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Abstract

We show how a 3D model of a complex curved object can be easily extracted from a single 2D image. A user-

defined silhouette is the key input; and we show that finding the smoothest 3D surface which projects exactly to

this silhouette can be expressed as a quadratic optimization, a result which has not previously appeared in the

large literature on the shape-from-silhouette problem. For simple models, this process can immediately yield a

usable 3D model; but for more complex geometries the user will wish to further shape the surface. We show that a

variety of editing operations—which can be defined either in the image or in 3D—can also be expressed as linear

constraints on the 3D shape parameters. We extend the system to fit higher genus surfaces. Our method has several

advantages over the system of Zhang et al. [ZDPSS01] and over systems such as SKETCH and Teddy.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene

Understanding—modeling and recovery of physical attributes.

1. Introduction

The relentless increase in demand for 3D content has inspired

researchers to devise techniques which allow models to be

acquired directly from the real world. Computer vision tech-

niques permit automatic reconstruction from multiple photos

in some cases, but since Façade [DTM96], the value of user

input in extracting models from images has been clear. We

are interested in single-view reconstruction: given a single

photo of a curved object, recover a textured 3D model with

the minimum of user input in simple cases, and enough con-

trollability to make good models of complex objects.

In particular, this paper is a development of two classes

of 3D modellers: the 2 1
2 D reconstruction from images of

Zhang et al. [ZDPSS01] and silhouette-based modellers such

as SKETCH [ZHH96] and Teddy [IMT99]. The former allows

the user to mark up a 2D image with 3D hints such as sur-

face normals and specified depths, and finds the smoothest

Monge patch (or “range image”) model which satisfies those

constraints. The strong feature of the system is that the model

is defined by an energy minimization, so that the model re-

turned is always the smoothest possible, given the user’s sup-

plied constraints. Furthermore, because the energy is convex,

a globally optimal solution is guaranteed, and can be ob-

tained very quickly on modern computers. The weaknesses

are twofold: first, the Monge patch representation is rather

restrictive, representing just one side of the 3D model, and

because its shape is difficult to control near the silhouette, it is

difficult to create a realistic model by just stitching the model

and its reflection. The second weakness is that a considerable

user input is required, even for simple models.

Given that for many models, one of the strongest indicators

of 3D shape is the silhouette, it is natural to seek a system

which allows a fully 3D rather than 2 1
2 D representation, and

to constrain the 3D model to project to the silhouette. Two

strands of previous research have addressed the problem of

reconstruction from silhouettes in a single view; which we

shall refer to as the “variational” and “sketching” methods.

Variational methods cast the problem as energy mini-

mization. The objective is to find the minimal energy sur-

face which projects to the image silhouette. Terzopoulos

[TWK87] provided the first application of this scheme for

image-based modelling, but used an iterative algorithm to

“inflate” a 3D mesh until its image projection met the sil-

houette. The primary failings of this approach are: (a) the

difficulty of maintaining mesh consistency during the inter-

actions; and (b) the tendency to stop in local minima when

fitting complex silhouettes. In a sense, the local minima are

the real problem: the globally optimum energy rarely corre-

sponds to a mangled mesh, so if it can be found, the mesh

is consistent. Many strategies have been proposed to correct

the consistency problem (a), we believe this paper is the first

work to cleanly cast the formulation in a way that solves (b)
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Figure 1: We “lift” 3D models from images with a simple

user interface. For simple models, the object silhouette pro-

vides all necessary constraints, while a number of simple

editing operations allow more complex models to be created.

in the general 3D case, although the 2 1
2 D solution has been

known since [Sze90].

The sketching systems do not have a problem with local

optima. In particular, Teddy defines a special-purpose algo-

rithm for the inflation of a user-defined contour to produce

a 3D model. The algorithm works well for a variety of con-

tours, and might make a good initial estimate for the iterative

variational approaches. The disadvantage of Teddy’s inflation

is that for complex silhouettes, the algorithm introduces ar-

tifacts, and it is not defined for surfaces of nonzero genus.

Karpenko et al. [KHR02] address these deficiencies by ex-

pressing the 3D shape as the zero level set of a volumetric

potential field. Their approach allows more complex silhou-

ettes to be dealt with cleanly, and can force subsequent mod-

ifications of the object to continue to obey the silhouette con-

straint, which is difficult with Teddy. However, the sketch-

ers overconstrain the problem, and make commitments to the

surface shape which are difficult to revoke with subsequent

editing operations. In contrast, we wish to impose the min-

imal possible constraint —the surface’s perpendicularity to

the viewing direction at the silhouette—and allow variational

smoothness to do the rest. Solving a linear system to do the

same is our biggest USP.

