anew technique for scal-
able context sensitive alias analysis that is based on effectively combining a divide and
conquer strategy with function summarization in order to leverage the benefits of both
techniques.

3.1 Divide and Conquer via Partitioning.

We exploit the fact that, even though aliasing is not, in general, an equivalence relation,
many alias analyses like Steensgaard’s compute relations that are over-approximations
of aliasing but are, importantly, equivalence relations. Additionally, an equally critical
feature of Steensgaard’s analysis is that it is highly scalable. This makes it ideally suit-
able for our purpose which is to partition the set of all pointers in the given program
into disjoint classes that respect the aliasing relation, i.e., a pointer can only be aliased
to pointers within the class to which it belongs. A drawback of Steensgaard’s analysis
is lack of precision. However, this is addressed next by focusing a more refined analy-
sis on each individual Steensgaard partition. Indeed, partitioning, in effect, decomposes
the pointer analysis problem into much smaller sub-problems where instead of carry-
ing out the pointer analysis for all the pointers in the program, it suffices to carry out
separate pointer analyses for each equivalence class. The fact that the partitioning re-
spects the aliasing relation guarantees that we will not miss any aliases. The small size
of each partition then offsets the higher computational complexity of a more precise
analysis. As noted in the introduction, the Steensgaard generated equivalence class for
a lock pointer typically contains only a small subset of lockpointers (typically 2-3) of
the given program thus ensuring scalability of a context-sensitive alias analysis on each
such partition.

3.2 Exploiting Locality of Reference via Summarization.

Using decomposition, once the set of pointers under consideration have been restricted
to small sets of lock pointers, we can further exploit locality of reference which then
allows us to effectively leverage procedure summarizationfor scalable context sensi-
tive pointer analysis. Indeed, typically in real-life programs, shared variables, and as
a consequence locks, are accessed in a very small number of functions. Thus instead
of following the BDDBDDB approach that pre-computes aliases for all pointers in all
contexts, it is much more scalable to instead use procedure summarization to capture
all possible effects of executing a procedure on lock pointers. The reason it is more
scalable is that we need to compute these summaries only for the small fraction of
functions in which lock pointers are accessed. Once we have pre-computed the sum-
maries, the aliases for a lock pointer at a program location in a given context can be
generated efficiently on demand. We emphasize that it is the above decomposition that
allows us to leverage locality of reference. Indeed, without decomposition we would

6

have to compute summaries for each function with a pointer access, viz., practically
every function in the given program. Additionally, for eachfunction we would need
to compute the summary for all pointers modified in the function not merely the lock
pointers which could greatly increase the termination timeof the algorithm. Thus by
combining divide and conquer with summarization we can exploit the synergy between
the two techniques.

3.3 Computing Procedure Summaries for Context-Sensitive Pointer Analysis.

In order to formulate our new summarization based techniquefor demand driven con-
text sensitive pointer analysis we need the following definition

Definition 2 (Maximally Complete Update Sequence).Let � : l1; :::; lm be a se-
quence of successive program locations and let� be the sequenceli1 : p1 = p,li2 : p2 = a1,:::, lik : pk = ak�1, lik+1 : q = ak of pointer assignments occurring
along� with li1 = l1 and lik+1 = lm. Then� is called a maximally complete update
sequence fromp to q leading from locationsl1 to lm iff it is the sequence of maximum
length having the following properties (i) for eachj, aj = pj (semantically) atlij+1 ,
(ii) for eachj, there does not exist any assignment to pointeraj between locationslij
andlij+1 along�, and (iii) p is not modified between locationsli1 andlik+1 along�.

Then we have the following important observation.

Proposition 3. Pointersp and q are aliased at control locationl iff there exists a se-
quence� of successive control locations starting at the entry location l0 of the given
program and ending atl such that either (i) there exists a complete update sequence
from p to q along�, or vice versa, or (ii) there exists a pointera such that there exist
maximally complete update sequences froma to bothp andq along�.

A corollary of the above result is that in order to compute must-aliases of pointers,
we need to construct function summaries that enable us to track maximally complete
update sequences. The formal notion of function summaries that we use for our pointer
analysis is given below.

