Fast and Accurate Static Data-Race Detection for
Concurrent Programs

Vineet Kahlort, Yu Yang?, Sriram Sankaranarayaraand Aarti Gupta

1 NEC Labs, Princeton, USA.
% University of Utah, Salt Lake City, USA.

Abstract. We present new techniques for fast, accurate and scalaie data

race detection in concurrent programs. Focusing our aisatys Linux device

drivers allowed us to identify the unique challenges posgedébugging large-
scale real-life code and also pinpointed drawbacks iniexjsace warning gen-
eration methods. This motivated the development of newnigcles that helped
us in improving both the scalability as well as the accuracgazh of the three
main steps in a race warning generation system. The first asticrucial step is
the automatic discovery of shared variables. Towards thétwe present a new,
efficient dataflow algorithm for shared variable detectidrich is more effective

than existing correlation-based techniques that failedeiect the shared vari-
ables responsible for data races in majority of the drivesuir benchmark suite.
Secondly, accuracy of race warning generation stronglgesron the precision
of the pointer analysis used to compute aliases for locktpmnWe formulate
a new scalable context sensitive alias analysis that afédgtcombines a divide
and conquer strategy with function summarization and isafetnably more ef-
ficient than existing BDD-based techniques. Finally, wevigte a new warning

reduction technique that leverages lock acquisition padtto yield provably bet-
ter warning reduction than existing lockset based methods.

1 Introduction

The widespread use of concurrent software in modern day atngpsystems neces-
sitates the development of effective debugging methodesofgr multi-threaded soft-
ware. Concurrent programs, however, are behaviorally ¢éexripvolving subtle inter-
actions between threads which makes them hard to analyzeattarThis motivates
the use of automated formal methods to reason about suansy.sParticularly notori-
ous to catch are errors arising out of data race violationgat& race occurs when two
different threads in a given program can simultaneouslgs&a shared variable, with
at least one of the accesses being a write operation. Chipfikimlata races is often a
critical first step in the debugging of concurrent prograimdeed, the presence of data
races in a program typically renders its behavior non-detgstic thereby making it
difficult to reason about it for more complex and interesfingperties.

In this paper, we develop techniques for data race detetttadrare efficient, scal-
able and accurate. In order to identify the practical cingléss posed by the debugging
of large-scale real-life code, we focused our analysis dadalieg data races in Linux
device drivers. A careful study of bug reports and CVS lodsaatnel . or g revealed

that the two main reasons for the presence of data racesvierslidre incorrect lock-
ing and timing related issues. Since timing related datesace hard to analyze at the
software level, we chose to focus only on locking relatedsbug

The classical approach to data race detection involves #ieps. The first and most
critical step is the automatic discovery of shared varigfile., variables which can be
accessed by two or more threads. Control locations wheethlkared variable are
read or written determine potential locations where datasaan arise. In fact, lock-
ing related data races arise if a common shared variableesaed at simultaneously
reachable program locations in two different threads witkspint sets of locks are
held. Since locks are typically accessed via pointers, deoto determine these lock-
sets at program locations of interest, in the second stepjst-pointer alias analysis
is carried out. Finally, the main drawback of static anaysithat a large number of
bogus data race warnings can often be generated which demespond to true bugs.
The last step, therefore, is to use warning reduction ankimgriechniques in order to
either filter out bogus warnings or prioritize them basedrendegree of confidence.

The challenge lies in carrying out race detection whiles$gitig the conflicting
goals of scalability and accuracy both of which depend oiouarfactors. Key among
them are (i) accuracy of shared variable discovery, an@¢icuracy and scalability of
the alias analyses for determining shared variables (nmages) and locksets (must
aliases). Wrongly labeling a variable as shared rendensaihings generated for it
bogus. On the other hand, if we miss reporting a variable aseshthen we fail to
generate warnings for a genuine data race involving thisvks.

Considerable research have been devoted to automatidsiairable discovery [7,
14]. However, most existing techniques are based on therlyimp assumption that
when accessing shared variables, concurrent programsaithieays follow docking
disciplineby associating with each shared variabla lock{, which needs to be ac-
quired before any access#oEXxisting techniques focus on computing this association
between locks and variables. Towards that end, variougledion based techniques
have been developed — both statistical [7] and constrasgd@l4]. An advantage of
statistical techniques is that they are scalable and do ejertd on an alias analysis
which can often be a bottleneck. However, the failure of @ation based techniques
to detect the shared variables responsible for data raceajority of the drivers (8 out
of 10) in our suite exposed the fact that their main weaknassstout to be this very
reliance on the existence of locking discipline. Indeednyn@ata races arise precisely
when the locking discipline is violated. Furthermore, itrtsi out that in most of the
drivers that we considered, the original implementatiarsectly followed lock disci-
pline. Data race bugs were introduced only when the progreens later modified by
adding new code either for optimization purposes or in otaléix bugs. Typically, this
newly added code was a “hack” that introduced lock-free s&e® to shared variables
that weren’t present in the original code. Since the onlyuo@nces of these variables
were in regions unguarded by locks, no meaningful cor@tatcould be developed for
them and was the key reason why correlation-based tectsjgue4] failed to identify
these variables as shared.

