Fast and Effective Task Scheduling in
Heterogeneous Systems

Andrei Radulescu Arjan J.C. van Gemund

Faculty of Information Technology and Systems
Delft University of Technology

P.O0.Box 5031, 2600 GA Delft, The Netherlands

{A.Radulescu,A.J.C.vanGemuy@its.tudelft.nl

Abstract geneous systems. However, in order to obtain high-
performance from such a system, both compile-time and
Recently, we presented two very low-cost approachestmtime support is necessary, in which scheduling the ap-
compile-time list scheduling where the tasks’ prioritigslication to the parallel system is a crucial factor. The
are computed statically or dynamically, respectively. Fproblem, known as task scheduling, has been shown to be
homogeneous systems, these two algorithms, called RUP-complete [3].
and FLB, have shown to yield a performance equivalent toThe general problem of task scheduling has been exten-
other much more costly algorithms such as MCP and EBlvely studied, mainly for homogeneous systems. Various
In this paper we present modified versions of FCP ahduristics have been proposed, including list algorithms
FLB targeted to heterogeneous systems. We show thpt11, 12, 13, 20], multi-step algorithms [14, 15, 22],
the modified versions yield a good overall performancguplication based algorithms [7, 2, 1], genetic algo-
which is generally comparable to algorithms specificallithms [18], algorithms using local search [21], bin pack-
designed for heterogeneous systems, such as HEFTingr[19], or graph decomposition [6]. Within all these ap-
ERT. There are a few cases, mainly for irregular problerpgoaches, list scheduling has been shown to have a good
and large processor speed variance, where FCP and Flgdst-performance trade-off, as considering its low cost,
performance drops down ®2% and63%, respectively. the performance is still very good [8, 13, 12]. The low-
Considering the good overall performance and their vegyst is a key issue for large problems, in which even a
low cost however, FCP and FLB are interesting optioag1/2) algorithm, wheré/ is the number of tasks, may
for scheduling very large problems on heterogeneous shgve a prohibitive cost.
tems. Task scheduling has also been studied in the specific
context of heterogeneous systems ([5, 9, 10, 16, 17]). It
Keywords: compile-time task scheduling, list schedulhas been shown that minimizing the tasks’ completion
ing, low-cost, heterogeneous systems time throughout the schedule is preferable to minimizing
the tasks’ start time [10, 17]. With respect to list schedul-
. ing algorithms, one can note that most of them can be eas-
1 Introduction ily modified to meet the task’s completion time minimiza-
tion criterion, and thus obtain good performance also in
Heterogeneous systems have recently become widilg heterogeneous case (e.g., HEFT [17] and ERT [9] are
used as a cheap way of obtaining a parallel system. Cltiee versions using the tasks’ completion time as the task
ters of workstations connected by high-speed networksiority of MCP [20] and ETF [4], respectively). How-
or simply the Internet are common examples of heterever, two very low-cost list scheduling algorithms that we

0-7695-0556-2/00 $10.00 ® 2000 IEEE

proposed recently, namely FCP (Fast Critical Path) [1&]irrent task to any exit task, where the path length is the
and FLB (Fast Load Balancing) [12], cannot be modsum of the computation and communication costs of the
fied in such an easy way without sacrificing their contasks and edges belonging to the path. A task is said to be
petitively low cost. readyif all its parents have finished their execution. Note
In this paper we present the modifications required tloat at any given time the number of ready tasks never
obtain a good performance from FCP and FLB in hetxceeds$V. A task can start its execution only after all its
erogeneous systems. We show that the modified veressages have been received.
sions of FCP and FLB yield a good overall performance,As a distributed system we assume aBedf P pro-
which is generally comparable to algorithms specificalessors connected in a clique topology in which inter-
designed for heterogeneous systems, such as HEFT (lgedcessor communication is assumed to perform with-
erogeneous Earliest-Finish-Time) [17] and ERT (Earliestit contention. The processors’ computing speeds differ
Task First) [9]. There are a few cases, mainly for irreguland are represented as fractions of the slowest processor
problems and wide processor speed ranges, in which F§pieed. We assume that the task execution time is pro-
and FLB's performance drops down38% and63%, re- portional with the speed of the processor it is executed
spectively. Considering their very low cost and reasoon, and consists of the computation cost multiplied by the
ably good performance, we believe that FCP and FLB grecessor speed.
interesting options for task scheduling in heterogeneousn our algorithms, an important concept is that of the
systems, especially for large problems where schedulimgabling processoof a ready task, EP(t), which is the
time would otherwise be prohibitive. processor from which the last message arrives. Given a
This paper is organized as follows: The next two separtial schedule and a ready taskhe task is said to be of
tions briefly describe the scheduling problem, and thgpe EPIf its last message arrival time is greater than the
FCP and FLB algorithms, respectively. In Section 4 weady time of its enabling processor andtyfe non-EP
study their performance for heterogeneous systems. Saifierwise. Thus, an EP type task starts the earliest on its
tion 5 concludes the paper. enabling processor.