Definition 4. The summary for a functionf in a given program is the set of all tuples
of the form(p; l; A), wherep is a pointer written to at locationl in f andA is set of all
pointersq such that there is a complete update sequence fromq to p along each path
starting at the entry location off and ending atl. The setA is denoted bySum(f; p; l).

As an example, consider the program in figure 1 with global pointersp andq. We see
thatg3 2 Sum(goo; 2
; p) andg4 2 Sum(goo; 2
; q). Similarly,g4 2 Sum(goo; 5
; q)
butg5 62 Sum(goo; 5
; p). This is because the control flow branches at location3cwithp being set tog5 in one branch and retaining the old valueg3 in the other. Statically, there
is no way of deciding whetherg3 andg5 are the same pointer. ThusSum(goo; 5
; p) =;. Thus,Sum(foo; 2a; p) = fg1g andSum(foo; 2a; q) = fg2g, whereasSum(foo;3a; p) = ; andSum(foo; 3a; q) = fg4g.

Note that we do not need to cache the summary tuples for each program location
of a function. Indeed, given a context
on resulting from the sequence of function calls

7

foo()f
1a: p = g1;
2a: q = g2;
3a: bar();
4a: ... ;g bar()f

1b: goo();g goo()f
1c: p = g3;
2c: q = g4;
3c: if(global var)
4c: p = g5;
5c: u = 1 ;g

Fig. 1.An Example Programf1; :::; fn, for functionfi, where1 � i � n� 1, all we need are the summary tuples for
the locations wherefi+1 is called. In addition, we also need to cache the summary tuple
for the exit location as it might be required while performing the dataflow analysis. For
the last functionfn in
on, we need the summary tuples for each location in the function
where a lock pointer is accessed. Since the number of such locations are typically few,
the sizes of the resulting summaries are small.

The Algorithm. Given a pointerp and locationl in functionf , we perform a backward
traversal on the CFG of the given program starting atl and track the complete update
sequences as tuples of the form(m;A), wherem is a program location andA is a set of
lock pointersq such that there is a complete update sequence fromq to p starting fromm and ending atl. The algorithm maintains a setW of tuples that are yet to processed
and a setP of tuples already processed. Initially,W contains the tuple(l; fpg) (line 2).
Note that before processing a tuple(m;A) fromW , since our goal is to compute must-
aliases we need to make sure that each successorm0 of m from which there exists a
path in the CFG leading tol has already been processed during the backward traversal,
viz., W currently has no tuples of the form(m0; D). Such a tuple is calledready(line
4) (Note that if there are strongly connected components in the given CFG, the notion
of a ready tuple is not well-defined. In that case, we first compute a spanning tree of
the CFG on which the procedure is run while ignoring the back edges. Next we refine
the tuples by processing each of the back edges one-by-one which may result in the
(over approximated) aliases getting smaller till a fixpointis reached. Since, in a given
Steensgaard partition, the number of lock pointers is usually small (typically 2-3), this
refinement step terminates quickly). If the statement atm is of the formt = r, wheret 2 A, then in processing(m;A), let A0 be the set that we get fromA by replacingt
with r elseA0 = A (lines 5-7).

In order to propagate the pointers inA0 backwards, there are two cases to consider.
First, assume thatm is a return site of a functiong that was called from withinf .
Then we have to propagate the effect of executingg backwards on each pointer inA0.
Towards that end, we first check whether the summary tuples for g have already been
computed for each of the pointers inA0 for the exit locationexitg of g. If they have,
then we form the new tuple(m0; B), wherem0 is the call site ofg corresponding to
the return sitem andB = Sr2A0 Sum(g; r; exitg) (lines 12-14). If, on the other hand,
the summary tuples have not been computed, we introduce the new tuple(exitg; A0)
in the worklist (line 16). For the second case, we assume that, m is not a function call
return site, we consider the setPred of all the predecessor locations ofm in f (line

8

Algorithm 2 Summary Computation for Lock Pointer Analysis

1: Input: Lock Pointer:p, Control Locationl, Functionf .

