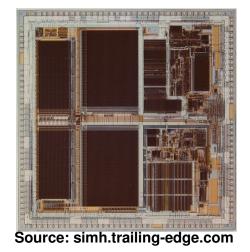
Fast and Accurate Transaction Level Models using Result Oriented Modeling

Gunar Schirner and Rainer Dömer

Center for Embedded Computer Systems University of California, Irvine



ICCAD Nov. 5-9 2006, San Jose, CA

Motivation

- Need high productivity in SoC design
 - Production capabilities increase
 - Time-to-market shortens
- Explore larger design space in less time

- Requires fast simulation capabilities
- One approach: higher levels of abstraction
 - Transaction Level Modeling [T. Grötker et. al 2002]
 - Gains performance, but loses accuracy by abstraction
 - TLM trade-off speed vs. accuracy [DATE 2006, IESS 2005]
 - either fast
 - or accurate

Goal

Eliminate the TLM trade-off

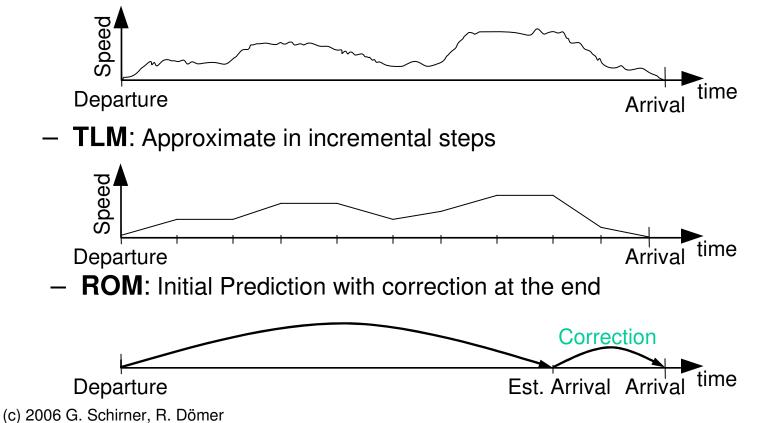
- 100% Accuracy
 - like a Bus Functional Model
- Highest Speed
 - like TLM

Based on a case study:
 – AMBA AHB 2.0

Outline

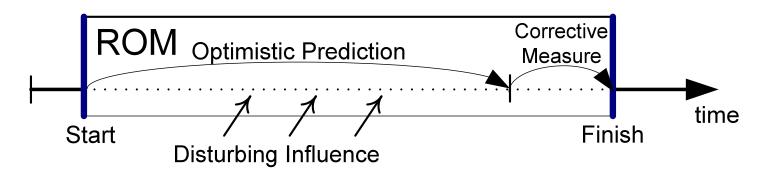
- Related Work
- Generic ROM Concept
- Modeling Example: AMBA AHB
 - Traditional Models
 - Novel ROM
 - Experimental Results
 - Accuracy
 - Performance
- Conclusions

Related Work


- Related Work
 - T. Grötker et al., System Design with SystemC. Kluwer Academic Publishers, 2002
 - M. Caldari et al., *Transaction-level models for AMBA bus* architecture using SystemC 2.0, DATE 2003
 - L. Cai and D. Gajski, *Transaction Level Modeling: An Overview*, CODES + ISSS 2003
 - M. Coppola et al., *IPSIM: SystemC 3.0 Enhancements for Communication Refinement, DATE* 2003
 - S. Pasricha et al., Fast exploration of bus-based on-chip communication architectures, CODES + ISSS 2004
 - ARM, Amba AHB Cycle Level Interface specification, ARM IHI 0011A
 - G. Schirner and R. Dömer, *Quantitative Analysis of Transaction Level Models for the AMBA Bus*, DATE 2006.

Generic ROM Concept

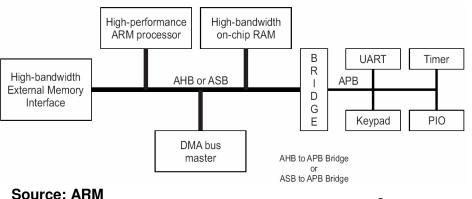
- Result Oriented Modeling (ROM)
- Illustrating Example: Airplane Arrival Time



Reality: Groundspeed changes with head wind

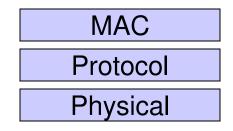
Generic ROM Concept

- Characteristics
 - Observability at boundary of transaction
 - Internal state changes not visible, may not modeled
 - Optimistically predict the end result at beginning
 - optimistic == earliest time to finish
 - Record *disturbing influence*
 - Corrective measures at the end