2 Preliminaries 3 The Algorithms

The task scheduling algorithm input is a directed acycligst scheduling algorithms use two approaches to sched-
graphg = (V, &), that models a parallel program, wherale tasks. The first category is thstatic list schedul-
V is a set ofV nodes and is a set ofE edges. A node ing algorithms (e.g., MCP [20], DPS [11], HEFT [17],
in the DAG represents a task, containing instructions tH&EP [13]) that schedule the tasks in the order of their pre-
execute sequentially without preemption. Each task is agwusly computed priorities. A task is usually scheduled
sumed to have eomputation costThe edges correspondn the processor that gives the earliest start time for the
to task dependencies (communication messages or prgoeen task. Thus, at each scheduling step, first the task is
dence constraints) and haveammunication costThe selected and afterwards its destination processor.
communication-to-computation rati@C R) of a paral- The second approach igdynamic list scheduling
lel program is defined as the ratio between its avera@eg. ETF [4], ERT [9], FLB [12]). In this case, the tasks
communication and computation costs. If two tasks ade not have a precomputed priority. At each scheduling
scheduled to the same processor, the communication &sp, each ready task is tentatively scheduled to each pro-
between them is assumed to be zero. The task graplsor, and the besttask, processor pair is selected
width (W) is defined as the maximum number of taskg.g., the ready task that starts the earliest on the proces-
that are not connected through a path. sor where this earliest start time is obtained for ETF, or
A task with no input edges is called antrytask, while the ready task that finishes the earliest on the processor
a task with no output edges is called axit task. The where this earliest finish time is obtained for ERT). Thus,
task'sbottom levels defined as the longest path from that each step both the task and its destination processor are

selected at the same time. mance is not affected, while the time complexity is dras-
Both static and dynamic approaches of list schedtikally reduced fromO((E +V)P) to O(V log (P) + E).
ing have their advantages and drawbacks in terms of th& he task selection complexity can be reduced by main-
schedule quality they produce. Static approaches are mtaieing only aconstant sizesorted list of ready tasks.
suited for communication-intensive and irregular prof-hus, we sort as many tasks as they fit in the fixed size
lems, where selecting important tasks first is more cruciatrted list, while the others are stored in an unsorted FIFO
Dynamic approaches are more suited for computatidist which has arO(1) access time. The time complex-
intensive applications with a high degree of parallelisrity of sorting tasks using a list of siz& decreases to
because these algorithms focus on obtaining a good ptgd log H) as all the tasks are enqueued and dequeued
cessor utilization. in the sorted list only once. We have found that for
FCP (Fast Critical Path) [13] and FLB (Fast Load BaFCP, which uses bottom level as task priority, a size of
ancing) [12] significantly reduce the cost of the static arfdl is required to achieve a performance comparable to
dynamic list scheduling approaches, respectively. In tthee original list scheduling algorithm (see Section 4). A
next two sections, we describe both algorithms and werted list size of results in a task sorting complexity of
outline the differences between them and previous I8tV log P).