2: InitializeW to (l; fpg).
3: repeat
4: Remove a ready tupletup = (m;A) fromW . SetA0 = A.
5: if lock pointert 2 A and the statement at locationm is of the formt = r then
6: A0 = (A n ftg) [frg
7: end if
8: NewTuples = ;
9: if m is the entry location of functionf then

10: add(p;A) to the summary
11: else ifm is the call return site of a function call forg then
12: if the summary tuples have already been computed for all lock pointers inA0 for the

exit locationexitg of g then
13: B = St2A0 Sum(g; exitg; t), whereSum(g; exitg; t) is the summary of pointert

with respect toexitg if t is written to ing else it ist
14: LetNewTuples = f(m0; B)g, wherem0 is the call site ofg corresponding tom
15: else
16: Add(exitg; A0) toW
17: end if
18: else
19: NewTuples = Sm02Predf(m0; A0)g, wherePred is the set of predecessors ofm
20: end if
21: for each tuple(l; B) 2 NewTuples that has not already been processeddo
22: if there exists a tuple of the form(l; C) in W then
23: replace(l; C) by (l; C \B)
24: else
25: Add(l; B) toW
26: end if
27: end for
28: until W is empty

19). For eachm0 2 Pred, we form the tuple(m0; A0). If tuple (m0; A0) has already
been processed no action is required. Else, if there alreadyexists a tuple of the form(m0; C) in W , then we have discovered a new backward path to locationm0. Since we
are computing must aliases, viz., intersection of aliases discovered along all backwards
CFG paths, we replace the tuple(m0; C) with the tuple(m0; A0 \ C) (line 23). If there
exists no such tuple, then we simply add the new tuple(m0; A0) toW .

4 Leveraging Acquisition Histories for Warning Reduction

We present two new race warning reduction techniques that are based on tracking lock
acquisition patterns and are provably more accurate than existing lockset-based ones
[8]. Our new reduction technique proceeds in two stages. In the first stage, we make
use of the notion of consistency of lock acquisition histories which governs whether

9

program locations in two different threads are simultaneously reachable. This allows
us to discard, in a sound fashion, those warnings wherein lock acquisition histories are
inconsistent even though disjoint locks are held at the corresponding program locations.
Lockset based techniques alone could not remove such warnings. In the second stage,
we use yet another warning reduction technique complementary to the first one which
is based on defining an acquisition history basedweaker thanrelation on the remaining
warnings that is more refined than the lockset based weaker than relation defined in [8].

The lockset basedweaker than relationtechnique of [8] defines anaccess eventas
a 4-tuple of the form(v; T; L; a;
), wherev is a shared variable accessed at control
location
 of threadT with locksetL anda denotes the type of accesses, i.e., whether it
is a read or a write. Lete1, e2 ande3 be access events such thate2 ande3 occur along
same local computation path of a thread. Then if the occurrence of a race betweene1
ande2 implies the occurrence of a race betweene1 ande3, we need not generate a
warning for the pair(e1; e2). In this case, the evente3 is said to beweaker thane2,
denoted bye3 v e2. The relationv is hard to determine precisely without exploring
the state space of the given program which, in general, may not be scalable. Instead, it
is typically over-approximated via static analysis. A lockset based approximation,vl,
given in [8] is defined below.

Definition 5. (Lockset Based Weaker Than [8])For access eventp = (v; T; L1; a1;
1) occurring before access eventq = (v; T; L2; a2;
2) along a common local compu-
tationx of threadT , p vl q iff L1 � L2 and eithera1 = a2 or a1 is a write operation.

4.1 Acquisition History based Warning Reduction.

We motivate our technique with the help of a simple concurrent programCP comprised
of the two threadsT1 andT2 shown in figure 2 that access shared variablex. Let e1,e2, e3 ande4 denote accesses tox at locations6a, 6b, 9b and2b, respectively. Note
that the locksets at control locations6b and9b areL2 = flk2g andL3 = flk2g,
respectively. SinceL2 � L3, e2 vl e3 and so the lockset based reduction technique
would drop(e1; e3) in favor of (e1; e2).

