

NORTHWESTERN UNIVERSITY

FAST AND EASY CROWDSOURCED PERCEPTUAL AUDIO EVALUATION

R Adobe

Mark Cartwright and Bryan Pardo — Northwestern University Gautham Mysore and Matt Hoffman — Adobe Research

mcartwright@u.northwestern.edu http://music.eecs.northwestern.edu

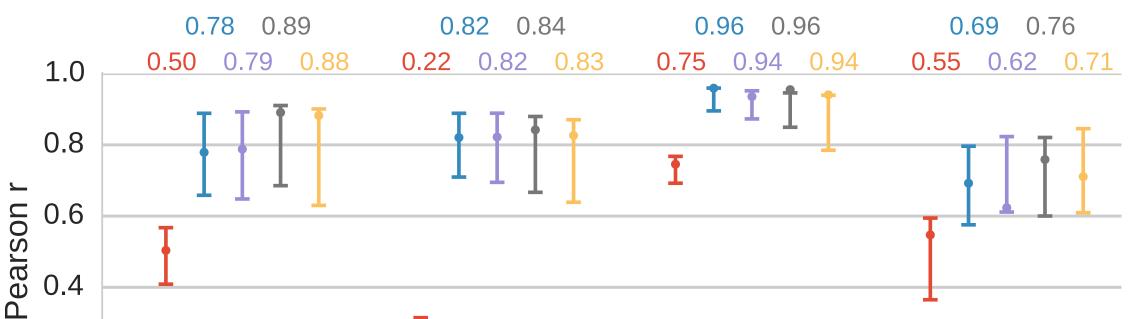
Introduction

A goal of much research into audio processing and synthesis algorithms (e.g. audio source separation) is to create algorithms that produce output that "sounds good" to a person. In these cases, human perception of quality is the gold standard. Current methods for audio evaluation either require a lot of effort by the investigator or are poorly correlated to human judgments of quality. We need a method of evaluating audio quality that is both accurate and easy for investigators to perform. We propose to move listening tests from the lab to the web, and we compare our web-based results to gold-

Evaluating Our Approach

We conducted MUSHRA (Multiple Stimuli with Hidden Reference and Anchor) [1] listening tests on the web, recruiting from Amazon's Mechanical Turk, comparing results to MUSHRA listening tests conducted in a lab setting and also to the BSS EVAL signal measures of audio quality.

Task: source-separation qualityevaluation


4 quality-scales:
 1. Overall Quality

Test-type: MUSHRA

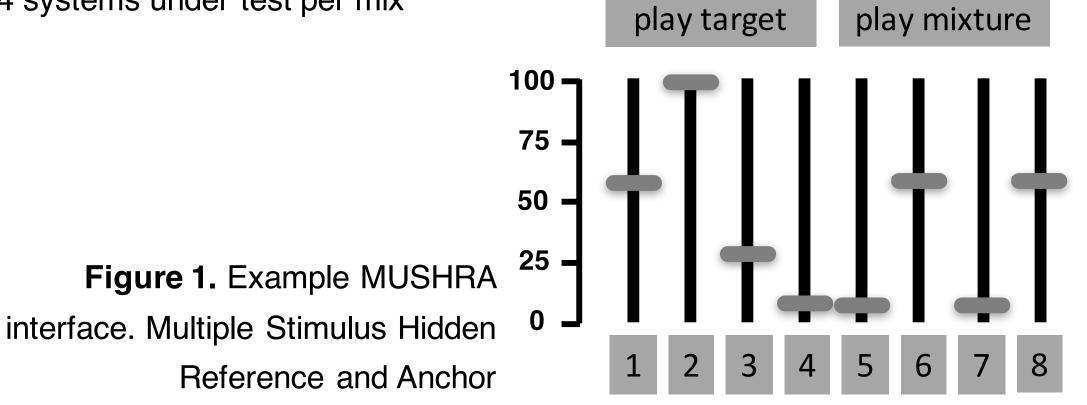
ITU standard for the subjective assessment of intermediate quality
8 stimuli presented simultaneously

Results

1. How do web MUSHRA scores correlate with lab MUSHRA scores?

Current Audio Evaluation Methods

	Pros	Cons
Listening tests e.g. participants listen to and rate audio stimuli	 "If it sounds good, it is good" No ground truth required 	 Slow Expensive Require a lot of effort by the investigator
Signal measures e.g. machines estimate audio quality based on signal properties	 Fast Cheap Require little effort by the investigator 	 Poorly correlated to human judgments of quality Require ground truth Difficult to develop new measures


Our Approach

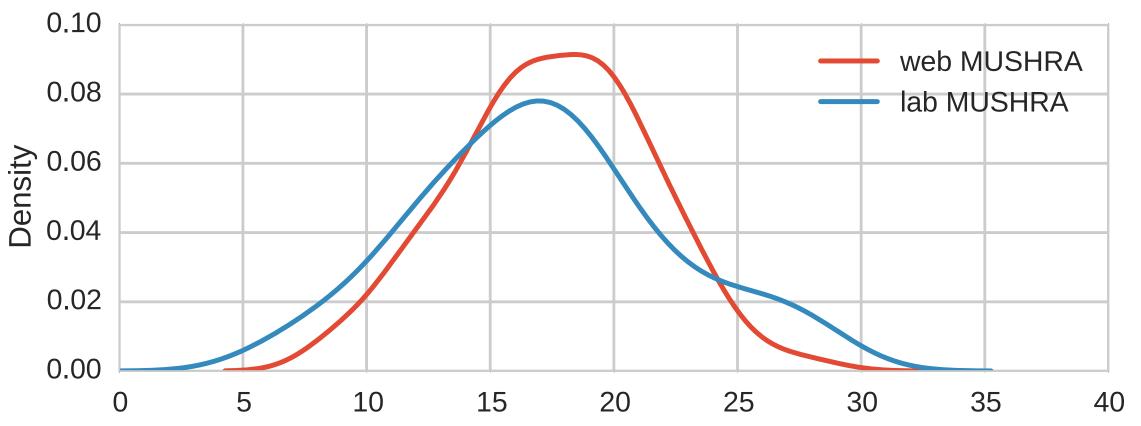
Crowdsource listening tests by moving them from the lab to the web in order to reduce the effort required by the investigator