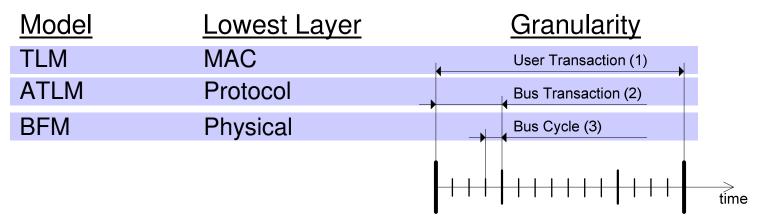


Modeling Example: AMBA AHB 2.0

- Advanced Microprocessor Bus Architecture (AMBA)
 - De-facto standard for on-chip bus system
 - Hierarchical structure:
 - System bus + Peripheral bus

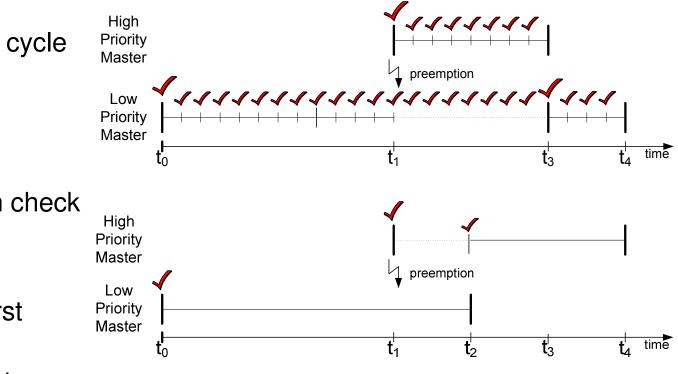

• Advanced High-performance Bus (AHB)

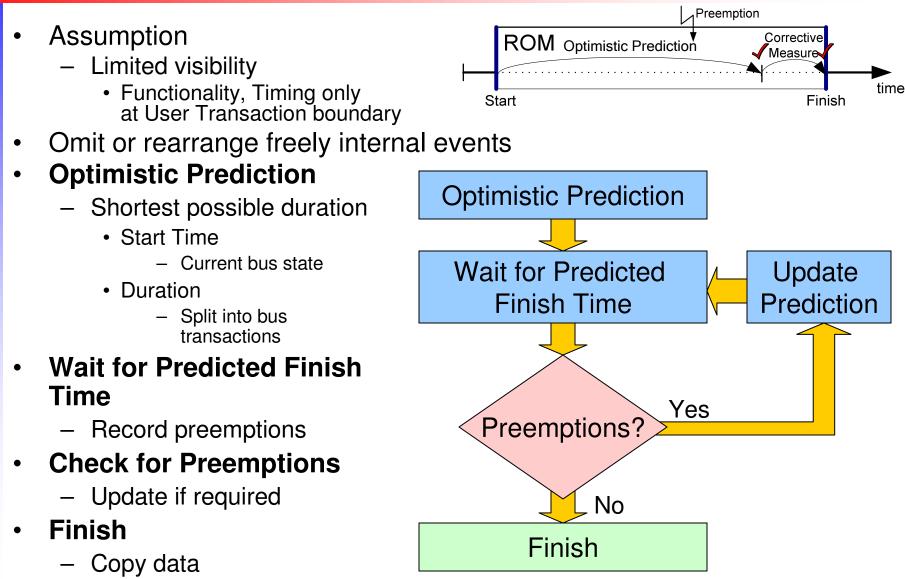
- Multi-master bus
- Pipelined operation
- Burst transfers
- Retry and split transactions
- Multiplexed interconnection
- Locked, unlocked transfers


Traditional Models

- ISO/OSI reference layer-based architecture
 - see [DATE 2006]
 - Abstraction by:
 - Implementing fewer layers
 - Decreasing granularity
 - Larger blocks for arbitration + data handling
 - Three models:
 - TLM
 - ATLM
 - BFM

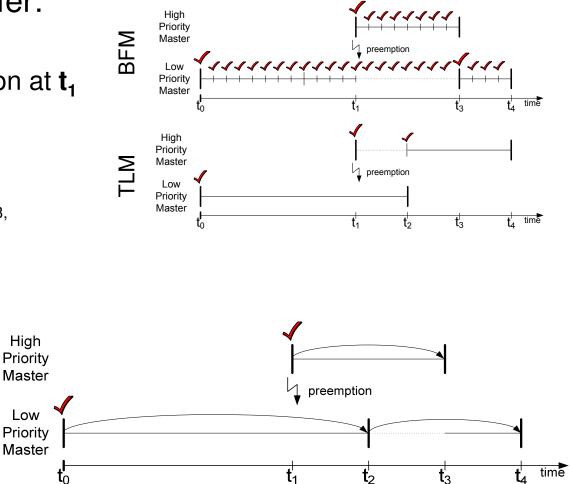
Traditional Models


- 1) Transaction Level Model (TLM)
 - User Transaction:
 - Contiguous block of bytes
 - Arbitrary length, base address
- 2) Arbitrated TLM (ATLM)
 - Bus Transaction
 - Bus primitives (e.g. store word)
 - Priority-based arbitration
- 3) Bus Functional Model (BFM)
 - Bus Cycle
 - Drive or sample bus wires on bus cycle