1a: a = 1;
2a: lock(lk1);
3a: lock(lk2);
4a: y = 1;
5a: unlock(lk2);
6a: x = 3;
7a: unlock(lk1);

1b: lock(lk2);
2b: x = 0;
3b: lock(lk1);
4b: b = 2;
5b: unlock(lk1);
6b: x = 2;
7b: unlock(lk2);
8b: lock(lk2);
9b: x = 1;

Fig. 2. ThreadsT1 andT2 with shared variablex
However, control locations6a and6b are not simultaneously reachable whereas

6a and9b are, even though in both cases disjoint locksets are held at the two locations.
The key reason is that simultaneous reachability of two control locations in separate

10

threads depends not merely on the locks held at these locations but also on the patterns
in which they were acquired in the individual threads. Indeed, in order forT2 to reach
6b it needs to execute the statements at locations3b and5b, viz., acquire and release
lock lk1. Note, however, that onceT1 acquireslk1 at location2a it does not release it
until after it has exited6a. Thus in order for the two threads to simultaneously reach
6a and6b, T2 must first acquire and releaselk1, viz., must already have executed5b
beforeT1 executes2a. However, in that caseT2 holds locklk2 (via execution of1b)
which it cannot release, thus preventingT2 from executing3a and transiting further.
This proves our claim. The simultaneous reachability of6a and9b, on the other hand,
is easy to check. Thus thevl-based reduction of [8] drops a warning corresponding
to a real data race in favor of a bogus one. In general, when testing for reachability
of control states
 and
0 of two different threads we need to test whether there exist
pathsx andy in the individual threads leading to states
 and
0 holding lock setsL andL0 which can be acquired in a compatible fashion so as to preventthe scenario above.
Compatibility can be captured using the notion of acquisition histories defined below.
Let Lock-Set(Ti;
) denote the set of locks held by threadTi at control location
.
Definition 6 (Acquisition History) [9] Letx be a global computation of a concurrent
programCP leading to global configuration
. Then for threadTi and lockl of CP such
that l 2 Lock-Set(Ti;
), we defineAH(Ti; l; x) to be the set of locks that were acquired
(and possibly released) byTi after the last acquisition ofl byTi alongx.

If L is the set of locks, each acquisition historyAH is a mapL! 2L associating which
each lock a lockset, i.e., the acquisition history of that lock. We say that acquisition
historiesAH1 andAH2 areconsistentiff there do not exist locksl1 andl2, such thatl1 2 AH2(l2) andl2 2 AH1(l1). Then the above discussion can formalized as follows.

Theorem 7 (Decomposition Result) [9]LetCP be a concurrent program comprised of
the two threadsT1 andT2. Then for control statesa1 andb2 of T1 andT2, respectively,a1 andb2 are simultaneously reachable only if there are local computationsx andy of
threadsT1 andT2 leading to control statesa1 andb2, respectively, such that (i) Lock-
Set(T1; s) \ Lock-Set(T2; t) = ;, and (ii) the acquisition historiesAH1 andAH2 at a1
andb2, respectively, are consistent. If the threads communicatesolely via nested locks
then the above conditions are also sufficient.

These acquisition histories can be tracked via static analysis much like locksets. To
leverage the Decomposition result, we therefore define anah-augmented access event
as a tuple of the form(v; T; L;AH; a;
), where(v; T; L; a;
) is an access event andAH is the current acquisition history. Our warning reduction proceeds in two stages.

Stage I.Since consistency of acquisition histories is a necessary condition for simulta-
neous reachability, we drop all warnings(e1; e2), whereei = (v; T; Li; AHi; ai) andAH1 andAH2 are inconsistent. In our example,(e1; e3) will be dropped at this stage.

Stage II. On the remaining warnings, we impose a newacquisition history based
weaker thanrelationva. Towards that end, given two acquisition historiesAH1 andAH2, we say thatAH1 v AH2 iff for each lockl, AH1(l) � AH2(l). An immediate,
but important, consequence is the following

11

Proposition 8.Given acquisition history tuplesAH , AH1 andAH2, such thatAH1 vAH2, AH is consistent withAH2 implies thatAH is consistent withAH1.

Definition 9 (Acquisition History based Weaker Than).For access evente1 = (v; T;L1; AH1; a1;
1) occurring beforee2 = (v; T; L2; AH2; a2;
2) along a common com-
putation of threadT , e1 va e2 iff L1 � L2, AH1 v AH2 and eithera1 = a2 or a1 is
a write operation.