scheduling algorithms. Using the described techniques for task sorting and
processor selection the total time complexity of FCP
31 FECP (O(V'log (P) + E)) is clearly a significant improvement

over the time complexity of typical list scheduling ap-

Static list scheduling algorithms have three importaptoaches with statically computed priority.
steps: (atask priorities computationthat takes at least
O(E + V) time, since the whole task graph has to be> FLB
traversed, (b)task selectionaccording to their priori-
ties, that takes)(V log W) time, and (c) processor sedn FLB, at each iteration of the algorithm, the ready task
lection, that selects the “best” processor for the previat can start the earliest is scheduled to the processor on
ously selected task, usually the processor where the auhich that start time is achieved. Note that FLB uses the
rent task starts/finishes the earliest. Processor selecsame task selection criterion as in ETF. In contrastto ETF
takesO((E + V)P) time, since each task is tentativeljhowever, the preferred task and its destination processor
scheduled to each processor. Thus, the highest compbme identified inO(log (W) + log (P)) time instead of
ity steps are the task and processor selection steps, wiii§h’ P).
determine the® (V log (W)+(E+V)P) time complexity ~ To select the earliest starting task, pairs of a ready task
of the static list scheduling algorithms and the processor on which the task starts the earliest need

In FCP, the processor selection complexity is signitie be considered. As shown earlier, in order to obtain the
cantly reduced by restricting the choice for the destinearliest start time of a ready task on a partial schedule,
tion processor from all processors to orlyo proces- the given task must be scheduled either (a) to the task’s
sors: (a) the task’s enabling processor, or (b) the processoeabling processor, or (b) to the processor becoming idle
which becomes idle the earliest. In [13] we prove that tltlee earliest.
start time of a given task is minimized by selecting one Given a partial schedule, there are only two pairs task-
of these two destination processors. The proof is baggdcessor that can achieve the minimum start time for a
on the fact that the start time of a taslon a candidate task: (a) the EP type tagkwith the minimum estimated
processop is defined as the maximum between (a) theart timeEST (¢, EP(t)) on its enabling processor, and
time the last message taarrives, and (b) the timg be- (b) the non-EP type tagkwith the minimum last message
comes idle. As the above-mentioned processors minimaeival time LM T'(t") on the processor becoming idle the
the two components of the task’s start time, respectivedgrliest. The first case minimizes the earliest start time
it follows that one of the two processors minimizes thaf the EP type tasks, while the second case minimizes the
task’s start time. Consequently, the algorithm’s perfogarliest start time of the non-EP type tasks. If in both cases

LU Laplace Stencil

Figure 1: Miniature task graphs

the same earliest start time is obtained, the non-EP type mean task execution time. Using this priority scheme,
task is preferred, because the communication causedagyare now able to incorporate the processor speed when
the messages sent from the task’s predecessors are alrealiycting the processor for a non-EP task. This is a raw
overlapped with the previous computation. Consideriagproximation of finding the processor where a non-EP
the two cases discussed above guarantees that the régolytask finishes the earliest.
task with the earliest start time will be identified. Aformal In FLB, we also modify the task priority for the EP-type
proof is given in [12]. tasks. The EP-type tasks are sorted by their finish time on
To reduce the complexity even further, the sambeir enabling processor instead of their start time.
scheme as in FCP can be used. Instead of maintaining akinally, for both FCP and FLB, we change the final
EP and non-EP tasks sorted, only a fixed number of tagkmice between the two candidate tasks, by selecting the
are stored sorted, while the other are stored in FIFO ordesk finishing the earliest instead of the task starting the
The FLB’s complexity is reduced t0(V log (P) + E), earliest.
while the performance is maintained at a level comparableyote, that all these modifications of FCP and FLB do
to using the fully sorted task lists (see Section 4). not involve any extra cost compared to the original ver-
sions. As a consequence, the cost of both FCP and FLB

33 The Modifications is maintained at the same very low level.

As mentioned earlier, task scheduling algorithms for het-

erogeneous systems perform better when they sort tadks Performance Results

by their finish time rather than start time. The reason is

that sorting by finish time implicitly takes into considerafhe FCP and FLB algorithms are compared with
tion processor speeds. However, in order to maintain thEIRT (Earliest Task First) [9] and HEFT (Heterogeneous
very low complexity, FCP and FLB must sort the tasksarliest-Finish-Time) [17]. ERTQ(W (E + V))P)) and
according to their start time. As a consequence, the pHEFT (O(V logW + (E + V')P)) are well-known and
cessor speed is not considered when scheduling a nonkEPe been shown to obtain competitive results in hetero-
task, but only the time the processors becomes idle. geneous systems [9, 17].