In order to ensure that no shared variable fails detecti@nyse a very liberal cri-
terion to categorize variables as such. Our shared vargditection routine is based

on the premise that all shared variables are either glolrédhlas of threads, aliases
thereof, pointers passed as parameters to API functionsaape variables. Further-
more, we are only interested in identifying precisely thbsai of variables from the
above set that are written to in the given program as onlyetbas participate in a data
race. The main challenge here is that since global variatalese accessed via local
pointers we need to track aliasing assignments leadingdb kcal pointers. An ad-
ditional complication is that not all assignments to algaséglobal variables result in
meaningful updates to global variables. Indeed, in a setpiehpointer assignments
p1 = p,...,q = pg, Starting at a pointep to a global structures, say, we see that
assignments in the above sequence merely pass aliasimgatfon without updating
the value of any (scalar) variable. If, however, the abowieace is followed by an
assignment of the form — f = exp to a field f of S, then it is a genuine update
to f thus making it a variable of interest. We show that such wpdatuences can be
detected via an efficient dataflow analysis. In fact, in mastik drivers, data global to
a thread is usually stored as global structures having a laughber number of fields —
typically 50 to 100. Only a small fraction of these are adtuated for storing shared
data which our new algorithm was able to isolate with higttjgien. Declaring all the
fields of a global structure as shared would simply genecatetany bogus warnings.

The second step in static race detection is to accuratedymete locksets at pro-
gram locations where shared variables are accessed. Stleedre typically accessed
via pointers, this requires computation of must-aliasestfese lock pointers. The ac-
curacy of warning generation is therefore directly depetda the precision of the
must-alias pointer analysis. Moreover, for the sake of esmit is imperative that lock
aliases be computed context sensitively. This is becaust maost-aliases i€ pro-
grams arise from parameter passing of pointer argumentsictibns, which alias to
different pointers in different contexts. The result istth@ontext sensitive alias analy-
sis produces drastically lesser bogus warnings than axtangensitive one. However,
the key drawback of a context sensitive alias analysis ibit#éy as the number of
possible contexts in a large program can easily explodeadant years, considerable
research has been devoted to ameliorating this problemdoingtcontexts symboli-
cally using data structures like BDDs. Implementation offBbBased context sensitive
pointer analysis like BDDBDDB [18] have been shown to givedaesults for Java
programs [13, 12]. Howeveg programs, which are less structured than Java programs,
typically have too many pointer variables and complex algselations between them
which, in our experience, became hard to handle using BDDBRB the program
size grew. We therefore propose a new technique for scatabliext sensitive pointer
analysis that combines:

(i) Divide and Conquer which leverages the fact that we can partition the set of
all pointers in a program into disjoint classes such thahgminter can only alias to a
pointer within its class. While, in general, aliasing is aatequivalence relation, many
widely used pointer analyses like Steensgaard [16] gemergiivalence relations that
are over-approximations of aliasing. Since we use thiginpiointer analysis only for
partitioning, scalability is more critical than accuraaydahis is precisely what Steens-
gaard’s analysis offers. There are two important conserpgeof this partitioning. First,
since we are only interested in lock pointers, and since pmhkters can only alias to

other lock pointers, we can ignore non-lock pointers. Thisstically cuts down on

the number of pointers we need to consider for our analysisoi&dly, since a given
lock pointer can, in general, be aliased to a small subsékedtfdtal set of lock pointers,
Steensgaard analysis provides us with a further deconiositthe set of lock pointers
into yet smaller partitions. A second and more accuratesxtgensitive alias analysis
in then carried out on these final partitions and even thougemsive in general, it

becomes scalable on these small classes.

(i) Procedure Summarizationwhich exploits locality of reference, viz., the fact
that locks and shared variables are accessed in a smalbfradtfunctions. Our new
summarization based must alias analysis procedure thiereé®ds to compute sum-
maries only for these small number of functions thereby mgkiur approach appli-
cable to large programs. We emphasize that procedure suratian is extremely im-
portant in making any static analyses scalable. Indeedaypeal-life code has a large
number of small functions that can be called from many diffiércontexts. A non-
summarization based technique like BDDBDDB can be overmkdlas the program
size grows. It is important to note that it is the synergy ltasy by combining the two
techniques that enables us to achieve scalability. Indeisdjivide and conquer which
allows us to exploit locality of reference thereby makingisuarization viable.

