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Abstract. This paper focuses on developing effective and efficient algo-
rithms for compressing scientific simulation data computed on structured
and unstructured grids. A paradigm for lossy compression of this data is
proposed in which the data computed on the grid is modeled as a graph,
which gets decomposed into sets of vertices which satisfy a user defined
error constraint ε. Each set of vertices is replaced by a constant value
with reconstruction error bounded by ε. A comprehensive set of exper-
iments is conducted by comparing these algorithms and other state-of-
the-art scientific data compression methods. Over our benchmark suite,
our methods obtained compression of 1% of the original size with aver-
age PSNR of 43.00 and 3% of the original size with average PSNR of
63.30. In addition, our schemes outperform other state-of-the-art lossy
compression approaches and require on the average 25% of the space
required by them for similar or better PSNR levels.

1 Introduction

The process of scientific discovery often requires scientists to run simulations,
analyze the output, draw conclusions, then re-run the simulations to confirm
or expand hypothesis. One of the most significant bottlenecks for current and
future extreme-scale systems is I/O. In order to facilitate the scientific process
described above, it is necessary for scientists to have efficient means to output
and store data for offline analysis. To facilitate this, data compression is turned
to, to create reduced representations of the resulting data for output, in such a
way that the original result data can be reconstructed off-line for further analysis.

Straightforward approaches for scientific data compression exist in lossless
techniques designed specifically for floating-point data. However, due to the high
variability of the representation of floating-point numbers at the hardware level,
the compression factors realized by these schemes are often very modest [4,10].
Since most post-run analysis is robust in the presence of some degree of error, it
is possible to employ lossy compression techniques rather than lossless, which are
capable of achieving much higher compression rates at the cost of a small amount
of reconstruction error. As a result, a number of approaches have been investi-
gated for lossy compression of scientific simulation datasets including classical [7]
and diffusion wavelets [3], spectral methods [5], and methods based on the tech-
niques used for transmission of HDTV signals [2]. However, these approaches
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are either applicable only to simulations performed on structured grids or have
high computational requirements for in situ data compression applications.

In this paper we investigate the effectiveness of a class of lossy compression
approaches that replace the actual values associated with sets of grid-nodes with
a constant value whose difference from the actual value is bounded by a user-
supplied error tolerance parameter. We develop approaches for obtaining these
sets by considering only the nodes and their values and approaches that con-
strain these sets to connected subgraphs in order to further reduce the amount
of information that needs to be stored. To ensure that these methods are ap-
plicable for in situ compression applications, our work focuses on methods that
have near-linear complexity and are equally applicable to structured and un-
structured grids. We experimentally evaluate the performance of our approaches
and compare it against that of other state-of-the-art data compression meth-
ods for scientific simulation datasets. Over our benchmark suite, our methods
obtained compression of 1% of the original size with average PSNR of 43.00
and 3% of the original size with average PSNR of 63.30. Our experiments show
that our methods achieve compressed representations, which on average, require
50%–75% less space than competing schemes at similar or lower reconstruction
errors.

2 Definitions and Notations

The methods developed in this paper are designed for scientific simulations in
which the underlying physical domain is modeled by a grid. Here we assume that
the grid topology is fixed and thus can be compressed and stored separately from
the data which is computed on it. Each node of a grid has one or more values
associated with it that correspond to the quantities being computed in the course
of the simulation. The grid can be either structured or unstructured. A structured
grid is a collection of elements which have an implicit geometric structure. That
structure is a basic rectangular matrix structure, such that in IR3, the nodes can
be indexed by a triplet (x, y, z). Thus, the grid topology can be described simply
by the number of nodes in each of the three dimensions. An unstructured grid
has no implicit structure. Since there is no implicit structure, the topology is
described by identifying the elements which each node belongs to. In this work,
we model these grids via a graph G = (V,E, L). The set of vertices V , models
the nodes of the grid for which values are computed. The set of edges E, models
the connectivity of adjacent nodes. Two nodes are adjacent if they belong to the
same element in the grid. The set of vertex-labels L, models the values computed
at each node of the grid such that li stores the value computed for node vi. In
this work we assume there is only one value being computed for each node of
the grid.