2. Constrained variational surfaces

We seek a 3D surface r : [0,1]2 7→ R
3, which is as smooth

as possible while obeying user-specified constraints. The sur-

face is a function r(u,v) = [x(u,v),y(u,v),z(u,v)]⊤. Smooth-

ness is defined in terms of an energy on the surface, and we

follow [Sze90, ZDPSS01] and use the thin plate energy

E(r) =
∫ 1

0

∫ 1

0
‖ruu‖

2 +2‖ruv‖
2 +‖rvv‖

2
dudv (1)

Without constraints on the surface, the global minimum of

E(r) is the singularity r(u,v) = 0. However, the imposition

of constraints generates more interesting shapes. Constraints

we consider may take several forms, as follows (the k sub-

scripts indicate that in general we will have several simulta-

neous constraints, indexed by k):

• Position constraints are of the form r(uk,vk) = pk for

known values of uk,vk,pk.

• Normal constraints require the surface normal at (uk,vk)
to equal a supplied normal nk. The normal to r at a point

is the unit vector along ru × rv. Imposing the constraint as

the pair of constraints linear in r

nk · ru(uk,vk) = 0 (2)

nk · rv(uk,vk) = 0 (3)

will allow the global optimum to be found.

• Partial position constraints act on just one component of

r, for example z(uk,vk) = zk constrains only the z coordi-

nate at (uk,vk).

Subsequent constraints we shall discuss can be expressed in

terms of these basic primitives, so we shall describe the dis-

crete representation which we optimize.

The surface is represented by three m × n matri-

ces, X ,Y,Z, representing discretizations of the components

x(u,v),y(u,v),z(u,v) of r. When solving for the surface, we

shall reshape the matrices columnwise into vectors x,y,z, and

stack those into a single vector of unknowns g. As a nota-

tional convenience, let reshape(·) convert column vectors to

matrices or vice versa as appropriate, so x = reshape(X). In

appropriate units, the central difference approximation to the

first derivative xu is Xu = 1
2 (X(i + 1)− X(i − 1)) and may

be represented [ZDPSS01] as a large (mn×mn) sparse ma-

trix Cu, so that Xu = reshape(Cu reshape(X)). Second deriva-

tives are similarly represented by Cuv etc, so the energy func-

tion (1) in discrete form becomes

ε(x) = x
⊤(C⊤

uuCuu +2C
⊤
uvCuv +C

⊤
vvCvv)x (4)

E(g) = ε(x)+ ε(y)+ ε(z) (5)

= g
⊤

Cg (6)

which is quadratic in g and may therefore be solved for us-

ing any number of reliable methods [ZDPSS01]. Linear con-

straints such as the position or normal constraints remain lin-

ear in g, and are easily represented as a separate constraint

equation Ag = b. Our major contribution is to show that the

silhouette constraint may be represented in a way that is lin-

ear in the unknowns g.

The silhouette constraint The above is quite well known.

However the constraints are hard to apply because the (u,v)
parameters must be supplied for each constraint. Zhang et

al. avoid this problem by restricting the surface to a Monge

patch (graph surface, range image) of the form r(u,v) =
(u,v,z(u,v)). For single-view reconstruction, constraints are

supplied in the image (e.g. the depth at pixel (x,y)) which

immediately yields u and v.

For general 3D surfaces this mapping is not available, and

bootstrapping the constraint input is difficult. However, we
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Figure 2: In the continuous problem, if the contour generator

is continuous (but not necessarily planar), we are at liberty to

choose the uv parameter curves which project to the silhou-

ette. Here we illustrate the choice u = 1
4 for the left contour

generator and u = 3
4 for the right. In the discrete domain this

yields the global optimum of the shape-from-silhouette prob-

lem, while all previous approaches have found local minimiz-

ers.

show that the object’s silhouette is a curve for which the

mapping may readily be obtained. The object silhouette (see

[Koe90] for genial discussions of these terms) is the image

of the contour generator (CG), which is the set of 3D points

on the surface at which the viewing direction is in the tangent

plane. For convenience, we shall assume orthographic pro-

jection along the Z axis, and that the surface does not exhibit

self-occlusions along the silhouette (i.e. that we can see all of

the CG). These assumptions are often adequate in practice,

but we shall discuss later how they can be removed.