Finally, one of the main weaknesses of using static racetietetechniques is that
a large number of (bogus) race warnings can often be gexer#tehis paper, we show
that tracking lock acquisition patterns, instead of lo¢kseesults in a warning reduc-
tion technique that is more accurate than existing lockasét techniques [8] in two
ways. First, by leveraging acquisition histories in aduitto locksets we can filter out
warnings generated by lockset based technique at the vgageineration stage itself.
Secondly, once the warnings are generated, we can use aatordased technique
that leverages acquisition histories to give provablydyettarning reduction than [8].
Additionally, by using ranking, we can guarantee that odurtion technique is sound,
viz., will not drop real data races in favor of bogus ones.

2 Shared Variable Discovery

So as not to miss any shared variable we use a very liberaiti@fiof when a variable
is declared as such. Essentially, we are interested geallinemodifications to global
variables, aliases thereof, pointers passed as parantetdiRl functions and escape
variables. A global variable of a thread that is directlytten to is declared as shared.
Such variables can be determined merely by scanning thrinegbrogram code. How-
ever, a global variable may also be accessed via a localgro8uich a pointey could
occur at the end of a chain of pointer assignments- p, p> = p1,...,q¢ = p;, Starting
at a pointep to, say, a global structur®, which is either global or passed as a parameter
to an API function. Then any variablemodified via an access througtis also a vari-
able of interest. However, simply declaring all pointersucing in such sequence as
shared could lead to a lot of bogus warnings. Indeed, in tbeeabequence, the assign-
ments are not genuine updates but merely serve to propagatelties of fields of . If,
however, the above sequence is followed by an assignmenhedbtmg — f = exp,
whereezp is either a local variable or an expression other than sippipagation of

a data value, it is a genuine update and should be declarededsbtariable of interest.
The above discussion motivates the following definition.

Algorithm 1 Dataflow Analysis for Shared Variable Detection

1: Initialize Vi, = 0, G to the set of global variables of thredd in to the entry statement of
T, worklist W to the sef{(in, G)}, and the set of processed tuples to {(in, G)}.

2: repeat

3. Remove atupléup = (st, Pyy,) from W.

4 if st is of the formv = w wherev andw are program variableen

5: if w e Py, then

6 setPs;, = Psp U {’U}

7 else ifv € P,y then

8 setVsn, = Vsp U {’U}

9

end if
10: elseif st is of the formv = exp whereezp is an expression other than a simple variable
then
11: if v € Py, then
12: setVep, = Ve, U{v}.
13: end if
14: endif
15: for each successor statemstitof st do
16: if there does not exist a tuple #r of the form(st', S), wherePs;, C S, then
17: add(st', Psy) to bothW and Pr.
18: end if
19: end for

20: until W is empty
21: return Vi

Definition 1. A sequence of assignmemts = p,p> = pi1,...,q = py is called a
complete update sequence frprto q iff for eachi, there do not exist any assignments
to p; (in the given program) after it is written and before it is tea the sequence.

Thus our goal is to detect complete update sequencesyriom that are followed by
the modification of a scalar variable accessedqgyiaherep either points to a global
variable or is passed as a parameter to an API function. \Werdete such sequences
using our new dataflow analysis formulated as algorithm $eEtally, the procedure
propagates the assignments in complete update sequerdissussed above till it hits
a genuine update to a variable which is declared as sharedal@brithm keeps track
of the potential shared variable as the Bgf. To start with,P,;, contains variables of
the given thread that are pointers to global variables or passed as parasrtet&P|
functions. A separate variablé; keeps track of variables involving genuine updates
which are therefore declared as shared. Each assignmédrg fafrtnv = w is a propa-
gation ifw € Pyp,. Thus ifv € Py, itis added toPyy, (lines 4-6). A variable) € Py, is
included inVy;, only if there is an assignment of the fonm= w, wherev is potentially
shared butv is not and is therefore a local variable (lines 7-9)ycet exp, whereezp

is a genuine update as discussed above (lines 10-14).

3 Scalable Context Sensitive Alias Analysis

As noted in the introduction, once the shared variables bhaen identified, the key
bottleneck in generating accurate lockset based warnsngscalable context-sensitive
must alias analysis which is required to determine lockaetontrol locations where
shared variables are accessed. In this section, we propose echnique for scal-
able context sensitive alias analysis that is based onte#éccombining a divide and
conquer strategy with function summarization in order t@tage the benefits of both
techniques.