To overcome this deficiency, we change the priority cri- For both FCP and FLB we used two versions. The first
terion for processors for both FCP and FLB. Instead wérsion usedully sorted task lists. For this first version,
using the time the processor becomes idle the earliest &C# and FLB have exactly the same scheduling criteria
priority, we now use theumof the processor idle time andas MCP and ETF, respectively. The second version uses

[JERT pFCP-f
IHEFT FCP-p
QFLB-f
T[ms] = NFLB-p

300
200

100

Figure 2: Cost comparison

partially sorted priority lists of sizeP. We call the first Pro/300MHz PC with 64Mb RAM running Linux 2.0.32.
version of the algorithms FCP-f and FLB-f, and the se&RT is the most costly among the compared algorithms.
ond FCP-p and FLB-p, respectively. Its cost increases from2 ms for2 processors up tbl s
We consider task graphs representing various typedaf64 processors (we do not include ERT’s running times
parallel algorithms. The selected problemslddedecom- for P > 16 in Figure 2 due to their too much higher val-
position(“LU"), Laplace equation solvdfLaplace”)and ues). HEFT’s cost also increases with the number of pro-
a stencil algorithm(“Stencil”). For each of these prob-cessors, but it is significantly lower. Fét = 2, it runs
lems, we adjusted the problem size to obtain task grapbs17 ms, while forP = 64, the running time i279 ms.
of about2000 nodes. For each problem, we varied the Both versions of the FCP and FLB have considerably
task graph granularities, by varying the communicatiolower running times. FCP-p’s running time is the lowest,
to-computation ratio@C R). The values used fatlC R varying from16 ms for P = 2 to 25 ms for P = 64.
are 0.2 and 5.0. For each problem and e@¢hR value, FCP-f varies from21 ms for P = 2 to 24 ms for P = 64.
we generated 5 graphs with random execution times d@de can note that for larger number of processors both
communication delays (i.i.d. uniform distribution withversions of FCP have the same running times. The reason
unit coefficient of variation), the results being the aveis that the ready tasks fit in the sorted part of the FCP-f's
age over the 5 graphs (in view of the low overall variancgtiority list.
5 samples are sufficient). Miniature task graphs sample$-LB has a slightly higher cost compared to FCP, be-
of each type are shown in Figure 1. cause of the more complicated task and processor selec-
We schedule the task graphs @n4, 8, 16 and 32 tion schemes. The running times vary aro@6dns and
processors. For each, we usel0 heterogeneous con-24 ms for FLB-f and FLB-p, respectively. Their running
figurations in which the processors’ speed are uniformiynes do not vary significantly with the number of proces-
distributed over the following intervals|8,12], [6,14] sors. One can note that for larger number of processors,
and [4,16]. Thus, the total number of test configura=CP and FLB’s running times tend to become similar.
tions is3 (problems)x 2 (CCR) x 5 (sample graphs
5 (processor_ranges) 10 (processor configurations) 4.2 Scheduling Performance
3 (processor intervalsy 5500.
In this section we study how the FCP and FLB algorithms
perform. We first compare FCP and FLB’s performance
to ERT and HEFT’s performance, with respect to gran-
In Fig. 2 the average running time of the algorithmsarity, problem type and processor heterogeneity. Next,
is shown in CPU seconds as measured on a Pentiwshow the speedups achieved by FCP and FLB.