Traditional Models: Accuracy Limitations

- Example:
 - Low priority burst starting at $\mathbf{t_0}$
 - High priority preemption at t_1
- BFM:
 - check every cycle
 - slow
 - accurate
- TLM:
 - coarse grain check
 - fast
 - inaccurate:
 low prio. burst
 ends at
 - $t_{\rm 2}$ instead of $t_{\rm 4}$

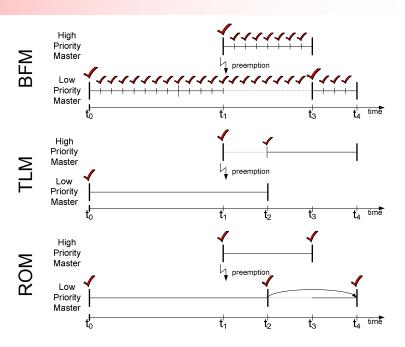
Result Oriented Modeling for AMBA AHB

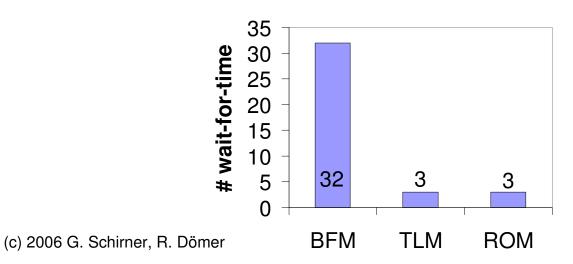

(c) 2006 G. Schirner, R. Dömer

Result Oriented Modeling for AMBA AHB

- Same example transfer:
 - Low priority burst at $\mathbf{t_0}$
 - High priority preemption at t_1

• ROM:

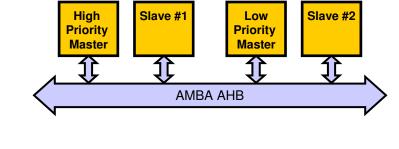

- $-t_0$ low: predict t_2
- $-t_1$ high: preempt, predict $t_{3,}$ record preemption for low
- $-t_2$ low: detect disturbance, prediction update t_4
- t₃ high: no preemptions, finish
- t₄ low: no preemptions, finish
- Accurate

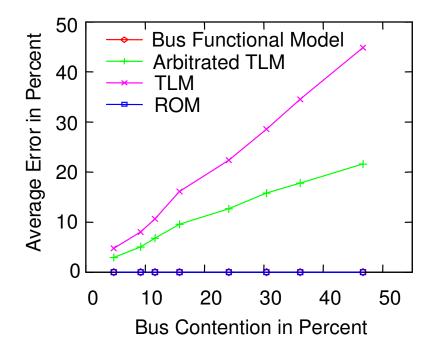


Result Oriented Modeling for AMBA AHB

Performance expectation

- -Arbitration Check
 - requires a *wait-for-time* statement to advance simulated time
- *wait-for-time,* often results in costly context switch
- -fewer wait-for-time → faster
- -Compare number of wait-for-time
 - Same example

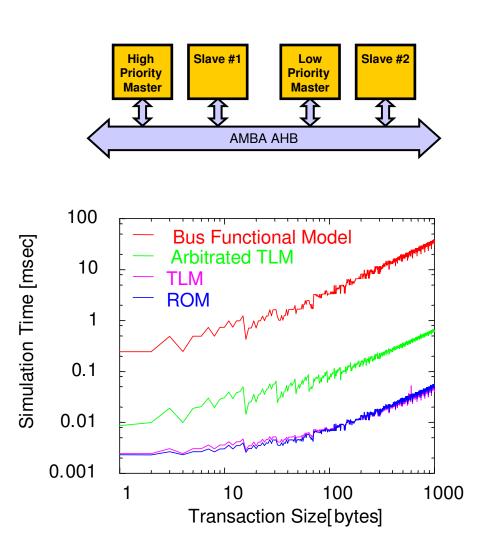




Experimental Results: Accuracy

- Average error in user transaction duration
 - 2 masters concurrently
 - Set of 5,000 user transactions each
 - Over increasing bus contention
 - Lower is better
- 100% Accuracy achieved!

 ROM, BFM both on top of x-axis
 No error
- Abstract models
 - Linear increasing error
 - TLM: up to 45%
 - ATLM: up to 22%



(c) 2006 G. Schirner, R. Dömer

Experimental Results: Performance

- Simulation time
 - 2 concurrent masters
 - high priority: 33% bus load
 - measure low priority
 - Lower is better
- 100% Speed achieved!
 - ROM and TLM are equally fast!
 - 3 orders of magnitude faster than BFM

Conclusion

- Novel TLM Technique: Result Oriented Modeling (ROM)
 - Observable only at transaction boundary
 - Optimistically predicts end result
 - Updates prediction at the end
- Applied to AMBA AHB 2.0
 - Experimental Results show the tremendous benefits
 - 100% accurate
 - 100% speed (i.e. speed like TLM)
- ROM eliminates traditional TLM trade-off
 - Frees designer of model selection
 - Expands usability of TLM