An ε-bounded set-based decomposition ofG is a partitioning of its set of vertices
into non-overlapping sets {V1, . . . , Vk} such that for each Vi, ∀vq, vr ∈ Vi, |lq −
lr| ≤ ε (i.e., each set contains vertices whose values differ at most by ε). When the
induced subgraph Ri = (Vi, Ei) of G is connected, the set Vi will also be referred
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to as a region of G. When all sets in an ε-bounded set-based decomposition form
regions, then the decomposition will be referred to as an ε-bounded region-based
decomposition of G. Given a set of vertices Vi, the average value of its vertices
will be referred to as its mean value and will be denoted by μ(Vi). Given a region
Vi, its boundary vertices are its subset of vertices Bi ⊆ Vi that are adjacent to
at least one other vertex not in Vi, and its interior vertices are the subset of
vertices Ii ⊆ Vi that are adjacent only to vertices in Vi. Note that Ii ∪Bi = Vi.

3 Related Work

Most of the work on lossy compression of scientific datasets has focused on
compressing the simulation output for visualization purposes. The most pop-
ular techniques in this area are based on wavelet theory [7] that produces a
compression-friendly sparse representation of the original data. To further spar-
sify this representation, coefficients with small magnitude are dropped with little
impact on the reconstruction error [8,9]. Due to the nature of the wavelet trans-
form, classical wavelet methods apply only to structured grids. An alternative
to wavelet compression is Adaptive Coarsening (AC) [11]. AC is an extension
of the adaptive sub-sampling technique first introduced for transmitting HDTV
signals [2], which is based on down-sampling a mesh in areas which can be re-
constructed within some error tolerance and storing at full resolution the others.
In [12], the authors use AC to compress data on structured grids and compare
the results to wavelet methods. Even though AC can potentially be extended for
unstructured grids [11], current implementations are limited to structured grids.

Another approach is spectral compression that extends the discrete cosine
transform used in JPEG, from 2D regular grids to the space of any dimensional
unstructured grids [5]. This method uses the Laplacian matrix of the grid to
compute topology aware basis functions. The basis functions serve the same
purpose as those in the wavelet methods and define a space where the data can
be projected to, in order to obtain a sparse representation. Since the Laplacian
matrix can be defined for the nodes of any grid, this method is not limited
to structured grids. However, deriving the basis functions from the Laplacian
matrix of large graphs is computationally prohibitive. For this reason, practical
approaches first use a graph partitioning algorithm to decompose the underlying
graph into small parts, and each partition is then compressed independently
using spectral compression [5]. Finally, another approach, introduced in [3], is
diffusion wavelets. The motivation for diffusion wavelets is the same as that
of spectral compression, and is used to generate basis functions for a graph.
However, instead of using the eigenvectors of the Laplacian matrix to derive
these basis functions, diffusion wavelets generate them by taking powers of a
diffusion operator. The advantage of diffusion wavelet is that its basis functions
capture characteristics of the graph at multiple resolutions, while spectral basis
functions only capture global characteristics.
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4 Methods

In this work we investigated the effectiveness of a lossy compression paradigm for
grid-based scientific simulation datasets that replaces the values associated with
a set of nodes with a constant value whose difference from the actual values is
bounded. Specifically, given a graph G = (V,E, L) modeling the underling grid,
this paradigm computes an ε-bounded set-based decomposition {V1, . . . , Vk} ofG
and replaces the values associated with all the nodes of each set Vi, with its mean
value μ(Vi). This paradigm bounds the point-wise error to be no more than ε,
whose actual value is explicitly controlled by the users based on their subsequent
analysis requirements. Since the values associated with the nodes tend to exhibit
local smoothness [1], these value substitutions increase the degree of redundancy,
which can potentially lead to better compression.

Following this paradigm, we developed two classes of approaches for obtaining
the ε-bounded set-based decomposition of G. The first class focuses entirely on
the vertices of the grid and their values, where the second class also takes into
account the connectivity of these vertices in the graph. In addition, we developed
different approaches for encoding the information that needs to be stored on the
disk in order to maximize the overall compression. The description of these
algorithms is provided in the subsequent sections.

In developing these approaches, our research focused on algorithms whose un-
derlying computational complexity is low because we are interested in being able
to perform the compression in-situ with the execution of the scientific simulation
on future exascale-class parallel systems. As a result of this design choice, the
algorithms that we present tend to find sub-optimal solutions but do so in time
that in most cases is bounded by O(|V | log |V |+ |E|).