2. Preservation of the Target Source 3. Suppression of Other Sources Target as hidden reference

- 10 mixes
- 4 systems under test per mix

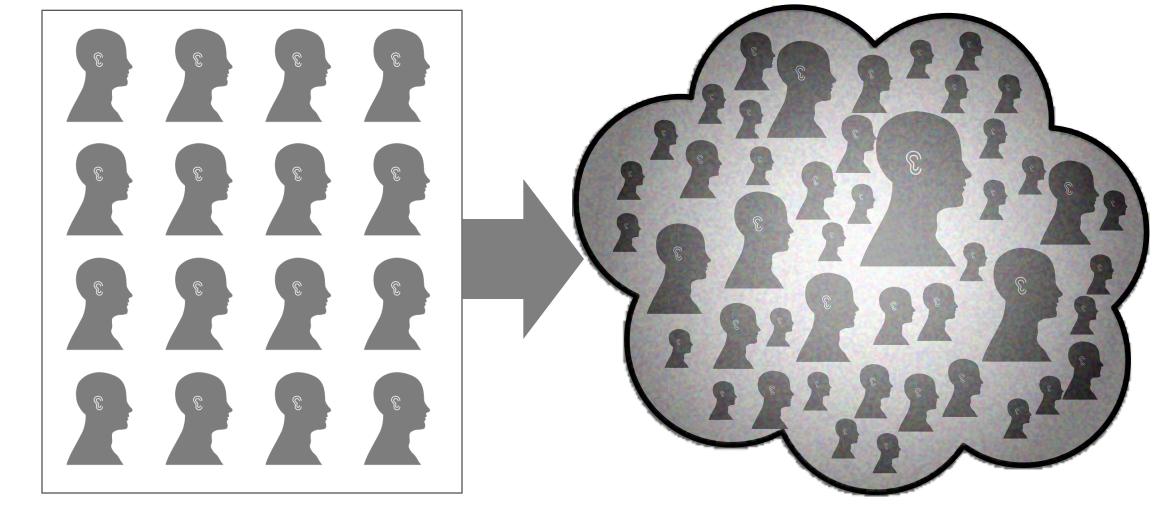
4. Absence of Artificial Noises

• 3 anchors


	Lab MUSHRA Listening Test		Web MUSHRA Listening Test
•	Data from PEASS [2]	•	Mostly novice participants recruited
•	Expert participants		from Amazon's Mechanical Turk
•	Controlled lab environment	•	Varied listening environments
•	Number of participants: 20	•	Number of participants: 530
•	Trials per participant: 40	•	Trials per participant: mean=3.3

- Trials per participant: mean=3.3 (min=1, max=10)
- Data collected in 8.2 hours

0.2						
0.0	Overall Quality	Target Presevatior	Suppression of Other Sources			
	BSSEVAL Web MUSHR	A	Weighted Web MUSHRA Screened Web MUSHRA	Weighted and Screened Web MUSHRA		


Figure 3. Correlation of web MUSHRA and BSS-Eval [2] scores with the lab MUSHRA scores for the 4 source separation quality scales. Scores were limited to the systems under test (i.e. excluding the reference and anchors) and estimated using the median of ratings from a sample size of 20 participants per mixture. Bars represent 95% CIs.

2. Are web MUSHRA scores "noisier" than lab MUSHRA scores?

Lab

Web

Potential Benefits	Challenges
Speed	 Varied reliability of assessors
Minimal effort for investigator	 Varied levels of expertise
 Human judgments of quality 	 Varied listening environments
 Large, diverse population of 	 Varied listening devices
participants	 Varied hearing abilities
 Can easily customize evaluation 	

measures

Accounting for Hearing Abilities and Listening Environments in Web MUSHRA

1. Hearing screening

(10 mixes x 4 qualities)

- Screen to participants that hear 55 10000Hz by using a simple tonecounting task
- 336 of 530 passed
- 2. Weight importance of participant rating
 - Roughly estimate participants' in-situ hearing response using simple tone-counting task (see Figure 2)
 - Use hearing response to weight the importance of their rating. Weight is higher when the stimulus contains frequency content they hear well and lower when it contains frequency content they hear poorly.

Figure 2. The mean in-situ hearing response of the participants. The lighter

95% CI Width

Figure 4. Distribution of 95% CI widths of scores. Web MUSHRA: mean=17.5, SD=3.9 Lab MUSHRA: mean 17.1, SD=5.2

Conclusions

We compared MUSHRA listening tests performed in a controlled lab environment to MUSHRA performed in an uncontrolled web environment on a population drawn from Mechanical Turk. The web data was collected from 530 participants in only 8.2 hours. The resulting perceptual evaluation scores were comparable to those estimated in the controlled lab environment.

References

[1] ITU, "Recommendation ITU-R BS.1534-2: Method for the subjective assessment of intermediate quality level of audio systems," ed, 2014.
[2] V. Emiya, E. Vincent, N. Harlander, and V. Hohmann, "Subjective and Objective Quality Assessment of Audio Source Separation," *IEEE TASLP*, vol. 19, pp. 2046-2057, 2011.

Acknowledgements