In our example, the acquisition histories for eventse1, e3 ande4 areAH1 = f(lk1; flk2g) g, AH3 = f(lk2; ;)g andAH4 = f(lk2; ;)g, respectively. Clearly,AH4 v AH3,
and soe4 va e3. Thus we drop(e1; e3) and retain(e1; e4). The intuition behind this is
that any local computation ofT2 leading to accessese3 has to pass through the accesse4. Moreover, sinceAH3 v AH4, it follows that ifAH1 andAH3 are consistent then
so areAH1 andAH4. Thus, sinceT1 andT2 communicate only via nested locks, by
the decomposition result, if there is a computation realizing the data race corresponding
to the warning(e1; e3), then there also exists one realizing(e1; e4). Thus we may drop(e1; e3) is favor of(e1; e4).
Acquisition History-based Covers.Note that is general there might be multiple paths
leading to an access eventek, in which case before dropping a pair(ei; ek), we need
to make sure that along each path in the program leading toek there exists an accesses
eventej va ek. This can be accomplished by using the notion of acoverfor an access
event. Given an access evente, aCoverfor e is a set of access events
 such that
 va e.
Such a cover can be easily determined via a backwards dataflowanalysis from the
program location corresponding toe.
Making Reduction Sound via Ranking.Finally, we note that if the thread synchro-
nization is not merely lock based, a reduction strategy based on eitherva orvl is not
sound. In [8], a manual inspection routine is proposed in order to identify real warnings
that may have been dropped which may not be practical. We propose using ranking in
order to ensure soundness. Towards that end, we do not drop any warning based onva
but merely rank them lower. Then whether a warning lower in the order in inspected is
contingent on the fact that the warning higher in the order turns out to be a bogus one.

5 Experimental Results

The experimental results for our suite of 10 Linux device drivers downloaded from
kernel.org are tabulated below. The results clearly demonstrate (i) the effectiveness
of our shared variable discovery routine, (ii) the scalability and efficiency (Timecolumn)
of our new summary based pointer analysis, and (iii) the effectiveness and hence the
importance of leveraging warning reduction techniques. TheTimecolumn refers to the
time taken (not including the time taken for building the CFG- typically less than a
minute) when using our new summary based technique for must-alias analysis. The
BDDBDDB engine was run only on the first three drivers and tookrespectively, 15min,
1 hr and 30 min, respectively, thus clearly demonstrating the improvement in running
time when using our new alias analysis. The columns labeledWar andAft. Red.refer,
respectively, to the total number of warnings generated originally and after applying

12

reduction based on theva relation. Even after applying these reductions, there could
still be a lot of warnings generated as Linux drivers usuallyhave a large number of
small functions resulting a large number of contexts. Thus the same program location
may generate many warnings that result from essentially thesame data race but different
contexts. The columnAft. Con.refers to the number of warnings left after generating
only one warning for each program location and abstracting out the contexts.

Driver KLOC # ShVars#War #Aft.Red.#Aft.Con.Time(secs)

hugetlb 1.2 5 4 1 1 3:2
ipoib multicast 26.1 10 33228 6 6 7
plip 13.7 17 94 51 51 5
sock 0.9 6 32 21 13 2
ctrace comb 1.4 19 985 218 58 6.7
autofs expire 8.3 7 20 8 3 6
ptrace 15.4 3 9 1 1 15
tty io 17.8 1 6 3 3 4
raid 17.2 6 23 21 13 1:5
pci gart 0.6 1 3 1 1 1

6 Conclusion and Related Work

Data race detection being a problem of fundamental interesthas been the subject of
extensive research. Many techniques have been leveraged inorder to attack the problem
including dynamic run-time detection, static analysis andmodel checking.