4.1 Set-Based Decomposition

This class of methods derives the ε-bounded set-based decomposition {V1, . . . , Vk}
of the vertices by focusing entirely on their values. Towards this end, we devel-
oped two different approaches. The first is designed to find the decomposition
that has the smallest cardinality (i.e., minimize k), whereas the second is de-
signed to find a decomposition that contains large-size sets.

The first approach, referred to as SBD1, operates as follows. The vertices of
G are sorted in non-decreasing order based on their values. Let 〈vi1 , . . . , vin〉 be
the sequence of the vertices according to this ordering, where n is the number of
vertices in G. The vertices are then scanned sequentially from vi1 up to vertex
vij such that lij − li1 ≤ ε and lij+1 − li1 > ε. The vertices in the set {vi1 , . . . , vij}
satisfy the constraint of an ε-bounded set and are used to form a set of the set-
based decomposition. These vertices are then removed from the sorted sequence
and the above procedure is repeated on the remaining part of the sequence until
it becomes empty. It can be easily shown that the above greedy algorithm will
produce a set-based decomposition that has the smallest number of sets for a
given ε.
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The second approach, referred to as SBD2, utilizes the same sorted sequence
of vertices 〈vi1 , . . . , vin〉 but it uses a different greedy strategy for constructing
the ε-bounded sets. Specifically, it identifies the pair of vertices viq and vir such
that lir − liq ≤ ε and r − q is maximized. The vertices in the set {viq , . . . , vir}
satisfy the constraint of an ε-bounded set and are used to form a set of the set-
based decomposition. The original sequence is then partitioned into two parts:
〈vi1 , . . . viq−1 〉 and 〈vir+1 , . . . , vin〉, and the above procedure is repeated recur-
sively on each of these subsequences. Note that the greedy decision in this ap-
proach is that of finding a set that has the most vertices (by maximizing r− q).
It can be shown that SDB2 will lead to a decomposition whose maximum cardi-
nality set will be at least as large as the maximum cardinality set of SBD1 and
that the cardinality of the decomposition can be greater than that of SDB1’s
decomposition.

Decomposition Encoding. We developed two approaches for encoding the
vertex values derived from the ε-bounded set-based decomposition. In both of
these approaches, the encoded information is then further compressed using
standard lossless compression methods such as GZIP, BZIP2, and LZMA.

The first approach uses scalar quantization and utilizes a pair of arrays Q and
M . Array Q is of size k (the cardinality of the decomposition) and Q[i] stores the
mean value μ(Vi) of Vi. Array M is of size n (the number of vertices) and M [j]
stores the number of the set that vertex vj belongs to. During reconstruction,
the value of vj is given by Q[M [j]]. Since for reasonable values of ε, k 	 n,
the number of distinct values in M will be small, leading to a high degree of
redundancy that can be exploited by the subsequent lossless compression step.
We will refer to this approach as scalar quantization encoding and denote it by
SQE.

The second approach encodes the information by sequentially storing the ver-
tices that belong to each set of the decomposition. Specifically, it uses three
arrays Q, S, and P , of sizes k, k, and n, respectively. Array Q is identical to
the Q array of SQE and array S stores the number of vertices in each set (i.e.,
S[i] = |Vi|). Array P is used to store the vertices of each set in consecutive
positions, starting with those of set V1, followed by V2, and so on. The vertices
of each set are stored by first sorting them in increasing order based on their
number and then representing them using a differential encoding scheme. The
smallest numbered vertex of each set is stored as is and the number of each
successive vertex is stored as the difference from the preceding vertex number.
Since each vertex-set will likely have a large number of vertices, the differential
encoding of the sorted vertex lists will tend to consist of many small values, and
thus increase the amount of redundancy that can be exploited by the subsequent
lossless compression step. We will refer to this approach as differential encoding
and denote it by DE.