3.1 Divide and Conquer via Partitioning.

We exploit the fact that, even though aliasing is not, in gah@n equivalence relation,
many alias analyses like Steensgaard’s compute relati@bsite over-approximations
of aliasing but are, importantly, equivalence relationddiionally, an equally critical
feature of Steensgaard’s analysis is that it is highly $dalal'his makes it ideally suit-
able for our purpose which is to partition the set of all peistin the given program
into disjoint classes that respect the aliasing relati@n, & pointer can only be aliased
to pointers within the class to which it belongs. A drawbatisteensgaard’s analysis
is lack of precision. However, this is addressed next by $owya more refined analy-
sis on each individual Steensgaard partition. Indeeditjpaning, in effect, decomposes
the pointer analysis problem into much smaller sub-problerere instead of carry-
ing out the pointer analysis for all the pointers in the pesgy it suffices to carry out
separate pointer analyses for each equivalence classaththét the partitioning re-
spects the aliasing relation guarantees that we will nos i@y aliases. The small size
of each partition then offsets the higher computational glexity of a more precise
analysis. As noted in the introduction, the Steensgaardrgéed equivalence class for
a lock pointer typically contains only a small subset of Iplinters (typically 2-3) of
the given program thus ensuring scalability of a contexisig®e alias analysis on each
such partition.

3.2 Exploiting Locality of Reference via Summarization.

Using decomposition, once the set of pointers under coretide have been restricted
to small sets of lock pointers, we can further exploit latyadif reference which then
allows us to effectively leverage procedure summarizafaorscalable context sensi-
tive pointer analysis. Indeed, typically in real-life pragns, shared variables, and as
a consequence locks, are accessed in a very small numbenatioios. Thus instead
of following the BDDBDDB approach that pre-computes als@ga all pointers in all
contexts, it is much more scalable to instead use procedumengrization to capture
all possible effects of executing a procedure on lock pemt&he reason it is more
scalable is that we need to compute these summaries onljhdosrhall fraction of
functions in which lock pointers are accessed. Once we hesse@mputed the sum-
maries, the aliases for a lock pointer at a program locatioa given context can be
generated efficiently on demand. We emphasize that it iskbheeadecomposition that
allows us to leverage locality of reference. Indeed, withdecomposition we would

have to compute summaries for each function with a pointeess; viz., practically
every function in the given program. Additionally, for eafehnction we would need
to compute the summary for all pointers modified in the fumtiot merely the lock
pointers which could greatly increase the termination tohéhe algorithm. Thus by
combining divide and conquer with summarization we can@ikfie synergy between
the two techniques.

3.3 Computing Procedure Summaries for Context-Sensitive ¢inter Analysis.

In order to formulate our new summarization based techriiqudemand driven con-
text sensitive pointer analysis we need the following dé€ini

Definition 2 (Maximally Complete Update Sequence)Let A : [4,...,1,, be a se-
quence of successive program locations andridie the sequencg, : p1 = p,
liy : p2 = a1,y by, pr = ag—1, li,, * ¢ = ay Of pointer assignments occurring
along A with [;, = I; andl;,,, = [,,. Thenr is called a maximally complete update
sequence from to ¢ leading from locationg, to [,, iff it is the sequence of maximum
length having the following properties (i) for eagha; = p; (semantically) at;,,,
(i) for eachj, there does not exist any assignment to pointebetween locations;
andi;.., along), and (iii) p is not modified between locatiolys and! along\.

41 et

Then we have the following important observation.

Proposition 3. Pointersp and g are aliased at control location iff there exists a se-
guence) of successive control locations starting at the entry lanat, of the given
program and ending at such that either (i) there exists a complete update sequence
from p to g along A, or vice versa, or (ii) there exists a pointersuch that there exist
maximally complete update sequences feotm bothp andq along \.

A corollary of the above result is that in order to compute walmses of pointers,
we need to construct function summaries that enable us ¢& treaximally complete
update sequences. The formal notion of function summarasite use for our pointer
analysis is given below.

Definition 4. The summary for a functiofi in a given program is the set of all tuples
of the form(p, [, A), wherep is a pointer written to at locationin f and A is set of alll
pointersq such that there is a complete update sequence fréop along each path
starting at the entry location of and ending at. The set4 is denoted bysum(f, p, ().

As an example, consider the program in figure 1 with globat{gosp andg. We see
thatgs € Sum(goo, 2¢, p) andgs € Sum(goo, 2¢, q). Similarly, g4 € Sum(goo, 5¢, q)
butgs ¢ Sum(goo, 5¢, p). This is because the control flow branches at loca@iomith
p being set t@s in one branch and retaining the old valsgn the other. Statically, there
is no way of deciding whetheg andgs are the same pointer. Thi§sim (goo, 5¢, p) =
0. Thus,Sum(foo,2a,p) = {g:} andSum(foo,2a,q) = {g2}, whereasSum(f oo,
3a, p) = 0 andSum(foo,3a,q) = {ga}.

Note that we do not need to cache the summary tuples for eagigm location
of a function. Indeed, given a contexin resulting from the sequence of function calls

foo() bar () { goo()

la: p = g1 1b: goo(); lc: p = gs;
2a: q = g3 } 2c: q = g4
3a: bar(); 3c: if(global var)
4a: ... ; 4c: p = gs;
} 5¢: u =1 ;
}

Fig. 1. An Example Program

f1, -y fn, for functionf;, wherel < i < n — 1, all we need are the summary tuples for
the locations wherg; , ; is called. In addition, we also need to cache the summareg tupl
for the exit location as it might be required while perforgnthe dataflow analysis. For
the last functiory,, in con, we need the summary tuples for each location in the function
where a lock pointer is accessed. Since the number of suatidoes are typically few,
the sizes of the resulting summaries are small.