4.1 Running Times

DERT @FCP-f
IHEFT gFCP-p

OFLB-f
SFLB-
NSL NSL gFLBE-p
14 14
CCR 1.2 ‘ 120
1/5 1.0hmm fede M5 g L 0he s
0.8 . 0.8/ - ’-@@’-@
06 p 0654 g 16 32 P
NSL NSL NSL
1.4 LA LA
CCR 1.2 120 | 120
5/1 1.0l no 1.0 hwrrer - rwy” - . . 1.0 hesrm e T i 1T Mot -«
06 0654 8 16 0654 8 16 32 P
Laplace Stencil

Figure 3: Performance comparison with respect to the problem

For performance comparison, we use titmmalized respectively.
schedule lengtlgN S L), defined as the ratio between the Compared to HEFT, FCP is outperformed for problems
schedule length of the given algorithm and the schedineolving a large number of fork and join tasks, such as
length of ERT. LU and Laplace, for a large number of processors, with
In Figure 3 we study the algorithms’ performance witbp to 27% (Laplace,P = 32) and23% (LU, P = 32)
respect to the problem type by comparing the schedie coarse and fine-grain cases, respectively. However,
lengths averaged over the three processor speed intervalgll the other cases (i.e., for regular problems, such as
One can note that for both FCP and FLB, the parti&tencil, or for small number of processors) FCP performs
versions obtain performance similar to the full versionsomparable to HEFT.
Therefore we will further refer only to the partial versions FLB’s performance is generally worse, being outper-
of FCP and FLB. formed by ERT, HEFT and FCP by up 46%, 57%, and
One can note that the overall performance of FCP38% (all for coarse-grain Laplace? = 32%), respec-
comparable to ERT’s performance, although at a mugyely. However, even for FLB, the performance becomes
lower cost. For problems involving a large number of forkomparable to the other three algorithms for regular prob-
and join tasks, such as LU and Laplace, for a large numkgns, such as Stencil, or small number of processors.
of processors ERT performs better, upl& for both In Figure 4 we study the influence of the heterogene-
coarse and fine-grain cases (LaplaPe= 32). For all ity to the performance. The results are averaged over the
the other cases (i.e., for regular problems, such as Sterdil, Laplace and Stencil problems. Again, both FCP and
or for small number of processors) FCP performs equelB obtain similar performance for the full and partial
or better compared to ERT, up 8% (Stencil, P = 32) versions.
and7% (LU, P = 16) for coarse and fine-grain problems, Again, the overall performance of FCP is comparable

DERT BFCP-f
IHEFT gFCP-p

gFLB-f
§FLB-p
NSL NSL NSL
14 14l 14l
CCR 1.2 U 12| 12|
1/5 1.0heirs Mo A . 614 1.0hewy mos A e 1. 0heor ‘Mo M 7o AN
\
0.8 . 0.8 . ’-@[0.8 . ’-@@’-@
N
0.6 P 0.6 2 4 8 16 0.6 2 4 8 16 32 P
NSL NSL NSL
1.4 14l 14l
CCR 1.2 : 1.2 s 12|
5/1 1.0l e ,,E 1.0hermy e Mg 1o nrdl 1.0kt e 1o Tl
MU0, R0, A
OF;G 2 4 8 16 32 P 0.6 2 4 8 16 P 0.6 2 4 8 16 32 P
rocessor
speed range#-16 6-14 8-12

Figure 4: Performance comparison with respect to heterogeneity

to ERT'’s performance. For a large processor speed v#i-B, the performance becomes comparable to the other
ance (i.e.4 — 16) and for a large number of processorhree algorithms for regular problems, such as Stencil, or
ERT performs better, up t5% and12% for coarse and small number of processors.

fine-grain casesl(— 16 processor speed rangé,= 32), e can note that for heterogeneous systems, the ver-
respectively. For all the other cases (i.e., small procesgys ysing fully and partially sorted priority lists perform
speed variance, or for small number of processors) Fggmparable for both FCP and FLB. Similar to homoge-
performs equal or even better compared to ERT, W0 o5 systems, a partially sorted list of sizgields com-
and12% (both for Stencil.P = 16) for coarse and fine- yetitive results, while the scheduling complexity becomes
grain problems, respectively. extremely low:0(V log (P) + E).