Vertex Ordering. To achieve good compression using the above encoding
schemes, vertices which are close in the vertex ordering should have similar
values. Towards this end, we investigate three vertex orderings which are as
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follows. The first is the original ordering of the nodes, that is often derived by
the grid generator and tends to have a spatial coherence. The second ordering
is a breadth first traversal of the graph starting from a randomly selected ver-
tex. The third ordering is a priority first traversal, in which priority is given to
those vertices which are adjacent to the most vertices which have been previ-
ously visited. Arranging the vertices according to their visit order is intended to
put together in the ordering vertices that are close in the graph topology. Due
to the local smoothness of values, vertices that appear close in the ordering will
share similar values.

4.2 Region-Based Decomposition

This class of methods derives an ε-bounded set-based decomposition {V1, . . . , Vk}
by requiring that each set Vi also forms a region (i.e., its induced subgraph of
G is connected). The motivation behind this region-based decomposition is to
reduce the amount of data that needs to be stored by only writing information
about Vi’s boundary vertices and a select few of its interior vertices. During
reconstruction, by taking advantage of Vi’s connectivity, its non-saved interior
vertices can be identified by a depth- or breadth-first traversal of G starting at
the saved interior vertices and terminating at its boundary vertices. The set of
vertices visited in the course of this traversal will be exactly those in Vi. From this
discussion, we see that the amount of compression that can be achieved by this
class of methods is directly impacted by the number of boundary vertices that
must be stored. Thus, the region identification approaches must try to reduce
the number of boundary vertices. Towards this end, we developed three different
heuristic approaches whose description follows.

The first approach, referred to as RBD1 , is designed to compute a decomposi-
tion that minimizes the number of regions. The motivation behind this approach
is that by increasing the average size of each region (due to a reduction in the de-
composition’s cardinality), the number of interior vertices will also increase. RBD1
initially sorts the vertices in away identical to SBD1, leading to the sorted sequence
s = 〈vi1 , . . . , vin〉. Then, it selects the first vertex in the sequence (vi1 ), assigns it
to the first region V1, and removes it from s. It then proceeds to select from s a
vertex vij that is adjacent to at least one vertex in V1 and lvij − lv1 ≤ ε, inserts it

into V1, and removes it from s. This step is repeated until no such vertex can be
selected or s becomes empty. The above algorithm ensures that V1 is an ε-bounded
set and that the subgraph of G induced by V1 is connected. Thus, V1 is a region
and is included in the region-based decomposition. The above procedure is then
repeated on the vertices remaining in s, each time identifying an additional region
that is included in the decomposition. Note that unlike the algorithm for SBD1,
the above algorithm does not guarantee that it will identify the ε-bounded region-
based decomposition that has the minimum number of regions.

The second approach, referred to as RBD2 , is designed to compute a decom-
position that contains large regions, as the regions that contain a large number
of vertices will also tend to contain many interior vertices. One way of develop-
ing such an algorithm is to use the greedy approach similar to that employed
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by SBD2 to repeatedly find the largest region from the unassigned vertices and
include it in the decomposition. However, due to the region’s connectivity re-
quirement, this is computationally prohibitive. For this reason, we developed an
algorithm that consists of two steps. The first step is to obtain an ε-bounded set-
based decomposition {V1, . . . , Vk} using SBD1. The second step is to compute
an ε-bounded region-based decomposition of each set Vi. The union of these re-
gions over V1, . . . , Vk is then used as the region-based decomposition computed
by RBD2. This two-step approach is motivated by the following observation.
One of the reasons that prevents RBD1 from identifying large regions is that it
starts growing each successive region from the lowest-valued unassigned vertex
and does not stop until all of the unassigned vertices adjacent to that region
have values that will violate the ε bound. This will tend to fragment subse-
quent regions as the are constrained by the initial vertices that have low values.
RBD2, by forcing RBD1’s region identification algorithm to stay within each set
Vi, prevents this from happening and as our experiments will later show, lead
to a decomposition that has smaller number of boundary vertices and better
compression.