The Algorithm. Given a pointep and locatiori in function f, we perform a backward
traversal on the CFG of the given program starting and track the complete update
sequences as tuples of the fofm, A), wherem is a program location and is a set of
lock pointersg such that there is a complete update sequence grtmp starting from

m and ending at. The algorithm maintains a s&t of tuples that are yet to processed
and a seP of tuples already processed. Initiall; contains the tuplél, {p}) (line 2).
Note that before processing a tuiite, A) from W, since our goal is to compute must-
aliases we need to make sure that each successof m from which there exists a
path in the CFG leading tbhas already been processed during the backward traversal,
viz., W currently has no tuples of the form:', D). Such a tuple is callecady(line

4) (Note that if there are strongly connected componentsergiven CFG, the notion
of a ready tuple is not well-defined. In that case, we first coil@m spanning tree of
the CFG on which the procedure is run while ignoring the balges. Next we refine
the tuples by processing each of the back edges one-by-oich wiay result in the
(over approximated) aliases getting smaller till a fixpa@nteached. Since, in a given
Steensgaard partition, the number of lock pointers is Wssaiall (typically 2-3), this
refinement step terminates quickly). If the statementas of the formt = r, where

t € A, then in processingm, A), let A’ be the set that we get from by replacingt
with r elseA’ = A (lines 5-7).

In order to propagate the pointers4r backwards, there are two cases to consider.
First, assume that is a return site of a functiog that was called from withinf.
Then we have to propagate the effect of execugitgckwards on each pointer i,
Towards that end, we first check whether the summary tupleg fiave already been
computed for each of the pointers itf for the exit locatiorezit, of g. If they have,
then we form the new tuplén’, B), wherem' is the call site ofg corresponding to
the return siten andB = |J,.c 4» Sum(g, r, exity) (lines 12-14). If, on the other hand,
the summary tuples have not been computed, we introduceetauple (exit,, A')
in the worklist (line 16). For the second case, we assumestha not a function call
return site, we consider the sBtred of all the predecessor locations @f in f (line

Algorithm 2 Summary Computation for Lock Pointer Analysis

1: Input: Lock Pointer:p, Control Locatior!, Functionf.

2: Initialize W to (1, {p}).

3: repeat

4 Remove a ready tuplayp = (m, A) from W. SetA’ = A.

5 if lock pointert € A and the statement at locatiamis of the form¢ = r then

6 A =(4\{t})u{r}

7. endif

8. NewTuples=10

9: if mis the entry location of functiorf then

10 add(p, A) to the summary

11: elseifm is the call return site of a function call fgrthen

12 if the summary tuples have already been computed for all lookeys in A’ for the
exit locationezit, of g then

13: B = U,c 4 Sum(g, exity, t), whereSum(g, exity, t) is the summary of pointer
with respect teezit, if ¢ is written to ing else it ist

14: LetNewTuples = {(m’, B)}, wherem' is the call site ofy corresponding ten

15: else

16: Add (exity, A") to W

17: end if

18: else

19: NewTuples = U, c pregi(m’, A')}, WherePred is the set of predecessorsiaf

20: endif

21: for each tuplgl, B) € NewTuples that has not already been procesded

22: if there exists a tuple of the forga, C') in W then

23: replacgl, C) by (I,C N B)

24: else

25: Add(l, B) to W

26: end if

27: end for

28: until W is empty

19). For eachn’ € Pred, we form the tuplgm’, A’). If tuple (m', A") has already
been processed no action is required. Else, if there alrezidys a tuple of the form
(m',C) in W, then we have discovered a new backward path to locatioisince we
are computing must aliases, viz., intersection of aliagggered along all backwards
CFG paths, we replace the tugle’, C') with the tuple(m’, A’ N C) (line 23). If there
exists no such tuple, then we simply add the new typig A’) to W.