Compared to HEFT, FCP is also outperformed for a jgyres 5 and 6 show the speedups achieved for the
large processor speed variance and for a large numbeggp gnd FLB algorithms respectively. Although FCP per-
processors, with up 8% and26% (both for4 — 16 pro- - tormg petter, the two algorithms perform similar with re-
cessor speed rangé#, = 32) for coarse and fine-graingpect 1o problem type, granularity and processor speed
cases, respectively. However, for small processor spegflye For Stencil the speedup is almost linear. How-
variance, or for small number of processors, FCP'S P@ier for LU and Laplace the speedup starts leveling off
formance tends to become comparable to HEFT. for more than32 processors. The reason is that LU

FLB’s performance is generally worse, being outpeand Laplace have a large number of fork and join nodes,
formed by ERT, HEFT and FCP with up36%, 63%, and and as a consequence a limited parallelism, while Sten-
35% (all for 4 — 16 processor speed range, coarse-graiil is a regular problem with a large and constant paral-
problems,P = 32%), respectively. However, even forelism. Also, one can note that for a large processor speed

—+Lu

—e—Laplace
S S S —=— Stencil
CCR
1/5
CCR
5/1
1 2 4 8 16 32 P 1 2 4 8 16 32 P 1 2 4 8 16 32 P
Processor
speed range#-16 6-14 8-12
Figure 5: FCP-p Speedup
—+Lu
—e— Laplace
S S S —=— Stencil
CCR
1/5
CCR
5/1

« 1l#
1 2 4 8 16 32 P 1 2 4 8 16 32 P 1 2 4 8 16 32 P

Processor
Speed range4-16 6-14 8-12

Figure 6: FLB-p Speedup

variance (i.e.4 — 16) and a large number of processors[3] R. L. Graham. Bounds on multiprocessing timing
(P = 32) the speedup is lower compared to a small pro- anomalies.SIAM Journal on Applied Mathematics
cessor speed variance. Also, for fine-grain problems, the 17(2):416—-429, Mar. 1969.

speedup is lower for a large number of processors. In

both cases the reason is that there are not enough tadfk J--J- Hwang, Y.-C. Chow, F. D. Anger, and C.-Y.
to fully utilize the existing processors, and, as FCP and L€€. Scheduling precedence graphs in systems with
FLB are not specifically designed for heterogeneous pro- INt€rprocessor communication timeSlAM Journal
cessors, they do not always select the faster processors ©N Computing18:244-257, Apr. 1989.

first. [5] M. Kafil and I. Ahmad. Optimal task assignment in

heterogeneous computing systemsPtac. Hetero-

5 conclusion geneous Computing Workshd@97.

[6] A. A. Khan, C. L. McCreary, and M. S. Jones. A

In this paper we investigate the performance of the low- comparison of multiprocessor scheduling heuristics.
cost static list scheduling algorithm FCP and dynamiclist In Proc. Int'| Conf. on Parallel Processing 994.
scheduling algorithm FLB, modified to schedule applica-
tions for heterogeneous systems. We show that makirgl B- Kruatrachue and T. G. Lewis. Grain size determi-
minimal modifications that do not affect their very low nation for parallel processintEEE Softwarepages
cost, FCP and FLB still obtain good performance in het- 23-32, Jan. 1988.
tero.gereo#st);.stemls, a.tr? co?t tf;]at Is considerably belt@ﬁ Y.-K. Kwok and I. Ahmad. Benchmarking the task
ypical scheduling algorithms for eterogengqus systgm " graph scheduling algorithms. Proc. Int’l Paral-

We show that th_e performance of the modified versions o Processing Symp. / Symp. on Parallel and Dis-
of FCP and FLB is generally comparable to algorithms tributed ProcessingL998.
specifically designed for heterogeneous systems, such as
HEFT and ERT. There are only a few cases, mainly fof9] C.-Y. Lee, J.-J. Hwang, Y.-C. Chow, and F. D.
irregular problems and large processor speed variance, Anger. Multiprocessor scheduling with interpro-
where FCP and FLB's performance drops dowr82%, cessor communication delay@perations Research
and63%, respectively. Letters 7:141-147, June 1988.

Considering the overall performance and their very low
cost compared to the other algorithms, we believe FEH¥] M. Maheswaran and H. J. Siegel. A dynamic
and FLB to be interesting compile-time candidates for ~mMatching and scheduling algorithm for heteroge-
heterogeneous systems, especially considering the large N€ous computing systems. Rroc. Heterogeneous
problem sizes that are used in practice. Computing Workshopi.998.