Finally, the third approach, referred to as RBD3 , is designed to directly
compute a decomposition whose regions have a large number of interior vertices.
It consists of three distinct phases. The first phase identifies a set of core regions
that contain at least one interior vertex, the second phase expands these regions
by including additional vertices to them, and the third phase creates non-core
regions. Let V ′ be the subset of vertices of V such that ∀v ∈ V ′, v ∪ adj(v) is an
ε-bounded set, where adj(v) is the set of vertices adjacent to v. A core region,
Vi, is created as follows. An unassigned vertex v ∈ V ′ whose adjacent vertices
are also unassigned is randomly selected and v ∪ adj(v) is inserted into Vi. Then
the algorithm proceeds to identify an unassigned vertex u ∈ V ′ such that: (i) it
is connected to at least one vertex in Vi, (ii) all the vertices in adj(u) \ Vi are
also unassigned, and (iii) Vi∪{u}∪adj(u) is an ε-bounded set. If such a vertex u
exists, then u and adj(u) \ Vi are inserted into Vi. If no such vertex exists, then
Vi’s expansion stops. The above procedure is repeated until no more core regions
can be created. Note that by including u and its adj(u) \ Vi vertices into Vi, we
ensure that u becomes an interior vertex of Vi. During the second phase of the
algorithm, the vertices that have not been assigned to any region are considered.
If a vertex v can be included to an existing region while the resulting region
remains an ε-bounded set, then it is assigned to that. Finally, the third phase is
used to create additional regions containing the remaining unassigned vertices
(if they exist), which is done using RBD1.

Decomposition Encoding. As discussed earlier, the region-based decomposi-
tion allows us to reduce the storage requirements by storing only the boundary
vertices along with the interior vertices that are used as the seeds of the (depth-
or breadth-first) traversals. For each region Vi, the set of seed-vertices Isi is de-
termined as follows. An interior vertex is randomly selected, added to Isi , and
a traversal from that vertex is performed terminating at Vi’s boundary vertices.
If any of Vi’s interior vertices has not been visited, then the above procedure is
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repeated on the unvisited vertices, each time adding an additional source ver-
tex into Isi . In most cases, one seed vertex will be sufficient to traverse all the
interior vertices, but when regions are contained within other regions, multiple
seed vertices may be required. Also, in the cases in which Vi consists of only
boundary vertices, Isi will be empty.

An additional storage optimization is possible, as there is no need to store
the boundary vertices for all the regions. In particular, consider a region Vi and
let {Vi1 , . . . , Vim} be the set of its adjacent regions in the graph. We can then
identify Vi by performing a traversal from the vertices in Isi that terminates at
the boundary vertices of Vi’s adjacent regions. All the vertices visited during
that traversal (excluding the boundary vertices) along with Isi will be exactly
the vertices of Vi. Thus, we can choose not to store Vi’s boundary vertices as
long as we store the boundary vertices for all of its adjacent regions. In our al-
gorithm, we choose the regions whose boundary information will not be stored
in a greedy fashion based on the size of their boundaries. Specifically, we con-
struct the region-to-region adjacency graph (i.e., two regions are connected if
they contain vertices that are adjacent to each other), assign a weight to the
vertex corresponding to Vi that is equal to |Bi| (i.e., the size of its boundary),
and then identify the regions whose boundary information will not be stored
by finding a maximal weight independent set of vertices in this graph using a
greedy algorithm.

Given the above, we can now precisely describe how the region-based decom-
position is stored. Let {V1, . . . , Vk} be the ε-bounded region-based decomposi-
tion, B1, . . . , Bk be the sets of boundary vertices that need to be stored (if no
boundary information is stored for a region due to the earlier optimization, then
the corresponding boundary set is empty), and Is1 , . . . , I

s
k be the sets of internal

seed-vertices that have been identified. Our method stores five arrays,Q,NI ,NB,
II , and IB . The first three arrays are of length k, II is of length equal to the total
number of seed vertices (

∑
i |Isi |), and IB is of length equal to the total number

of boundary vertices (
∑

i |Bi|). Array Q stores the mean values of each region,
whereas arrays NI and NB store the number of seed and boundary vertices of
each region, respectively. Array II stores the indices of the regions in consecutive
order starting from Is1 , whereas array IB is used to store the boundary vertices
of each region in consecutive positions starting from B1. These indices are stored
using the same differential encoding approach described in Sect. 4.1 and like that
approach, the results of this encoding are further compressed using a standard
lossless compression method.