4 Leveraging Acquisition Histories for Warning Reduction

We present two new race warning reduction techniques teadbased on tracking lock
acquisition patterns and are provably more accurate thestirex lockset-based ones
[8]. Our new reduction technique proceeds in two stageshérfitst stage, we make
use of the notion of consistency of lock acquisition histerivhich governs whether

program locations in two different threads are simultars§oreachable. This allows
us to discard, in a sound fashion, those warnings wherekndoquisition histories are
inconsistent even though disjoint locks are held at thessponding program locations.
Lockset based techniques alone could not remove such vgardimthe second stage,
we use yet another warning reduction technique complemetadhe first one which
is based on defining an acquisition history basedker thamrelation on the remaining
warnings that is more refined than the lockset based weakerétation defined in [8].
The lockset basedieaker than relationechnique of [8] defines aaccess everds
a 4-tuple of the form(v, T, L, a, c), wherev is a shared variable accessed at control
locationc of threadI” with locksetL anda denotes the type of accesses, i.e., whether it
is a read or a write. Let;, e; andes be access events such thatandes; occur along
same local computation path of a thread. Then if the occoerei a race between
ande, implies the occurrence of a race betwegnandes, we need not generate a
warning for the pair(e;, e2). In this case, the event is said to beweaker thare,,
denoted by C e,. The relationC is hard to determine precisely without exploring
the state space of the given program which, in general, magaecalable. Instead, it
is typically over-approximated via static analysis. A lsekbased approximation,,
given in [8] is defined below.

Definition 5. (Lockset Based Weaker Than [8])For access event = (v, T, L1, a1,
¢1) occurring before access event (v, T, Lo, as, c2) along a common local compu-
tationz of threadT’, p C; ¢ iff L; C L, and eithera; = as Or a; is a write operation.

4.1 Acquisition History based Warning Reduction.

We motivate our technique with the help of a simple concumpeogramCP comprised

of the two threadqd; andT; shown in figure 2 that access shared variabléet eq,

es, e3 andey denote accesses #oat locationsba, 6b, 9b and2b, respectively. Note
that the locksets at control locatio6® and9b are L, = {lk2} and L3 = {lk2},
respectively. Sincd., C L3, e2 T; ez and so the lockset based reduction technique
would drop(ey, e3) in favor of (eq, e3).

1b: lock(1lk2);

la: a = 1; 2b: x = 0;

2a: |ock(lk1); 3b: lock(lkl);

3a: |l ock(lk2); 4b: b = 2;

da: y = 1; 5b: unl ock(1k1);

5a: unl ock(1k2); 6b: x = 2;

6a: x = 3; 7b: unl ock(1 k2);

7a: unlock(lkl); 8b: | ock(lk2);
9b: x = 1,

Fig. 2. Threadsl, andT> with shared variable

However, control location§a and6b are not simultaneously reachable whereas
6a and9b are, even though in both cases disjoint locksets are hetie&ivio locations.
The key reason is that simultaneous reachability of two rcbhcations in separate

10

threads depends not merely on the locks held at these losdiig also on the patterns
in which they were acquired in the individual threads. Irdiée order for7: to reach

6b it needs to execute the statements at locatBimand5b, viz., acquire and release
lock [k1. Note, however, that oncE, acquiredkl at location2a it does not release it
until after it has exiteda. Thus in order for the two threads to simultaneously reach
6a and6b, 7> must first acquire and relea&el, viz., must already have executgd
beforeT; execute®a. However, in that casé, holds lockik2 (via execution oflLb)
which it cannot release, thus preventifiggfrom executing3a and transiting further.
This proves our claim. The simultaneous reachabilitg@fand9b, on the other hand,

is easy to check. Thus thHg;-based reduction of [8] drops a warning corresponding
to a real data race in favor of a bogus one. In general, wheimgefor reachability

of control states: andc’ of two different threads we need to test whether there exist
pathsz andy in the individual threads leading to stateandc’ holding lock setd, and

L’ which can be acquired in a compatible fashion so as to prekergcenario above.
Compatibility can be captured using the notion of acquisitiistories defined below.
Let Lock-Se{T3;, ¢) denote the set of locks held by thre&dat control locatiore.

Definition 6 (Acquisition History) [9] Letxz be a global computation of a concurrent
programCP leading to global configuration. Then for thread’; and lockl of CP such
that! € Lock-SefT;,), we defined H (T3, [, z) to be the set of locks that were acquired
(and possibly released) [ay; after the last acquisition dfby 7; alongz.

If L is the set of locks, each acquisition histotyf is a mapl. — 2L associating which
each lock a lockset, i.e., the acquisition history of thakloNe say that acquisition
historiesAH, and AH, areconsistentff there do not exist lock$; andi,, such that
ly € AH»(l») andl, € AH(l1). Then the above discussion can formalized as follows.

Theorem 7 (Decomposition Result) [9LetCP be a concurrent program comprised of
the two threadq; andT». Then for control states; andb, of T} andT5, respectively,
a1 andb, are simultaneously reachable only if there are local corafiohsz andy of
threadsT} andT; leading to control states; andb,, respectively, such that (i) Lock-
SetTy, s) N Lock-Setl», t) = 0, and (ii) the acquisition historied H; and AH» ata;
and b, respectively, are consistent. If the threads communisaley via nested locks
then the above conditions are also sufficient.

These acquisition histories can be tracked via static aisaluch like locksets. To
leverage the Decomposition result, we therefore defineraaugmented access event
as a tuple of the fornfv, T, L, AH, a, c), where(v, T, L, a, c) is an access event and
AH is the current acquisition history. Our warning reductioogeeds in two stages.