The CG is a curve on the surface, or equivalently its do-

main is a curve in the (u,v) parameter space. If that curve is

d = {dt = (ut ,vt)|0 ≤ t ≤ 1} then the CG is ct = r(ut ,vt).
We are given an image silhouette s = {st |0 ≤ t ≤ 1} (i.e. s is

the infinite set of 2D points on the silhouette and we are as-

suming it has magically been parameterized by the same t as

the CG). At each point on s, we can compute the unit normal

(nx,ny) to the 2D curve. Under orthographic projection along

Z, the 3D surface normal n at any point on the CG must have

Z component zero, and thus the 3D normal at t is given by

nt = (nx,ny,0). This means we know the surface normal at

any point on the contour generator, so the (infinite) set of lin-

ear constraints which force the silhouette of the 3D surface r

to coincide with s are
(

1 0 0
0 1 0

)

r(ut ,vt) = st [Projection] (7)

n
⊤
t ru(ut ,vt) = 0 [Normal] (8)

n
⊤
t rv(ut ,vt) = 0 [Normal] (9)

amounting to four linear constraints on r for each t ∈ [0,1].

The simple observation we can then make is to view the

energy E(r) as an approximation to surface curvature, which

is invariant to parametrization. If we were minimizing curva-

ture, we would be at liberty to choose any reparametrization

of (u,v) without changing the energy. We use this freedom

to define any curve in (u,v) to be the domain of the contour

generator and fit subject to that constraint. For example, for

objects of either cylinder or torus topology, the CG can be

the curves u = 1
4 ,u = 3

4 . Figure 2 illustrates this choice.

Of course, because we are not minimizing curvature,

parametrization does matter, so it is necessary to make some

modifications before the above scheme will work. These

modifications control inflation and spillage.

Inflation A pure implementation of the above optimization

produces a surface which does indeed project to the silhouette

but for which z(u,v) = 0 ∀u,v. In order to avoid this solution,

and to shape the surface away from the silhouette, two sorts

of inflation constraint are useful. The simplest is a partial po-

sition constraint which requires the surface to pass through

the z = ±1 planes. Imposing z(0,

1
2 ) = −1 and z( 1

2 ,

1
2 ) = 1

amounts to two linear constraints which yield inflated mod-

els such as that in figure 3a.

Inflation curves are pairs of 2D curves drawn on the im-

age (see figure 3c) which represent the silhouette of a surface

of revolution (SOR). The inflation constraint they impose is

to assign the z values along the (image of the) axis of the

SOR, i.e. several constraints of the form z(xk,yk) = zk. Un-

like the silhouette constraint, we do not have the freedom to

assign an arbitrary (u,v) parameter curve to this constraint,

so the system is solved first with the silhouette constraint

only, yielding a surface r′(u,v), which yields a mapping from

(u,v) to image (x,y), which is inverted to produce mappings

u′(x,y),v′(x,y). The system is re-solved with the constraints

z(u′(xk,yk),v
′(xk,yk)) = zk. Examples are shown in figure

3c.

Spillage The silhouette constraint guarantees that the surface

is locally consistent with the image silhouette, but does not

prevent unconstrained parts of the surface spilling out into

the background. However because new constraints added to

the system do not undo the silhouette constraint, spillage is

trivially corrected by dragging any points which are outside

the image boundary to the inside. Implementing partial po-

sition constraints on x and y only means the spillage is cor-

rected without undue influence on the 3D shape. This is the

step illustrated in figure 3b.

Implementation We solve the constrained optimization

problem on a 64 × 64 grid, significantly smaller than that

needed for Monge patch reconstruction. Solution using Mat-

lab’s sparse backslash operator takes less than one second.

3. Discussion

We have shown how a new formulation of 3D surface recon-

struction from silhouettes allows the global minimizer of a
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(a) (b) (c)

Figure 3: Steps in model building for a genus one surface. (a) User supplies silhouettes and marks points of high curvature.

Some of the model spills into the background. (b) User drags model points into the interior of the object. The minimization

corrects the spill while maintaining silhouette consistency. (c) The user adds inflation curves to improve the 3D shape, creating

a narrower spout, and adding a bulge at the base. Overall user input is the silhouette (power-assisted), three spillage drags, and

six inflation curves, none of which need to be precise. Middle and Bottom row: 3D models with the (u,v) curves and constraints.

thin-plate energy to be found as the solution to a linear sys-

tem. Previous energy-based approaches have relied on iter-

ative optimization strategies which frequently fell into local

minima or mangled the surface mesh; and previous ad-hoc

approaches could not guarantee to maintain the silhouette

without complex polygon book-keeping.

Although we allow non-planar contour generators, we still

assume that all of the CG is visible. Discontinuities caused by

self-occlusion (torus swallowtails for example) can be han-

dled by careful cutting of the parameter domain. Also, we

can begin to consider optimization of curvature by iterative

reweighting a quadratic energy term. This iteration should

still be preferable to the Terzopoulos-based aproaches be-

cause the silhouette constraints are always obeyed throughout

the optimization, and 2D investigations support this.
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