5 Experimental Design and Results

Datasets. We evaluated our algorithms using seven real world datasets obtained
from researchers at UMN and our colleagues at NASA and LLNL. These datasets
correspond to fluid turbulence and combustion simulations and contain both
structured and unstructured grids. Their characteristics are shown in Table 1.
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Table 1. Information about the various datasets

Dataset |V | |E| µ(V ) Grid Type Dataset |V | |E| µ(V ) Grid Type

d1 486051 4335611 0.9958 unstruct. d5 31590144 94562224 0.0176 unstruct.

d2 589824 1744896 0.5430 struct. d6 41472000 123926400 0.2107 struct.

d3 1936470 15399496 0.9874 unstruct. d7 100663296 300744704 4.5644 struct.

d4 16777216 50102272 163.70 struct.

Evaluation Methodology and Metrics. We measured the performance of
the various approaches along two dimensions. The first is the error introduced
by the lossy compression and the second is the degree of compression that was
achieved. The error was measured using three different metrics: (i) the root mean
squared error (RMSE), (ii) the maximum point-wise error (MPE), and (iii) the
peak signal-to-noise ratio (PSNR). The RMSE is defined as

RMSE =

√
√
√
√ 1

|V |
|V |∑

i=1

|lj − l̂j |2, (1)

where lj is the original value of vertex vj and l̂j, is its reconstructed value. The
MPE is defined as

MPE = max(|l1 − l̂1|, ..., |ln − l̂n|), (2)

which is the �∞-norm of the point-wise error vector. The MPE measure is pre-
sented in tandem with RMSE to identify those algorithms which achieve low
RMSE, but sustain high point-wise errors. Finally, the PSNR is defined as

PSNR = 20 · log10
(
max(x1, ..., xn)

RMSE

)

, (3)

which is a normalized error measure; thus, facilitating comparisons of error be-
tween datasets with values that differ greatly in magnitude. The compression
effectiveness was measured by computing the compression ratio (CR) of each
method, which is defined as follows:

CR =
compressed size

uncompressed size
. (4)

The wavelet and spectral methods were implemented in Matlab R©. The spectral
method uses METIS [6] as a pre-processing step to partition the graph before
compressing. The adaptive coarsening implementation was acquired from the
authors of [12] and modified to provide the statistics necessary for these experi-
ments. All algorithms described in Sect. 4 were implemented in C++. Finally, for
the lossless compression of the decomposition encodings, we used LZMA com-
pression (7-zip’s implementation) as it resulted in better compression than either
GZIP or BZIP2. In addition, the same LZMA-based compression was applied to
the output of the spectral and wavelet-based compressions. Note that AC does
not need that because it achieves its compression by coarsening the graph and
reducing the data output.
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6 Results

Our experimental evaluation is done in two parts. First, we select a fixed set of
values for RMSE and compare the various algorithmic choices for the set- and
region-based decomposition approaches in terms of their compression ability.
Second, we compare the compression performance of the best combinations of
these schemes against that achieved by other approaches for two different levels
of lossy compression errors.

6.1 Set-Based Decomposition

Figure 1 shows the compression performance achieved by SBD1 and SBD2 for the
different datasets across the different decomposition encoding schemes described
in Section 4.1. These results show that SBD1 tends to perform better than
SBD2 and on average, it requires 5% less storage for each specific combination
of decomposition encoding and vertex ordering scheme. This can be attributed
to the fact that the cardinality of its decomposition is often considerably lower
than SBD2’s, which tends to outweigh the benefits achieved by the few larger
sets identified by SBD2.

Comparing the performance of the decomposition encoding schemes (SQE and
DE), we see that SQE performs considerably better across both decomposition
methods and ordering schemes. On the average, SQE requires only 75% of the
storage of DE. These results suggest that when compared to scalar quantiza-
tion, the differential encoding of the vertices in each set is not as effective in
introducing redundancy in the encoding, which in turn reduces the compression
that can be obtained by the lossless LZMA compression. Finally, comparing the
performance of the three vertex ordering schemes, we found that the original
ordering leads to greater compression than either of the breadth first traversal
or the priority first traversal. As discussed in Section 4.1, this ordering utilizes

Fig. 1. Statistics for set-based decomposition
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information from the underlying grid geometry, and as such it has a higher de-
gree of regularity, leading to better compression. With respect to the other two
methods, we found that the priority first traversal tends to perform better than
breadth first.