Stage |.Since consistency of acquisition histories is a necesgargliion for simulta-
neous reachability, we drop all warninfs, e2), wheree; = (v, T, L;, AH;, a;) and
AH, andAH, are inconsistent. In our example; , e3) will be dropped at this stage.

Stage Il. On the remaining warnings, we impose a naequisition history based
weaker tharrelationCC,,. Towards that end, given two acquisition histori¢&; and

AH,, we say thatAH; T AH, iff for each lockl, AH,(l) C AH»(l). An immediate,
but important, consequence is the following

11

Proposition 8. Given acquisition history tupled H, AH; and AH, such thatdH; C
AH,, AH is consistent withd H, implies thatA H is consistent wittA H, .

Definition 9 (Acquisition History based Weaker Than).For access evert; = (v, T,
L,, AHy, a;, c1) occurring beforees = (v, T, L2, AH», as, c2) along a common com-
putation of threadl’, e; C, eq iff Ly C Lo, AH; C AH, and eithera; = a» Or ay i
a write operation.

In our example, the acquisition histories for events; ande, areAH; = {(lk1, {lk2
)} AH; = {(lk2,0)} andAH, = {(lk2,0)}, respectively. ClearlyAH, C AHs3,
and socey C, e3. Thus we drofes, e3) and retain(es, e4). The intuition behind this is
that any local computation @, leading to accessesg has to pass through the access
e4. Moreover, sinced H; C AH,, it follows that if AH; and AH3 are consistent then
so areAH; and AH,. Thus, sincel; and7> communicate only via nested locks, by
the decomposition result, if there is a computation readjzhe data race corresponding
to the warning(es, e3), then there also exists one realizifig, e4). Thus we may drop
(e1,e3) is favor of (eq, e4).

Acquisition History-based Covers.Note that is general there might be multiple paths
leading to an access eveny, in which case before dropping a péés;, e), we need

to make sure that along each path in the program leadiag tioere exists an accesses
evente; T, eg. This can be accomplished by using the notion obgerfor an access
event. Given an access evena Coverfor e is a set of access eventsuch that C, e.
Such a cover can be easily determined via a backwards dataflalysis from the
program location corresponding ¢o

Making Reduction Sound via Ranking. Finally, we note that if the thread synchro-
nization is not merely lock based, a reduction strategy daseeither_, or C; is not
sound. In [8], a manual inspection routine is proposed irotd identify real warnings
that may have been dropped which may not be practical. Weogeopsing ranking in
order to ensure soundness. Towards that end, we do not dyapeaining based of,
but merely rank them lower. Then whether a warning lower endrder in inspected is
contingent on the fact that the warning higher in the order¢wut to be a bogus one.

5 Experimental Results

The experimental results for our suite of 10 Linux deviceselrs downloaded from
ker nel . or g are tabulated below. The results clearly demonstratedi¢tfectiveness
of our shared variable discovery routine, (ii) the scalgbénd efficiency Timecolumn)
of our new summary based pointer analysis, and (iii) thecéffeness and hence the
importance of leveraging warning reduction technique® Timecolumn refers to the
time taken (not including the time taken for building the CF@pically less than a
minute) when using our new summary based technique for alizst-analysis. The
BDDBDDB engine was run only on the first three drivers and taspectively, 15min,
1 hr and 30 min, respectively, thus clearly demonstratirggitiprovement in running
time when using our new alias analysis. The columns labdladand Aft. Red refer,
respectively, to the total number of warnings generategimally and after applying

12

reduction based on thg, relation. Even after applying these reductions, therectoul
still be a lot of warnings generated as Linux drivers usublye a large number of
small functions resulting a large number of contexts. Tlhgssame program location
may generate many warnings that result from essentiallyahe data race but different
contexts. The columAft. Con.refers to the number of warnings left after generating
only one warning for each program location and abstractiutdgle contexts.

|Driver [|[KLOCJ# ShVars#War|#Aft.Red [#Aft.Con Time(secs)
huget | b 1.2 5 4 1 1 3.2
i poi b_.mul ticast| 26.1 10 |3322§ 6 6 7
plip 13.7 17 94 51 51 5
sock 0.9 6 32 21 13 2
ctrace_comb 1.4 19 985 218 58 6.7
aut of s_expire 8.3 7 20 8 3 6
ptrace 15.4 3 9 1 1 15
tty.do 17.8 1 6 3 3 4
raid 17.2 6 23 21 13 1.5
pci _gart 0.6 1 3 1 1 1

6 Conclusion and Related Work

Data race detection being a problem of fundamental intdrastbeen the subject of
extensive research. Many techniques have been leveragetkinto attack the problem
including dynamic run-time detection, static analysis amatlel checking.