[11] G.-L. Park, B. Shirazi, J. Marquis, and H. Choo.
Decisive path scheduling: A new list scheduling
method. InProc. Int'l Conf. on Parallel Processing
1997.

References

[1] I. Ahmad and Y.-K. Kwok. A new approach to

scheduling parallel programs using task duplicatiofi.2] A. Radulescu and A. J. C. van Gemund. FLB: Fast
In Proc. Int’'l Conf. on Parallel Processind.994. load balancing for distributed-memory machines. In

o Proc. Int'l Conf. on Parallel Processing 999.
[2] Y. C. Chung and S. Ranka. Application and perfor-

mance analysis of a compile-time optimization api3] A. Radulescuand A. J. C. van Gemund. On the com-
proach for list scheduling algorithms on distributed- plexity of list scheduling algorithms for distributed-
memory multiprocessors. Iroc. Supercomputing memory systems. IRroc. ACM Int'| Conf. on Su-
1992. percomputing1999.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Radulescu, A. J. C. van Gemund, and H.-X. LirBiographies
LLB: A fast and effective scheduling algorithm forAndrei Radulescu received a MSc degree in Com-

f:?tél:)olg:gs-;:sn;?/xpsy/sz?rsb ?;O;g\:gﬁépgﬂl_m %uter Science in 1995 from “Politehnica” University of
tributed Processing:)eiges 525'_530 1999 ucharest. Between 1995 and 1997 he was a teaching as-
' ‘ sistant at the “Politehnica” University of Bucharest. Since
1997, he is a PhD student at the Department of Infor-
mation Technology and Systems of Delft University of
Technology. His research interests are in multiprocessor
scheduling, software support for parallel computing and

Li parallel and distributed systems programming,

V. Sarkar.Partitioning and Scheduling Parallel Pro-
grams for Execution on Multiprocessor®hD the-
sis, MIT, 1989.

M. Tan, H. J. Siegel, J. K. Antonio, and Y. A.

Minimizing the application execution time througl}l\rjan J.C. van Gemund received a BSc in Physics in

scheduling of subtasks and communication traffic 81 a MSc degree (cum laude) in Computer Science
a heterogeneous computing systetEEE Trans. ;'1989 and a PhD (cum laude) in 1996, all from Delft

zn Palrgge7l and Distributed Systeqr8{(8)-857-871, University of Technology. In 1981 he joined the R &
ug. ' D organization of a Dutch multinational company as an
. Electrical Engineer and Systems Programmer. Between
H.hsz?uoqul, S,'thHa”rf" aﬁdt M.-Y. Wu. T""S’k1989 and 1992 he joined the Dutch TNO research orga-
sche Iulgng a|_g|]otr| ms tor gerogetpeo\tﬁ irocq’ﬁ'zation as a Research Scientist specialized in the field of
igrgsg nroc. Heterogeneous L.omputing Wor ShoRigh-performance computing. Since 1992, he works at
: the Department of Information Technology and Systems
. f Delft University of Technology, currently as Associate
L. Wang, H. J. Siegel, V. P. Roychowdhury, anarofessor. His research interests are in the area of paral-

A' A. Maciejewski. Task ”.‘a‘Ch'”Q and schedu_lmgel and distributed systems programming, scheduling, and
in heterogeneous computing environments usin Bformance modeling

genetic-algorithm-based approachournal of Par-
allel and Distributed Computingt7:8—-22, 1997.

C. M. Woodside and G. G. Monforton. Fast allo-
cation of processes in distributed and parallel sys-
tems. IEEE Trans. on Parallel and Distributed Sys-
tems 4(2):164-174, Feb. 1993.

M.-Y. Wu and D. D. Gajski. Hypertool: A program-
ming aid for message-passing systetBEE Trans.
on Parallel and Distributed System#(7):330-343,
July 1990.

M.-Y. Wu, W. Shu, and J. Gu. Local search for dag
scheduling and task assignmentPioc. Int'l Conf.
on Parallel Processingl997.

T. Yang and A. Gerasoulis. Pyrros: Static task
scheduling and code generation for message pass-
ing multiprocessors. IfProc. ACM Int’'l Conf. on
Supercomputingl992.