6.2 Region-Based Decomposition

Figure 2 shows various statistics of the decompositions computed by RBD1,
RBD2, and RBD3 for the different datasets and their compression performance
for the three vertex ordering schemes. In terms of the number of regions into
which G is decomposed, we see that RBD1 results in the least number of re-
gions, whereas RBD3 identifies a considerably greater number of regions (often
2–7 times more regions than RBD1). We also see that RBD2 only identifies
slightly more regions than RBD1 (about 18% more on average). In terms of the
number of boundary vertices that need to be stored by each decomposition, we
see an inversion of the previous results. RBD2 and RBD3 produce the smallest
boundary sets, typically being within about 5% of each other, whereas RBD1
produces boundary sets which are considerably larger, in some cases, more than
twice the size of those required by RBD2 and RBD3. These results suggest that
the region identification heuristics employed by RBD2 and RBD3 are quite ef-
fective in minimizing the total number of boundary vertices, even though they
find more regions.

Fig. 2. Statistics for region-based decomposition, |R| refers to number of regions identi-
fied, and NB refers to number of boundary vertices after storage optimization described
in Sect. 4.1.

In terms of compression performance, we see that across all datasets RBD2
results in the lowest compression ratio. On the average, RBD2 requires only 70%
of the storage of RBD1 and 56% of RBD3. Contrasting this with the number
of boundary vertices identified by each approach, we see that there is a direct
correlation, based on the size of the boundary vertex set, between RBD1 and
RBD2 in terms of which approach results in lower compression ratio and by how
much. RBD3 does not share in this correlation, due to its significantly higher
number of regions.
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Table 2. Comparison of scientific data compression algorithms for two different rmse