Early work on dynamic data race detection includes the Emdata race detector
[15] which is based on computing locksets. There has beermwock that improves
upon the basic Eraser methodology. One such approach [&idges the use of static
analysis to reduce the number of data race warnings that toekd validated via a
run-time analysis. Other run-time detection tools basedamport’s happened before
model restrict the number of interleavings that need begerdl[6, 11]. The advantage
of run-time techniques is the absence of false warningsh@mther hand, the disad-
vantages are the extra cost incurred in instrumenting tde end poor coverage both
of which become worse as the size of code increases espanidiie context of con-
current programs. Additionally, run time detection tecfu@s presume that the given
code can be executed which may not be an option for applitatike device drivers.

Model Checking [3], which is an efficient exploration of thate space of the given
program, is another powerful technique that has been eragloythe verification of
concurrent programs [1,4]. However, the state space ewplds|as made it hard to
verify concurrent programs beyond 10K lines of code andus tfot, with the current
state-of-the-art, an option for debugging large-scalklifeacode.

Recently, there has been a spurt of activity in applyingcstaalysis techniques
for data race detection [5, 10,17,2,13,12,7, 14, 8]. An athge of such techniques is
that they can be made to scale to large programs. The keywdis&dje is that since
static analysis works on heavily abstracted versions obtiggnal program, they are
not refined enough and can produce a large number of falséngarn

13

A credible approach is to strengthen static analysis to nitak®re refined with
the goal of reducing the number of bogus warnings. The kgysdi® an accurate race
detection procedure are (i) accurate shared variablesgdii) scalable context sen-
sitive pointer analysis to determine must locksets, aridefiiective warning reduction.
In this paper, we have proposed a new shared variable detemtialysis that can be
used to enhance existing correlation based techniqued][7S&condly, we have pro-
posed a new scalable context sensitive must alias analystvg critical in ensuring
both scalability and accuracy of our race detection anglysior context-sensitive alias
analysis techniques have been shown to be more successiavin[13, 12, 18] tha@,
whereas other techniques [7] simply do not use any poiniyais which limits their
accuracy. Finally, we have proposed a new two stage adguisiistory based warning
reduction technique which is provably more accurate thastiag lockset based tech-
niques given in [8]. Experimental results on a suite of Lirlrkvers demonstrate the
efficacy, viz., both the accuracy and scalability, of our te@hniques.

References

[EnY

. G. Brat, K. Havelund, S. Park, and W. Visser. Model cheglirograms. IPASE 2000.
M. Burrows and K. Leino. Finding stale-value errors in cament programs. li€ompagq
Systems Research Center SRC-TR-2002-2030.
3. E.M. Clarke and E. A. Emerson. Design and synthesis offspmization skeletons using
branching time temporal logic. M/orkshop on Logics of Programgsages 52—-71, 1981.
4. J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasane&obby, and H. Zheng. Bandera:
Extracting finite-state models from java source coddCI&E, 2000.
5. D. Detlefs, K.R.M. Leino, G. Nelson, and J. Saxe. Extergtatic checking. ITR SRC-159
Compaq SRC1998.
6. A.Dinning and E. Schonberg. An empirical comparision ofitoring algorithms for access
anomaly detection. IRPoPR 1990.
7. D. Engler and K. Ashcraft. RacerX: Effective, Static Dntien of Race Conditions and
Deadlocks. IlSOSP 2003.
8. ChoiJ, K. Lee, A. Loginov, R.O’Callahan, V. Sarkar, andSdidharan. Efficient and precise
datarace detection for multithreaded object-orientegaums. InPLDI, 2002.
9. V. Kahlon, F. Ivantic, and A. Gupta. Reasoning aboutdls communicating via locks. In
17th International Conference on Computer Aided Verif@ma{iCAV) 2005.
10. R. Leino, G. Neslon, and J. Saxe. Escl/java users’ marnunalechnical Note 2000-002,
Compagq Systems Research Cer2@01.
11. J. Mellor-Crummey. One-the-fly detection of data racepfograms with nested fork-join
parallelism. InProceedings of the 1991 Supercomputer Debugging Work<di8§4..
12. M. Naik and A. Aiken. Conditional must not aliasing foatt race detection. IROPL,
2007.
13. M. Naik, A. Aiken, and J. Whaley. Effective static raceedgion for java. InPLDI, 2006.
14. P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: @t Sensitive Correlation Anal-
ysis for Race Detection. IRLDI, 2006.
15. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and diefson. Eraser: A dynamic data
race detector for multithreaded programming A@M TCS volume 15(4), 1997.
16. B. Steensgaard. Points-to analysis in almost linea.timPOPL, 1996.
17. N. Sterling. Warlock: A static data race analysis tonlUSENIX Winter Technical Confer-
ence 1993.
18. J. Whaley and M. Lam. Cloning-based context-sensittiatpr alias analysis using binary
decision diagrams. IRLDI, 2004.

N

14