Early work on dynamic data race detection includes the Eraser data race detector
[15] which is based on computing locksets. There has been much work that improves
upon the basic Eraser methodology. One such approach [8] leverages the use of static
analysis to reduce the number of data race warnings that needto be validated via a
run-time analysis. Other run-time detection tools based onLamport’s happened before
model restrict the number of interleavings that need be explored [6, 11]. The advantage
of run-time techniques is the absence of false warnings. On the other hand, the disad-
vantages are the extra cost incurred in instrumenting the code and poor coverage both
of which become worse as the size of code increases especially in the context of con-
current programs. Additionally, run time detection techniques presume that the given
code can be executed which may not be an option for applications like device drivers.

Model Checking [3], which is an efficient exploration of the state space of the given
program, is another powerful technique that has been employed in the verification of
concurrent programs [1, 4]. However, the state space explosion has made it hard to
verify concurrent programs beyond 10K lines of code and is thus not, with the current
state-of-the-art, an option for debugging large-scale real-life code.

Recently, there has been a spurt of activity in applying static analysis techniques
for data race detection [5, 10, 17, 2, 13, 12, 7, 14, 8]. An advantage of such techniques is
that they can be made to scale to large programs. The key disadvantage is that since
static analysis works on heavily abstracted versions of theoriginal program, they are
not refined enough and can produce a large number of false warnings.

13

A credible approach is to strengthen static analysis to makeit more refined with
the goal of reducing the number of bogus warnings. The key steps to an accurate race
detection procedure are (i) accurate shared variable discovery, (ii) scalable context sen-
sitive pointer analysis to determine must locksets, and (iii) effective warning reduction.
In this paper, we have proposed a new shared variable detection analysis that can be
used to enhance existing correlation based techniques [7, 14]. Secondly, we have pro-
posed a new scalable context sensitive must alias analysis which is critical in ensuring
both scalability and accuracy of our race detection analysis. Prior context-sensitive alias
analysis techniques have been shown to be more successful for Java [13, 12, 18] thanC,
whereas other techniques [7] simply do not use any pointer analysis which limits their
accuracy. Finally, we have proposed a new two stage acquisition history based warning
reduction technique which is provably more accurate than existing lockset based tech-
niques given in [8]. Experimental results on a suite of Linuxdrivers demonstrate the
efficacy, viz., both the accuracy and scalability, of our newtechniques.

References

1. G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs. InASE, 2000.
2. M. Burrows and K. Leino. Finding stale-value errors in concurrent programs. InCompaq

Systems Research Center SRC-TR-2002-004, 2002.
3. E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. InWorkshop on Logics of Programs, pages 52–71, 1981.
4. J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and H. Zheng. Bandera:

Extracting finite-state models from java source code. InICSE, 2000.
5. D. Detlefs, K.R.M. Leino, G. Nelson, and J. Saxe. Extendedstatic checking. InTR SRC-159

Compaq SRC, 1998.
6. A. Dinning and E. Schonberg. An empirical comparision of monitoring algorithms for access

anomaly detection. InPPoPP, 1990.
7. D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of Race Conditions and

Deadlocks. InSOSP, 2003.
8. Choi J, K. Lee, A. Loginov, R.O’Callahan, V. Sarkar, and M.Sridharan. Efficient and precise

datarace detection for multithreaded object-oriented programs. InPLDI, 2002.
9. V. Kahlon, F. Ivančić, and A. Gupta. Reasoning about threads communicating via locks. In

17th International Conference on Computer Aided Verification (CAV), 2005.
10. R. Leino, G. Neslon, and J. Saxe. Esc/java users’ manual.In Technical Note 2000-002,

Compaq Systems Research Center, 2001.
11. J. Mellor-Crummey. One-the-fly detection of data races for programs with nested fork-join

parallelism. InProceedings of the 1991 Supercomputer Debugging Workshop, 1991.
12. M. Naik and A. Aiken. Conditional must not aliasing for static race detection. InPOPL,

2007.
13. M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java. InPLDI, 2006.
14. P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-Sensitive Correlation Anal-

ysis for Race Detection. InPLDI, 2006.
15. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic data

race detector for multithreaded programming. InACM TCS, volume 15(4), 1997.
16. B. Steensgaard. Points-to analysis in almost linear time. InPOPL, 1996.
17. N. Sterling. Warlock: A static data race analysis tool. In USENIX Winter Technical Confer-

ence, 1993.
18. J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analysis using binary

decision diagrams. InPLDI, 2004.

14