info high error tolerance low error tolerance

Dataset Algorithm RMSE PSNR MPE CR RMSE PSNR MPE CR

d1

SBD1 6.30E-03 4.64E+01 1.89E-02 2.39E-02 6.66E-04 6.60E+01 1.86E-03 ��������

RBD2 6.28E-03 4.65E+01 1.89E-02 �������� 6.38E-04 6.63E+01 2.12E-03 1.28E-01

Spctrl 6.37E-03 4.63E+01 1.11E-01 4.00E-02 3.90E-03 5.06E+01 7.14E-02 1.05E-01

d2

SBD1 2.92E-02 3.60E+01 7.33E-02 ���	���
 2.50E-03 5.74E+01 7.71E-03 	�������

RBD2 2.88E-02 3.61E+01 8.02E-02 5.02E-03 1.91E-03 5.97E+01 7.71E-03 6.57E-02

Wvlt 3.10E-02 3.55E+01 2.34E-01 2.00E-02 2.59E-03 5.70E+01 2.38E-02 1.15E-01

Spctrl 3.17E-02 3.53E+01 7.34E-01 4.50E-02 7.04E-03 4.84E+01 3.56E-01 1.30E-01

AC 3.31E-02 3.49E+01 1.50E-01 1.86E-02 6.80E-03 4.87E+01 7.19E-01 5.17E-02

d3

SBD1 5.22E-03 4.88E+01 1.91E-02 	������� 4.79E-04 6.96E+01 2.05E-03 
�������

RBD2 5.18E-03 4.89E+01 1.93E-02 1.33E-02 4.54E-04 7.00E+01 2.07E-03 4.33E-02

Spctrl 5.27E-03 4.87E+01 2.14E-01 4.50E-02 3.31E-03 5.28E+01 1.35E-01 1.00E-01

d4

SBD1 2.36E+01 4.70E+01 1.63E+02 ���
���
 2.43E+00 6.68E+01 1.34E+01 	�������

RBD2 2.05E+01 4.83E+01 1.65E+02 6.30E-03 2.00E+00 6.85E+01 1.36E+01 3.51E-02

Wvlt 2.47E+01 4.66E+01 6.86E+02 7.50E-03 2.64E+00 6.61E+01 4.87E+01 2.50E-02

Spctrl 2.57E+01 4.63E+01 1.78E+03 3.50E-02 3.92E+00 6.26E+01 3.59E+02 1.95E-01

AC 2.30E+01 4.73E+01 3.01E+03 2.15E-02 - - - -

d5

SBD1 4.97E-04 4.59E+01 1.78E-03 
������
 5.43E-05 6.51E+01 1.28E-04 	�������

RBD2 4.88E-04 4.61E+01 1.76E-03 4.47E-03 5.32E-05 6.53E+01 1.69E-04 4.96E-02

Spctrl 5.84E-04 4.45E+01 4.56E-02 5.00E-03 5.87E-05 6.45E+01 8.74E-03 6.50E-02

d6

SBD1 1.21E-02 3.82E+01 5.70E-02 9.30E-03 1.05E-03 5.94E+01 4.87E-03 �������

RBD2 1.20E-02 3.82E+01 5.71E-02 1.28E-02 8.75E-04 6.10E+01 4.87E-03 1.74E-01

Wvlt 9.48E-03 4.03E+01 1.56E-01 �������
 1.05E-03 5.94E+01 1.17E-02 5.50E-02

Spctrl 1.60E-02 3.57E+01 6.37E-01 �������
 1.05E-03 5.94E+01 4.32E-02 6.50E-02

AC 1.82E-02 3.46E+01 1.50E-01 1.11E-02 - - - -

d7

SBD1 2.72E-01 4.27E+01 5.50E-01 2.82E-02 2.74E-02 6.26E+01 6.37E-02 ��������

RBD2 2.70E-01 4.28E+01 7.41E-01 3.43E-02 2.17E-02 6.47E+01 7.99E-02 5.16E-01

Wvlt 2.76E-01 4.26E+01 2.75E+00 	������� 3.05E-02 6.17E+01 2.00E-01 1.60E-01

AC 2.76E-01 4.26E+01 1.00E+00 1.82E-02 - - - -

���� indicates the lowest CR for a given dataset and error tolerance

6.3 Comparison with Other Methods

In our last set of experiments, we compare the performance of the best-performing
combinations of the set- and region-based decomposition approaches (SBD1 with
SQE encoding and original vertex ordering, and RBD2 with original vertex or-
dering) against wavelet compression (Wvlt), spectral compression (Spctrl), and
adaptive coarsening (AC). Among these techniques, the wavelet compression and
adaptive coarsening can only be applied to structured grids and are only pre-
sented for the d2, d4, d6, and d7 datasets. Also, due to its high computational
requirements, we were not able to obtain results for the spectral compression for
the largest problem (d7). In addition to these schemes, we also experimented with
diffusion wavelets [3]. However, we obtained poor compression and we omitted
those results.

Table 2 shows the results of these experiments for two different compression
levels, labeled “high error tolerance” and “low error tolerance”. These compres-
sion levels result in RMSEs and MPEs that differ by approximately an order
of magnitude, and were obtained by experimenting with the parameters of the
various schemes so that to match their RMSEs for each of the datasets. How-
ever, for AC we were unable to achieve the desired RMSEs at all error tolerance
levels. In the case that we could not achieve a desired RMSE, the results were
omitted.
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The results show that on average, our algorithms compress the simulation
datasets to 2–5% of their original size. Compared with just lossless compression
only, which results in storage costs of 40–80% of the original size, this is a big
improvement. The results also show that for all but two experiments, SBD1
performs the best and that on average it required only 36% of the storage of the
next best algorithm. For unstructured grids it requires on average 25% of the
storage of Spctrl whereas for structured grids it requires on average 48% and
38% of the space of Wvlt and AC, respectively. Moreover, we see that as the
amount of allowable error is lowered, the performance gap between SBD1 and
the other methods grows. In addition, for unstructured grids, RBD2 performs
the second best overall and requiring 61% of the space required by the Spctrl
on average. We also see that due to the ε constraint placed on the our methods,
they consistently result in MPE values which are much lower than those of
the competing algorithms. These results suggest that in the context of grid-
based simulation, SBD1 and RBD2 are consistently good choices for compression,
providing low point-wise and global reconstruction error, high compression ratio,
and low computational complexity.

7 Conclusion

In this paper, we introduced a paradigm for lossy compression of grid-based
simulation data that achieves compression by modeling the grid data via a graph
and identifying vertex-sets which can be approximated by a constant value within
a user provided error constraint. Our comprehensive set of experiments showed
that for structured and unstructured grids, these algorithms achieve compression
which results in storage requirements that on average, are up to 75% lower than
that other methods. Moreover, the near linear complexity of these algorithms
makes them ideally suited for performing in situ compression in future exascale-
class parallel systems.
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