
Fast and Effective Task Scheduling in
Heterogeneous Systems
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Abstract

Recently, we presented two very low-cost approaches to
compile-time list scheduling where the tasks’ priorities
are computed statically or dynamically, respectively. For
homogeneous systems, these two algorithms, called FCP
and FLB, have shown to yield a performance equivalent to
other much more costly algorithms such as MCP and ETF.
In this paper we present modified versions of FCP and
FLB targeted to heterogeneous systems. We show that
the modified versions yield a good overall performance,
which is generally comparable to algorithms specifically
designed for heterogeneous systems, such as HEFT or
ERT. There are a few cases, mainly for irregular problems
and large processor speed variance, where FCP and FLB’s
performance drops down to32% and63%, respectively.
Considering the good overall performance and their very
low cost however, FCP and FLB are interesting options
for scheduling very large problems on heterogeneous sys-
tems.

Keywords: compile-time task scheduling, list schedul-
ing, low-cost, heterogeneous systems

1 Introduction

Heterogeneous systems have recently become widely
used as a cheap way of obtaining a parallel system. Clus-
ters of workstations connected by high-speed networks,
or simply the Internet are common examples of hetero-

geneous systems. However, in order to obtain high-
performance from such a system, both compile-time and
runtime support is necessary, in which scheduling the ap-
plication to the parallel system is a crucial factor. The
problem, known as task scheduling, has been shown to be
NP-complete [3].

The general problem of task scheduling has been exten-
sively studied, mainly for homogeneous systems. Various
heuristics have been proposed, including list algorithms
[4, 11, 12, 13, 20], multi-step algorithms [14, 15, 22],
duplication based algorithms [7, 2, 1], genetic algo-
rithms [18], algorithms using local search [21], bin pack-
ing [19], or graph decomposition [6]. Within all these ap-
proaches, list scheduling has been shown to have a good
cost-performance trade-off, as considering its low cost,
the performance is still very good [8, 13, 12]. The low-
cost is a key issue for large problems, in which even a
O(V 2) algorithm, whereV is the number of tasks, may
have a prohibitive cost.

Task scheduling has also been studied in the specific
context of heterogeneous systems ([5, 9, 10, 16, 17]). It
has been shown that minimizing the tasks’ completion
time throughout the schedule is preferable to minimizing
the tasks’ start time [10, 17]. With respect to list schedul-
ing algorithms, one can note that most of them can be eas-
ily modified to meet the task’s completion time minimiza-
tion criterion, and thus obtain good performance also in
the heterogeneous case (e.g., HEFT [17] and ERT [9] are
the versions using the tasks’ completion time as the task
priority of MCP [20] and ETF [4], respectively). How-
ever, two very low-cost list scheduling algorithms that we
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proposed recently, namely FCP (Fast Critical Path) [13]
and FLB (Fast Load Balancing) [12], cannot be modi-
fied in such an easy way without sacrificing their com-
petitively low cost.

In this paper we present the modifications required to
obtain a good performance from FCP and FLB in het-
erogeneous systems. We show that the modified ver-
sions of FCP and FLB yield a good overall performance,
which is generally comparable to algorithms specifically
designed for heterogeneous systems, such as HEFT (Het-
erogeneous Earliest-Finish-Time) [17] and ERT (Earliest
Task First) [9]. There are a few cases, mainly for irregular
problems and wide processor speed ranges, in which FCP
and FLB’s performance drops down to32% and63%, re-
spectively. Considering their very low cost and reason-
ably good performance, we believe that FCP and FLB are
interesting options for task scheduling in heterogeneous
systems, especially for large problems where scheduling
time would otherwise be prohibitive.

This paper is organized as follows: The next two sec-
tions briefly describe the scheduling problem, and the
FCP and FLB algorithms, respectively. In Section 4 we
study their performance for heterogeneous systems. Sec-
tion 5 concludes the paper.

2 Preliminaries

The task scheduling algorithm input is a directed acyclic
graphG = (V ; E), that models a parallel program, where
V is a set ofV nodes andE is a set ofE edges. A node
in the DAG represents a task, containing instructions that
execute sequentially without preemption. Each task is as-
sumed to have acomputation cost. The edges correspond
to task dependencies (communication messages or prece-
dence constraints) and have acommunication cost. The
communication-to-computation ratio(CCR) of a paral-
lel program is defined as the ratio between its average
communication and computation costs. If two tasks are
scheduled to the same processor, the communication cost
between them is assumed to be zero. The task graph
width (W ) is defined as the maximum number of tasks
that are not connected through a path.

A task with no input edges is called anentrytask, while
a task with no output edges is called anexit task. The
task’sbottom levelis defined as the longest path from the

current task to any exit task, where the path length is the
sum of the computation and communication costs of the
tasks and edges belonging to the path. A task is said to be
readyif all its parents have finished their execution. Note
that at any given time the number of ready tasks never
exceedsW . A task can start its execution only after all its
messages have been received.

As a distributed system we assume a setP of P pro-
cessors connected in a clique topology in which inter-
processor communication is assumed to perform with-
out contention. The processors’ computing speeds differ
and are represented as fractions of the slowest processor
speed. We assume that the task execution time is pro-
portional with the speed of the processor it is executed
on, and consists of the computation cost multiplied by the
processor speed.

In our algorithms, an important concept is that of the
enabling processorof a ready taskt,EP (t), which is the
processor from which the last message arrives. Given a
partial schedule and a ready taskt, the task is said to be of
type EPif its last message arrival time is greater than the
ready time of its enabling processor and oftype non-EP
otherwise. Thus, an EP type task starts the earliest on its
enabling processor.

3 The Algorithms

List scheduling algorithms use two approaches to sched-
ule tasks. The first category is thestatic list schedul-
ing algorithms (e.g., MCP [20], DPS [11], HEFT [17],
FCP [13]) that schedule the tasks in the order of their pre-
viously computed priorities. A task is usually scheduled
on the processor that gives the earliest start time for the
given task. Thus, at each scheduling step, first the task is
selected and afterwards its destination processor.

The second approach isdynamic list scheduling
(e.g. ETF [4], ERT [9], FLB [12]). In this case, the tasks
do not have a precomputed priority. At each scheduling
step, each ready task is tentatively scheduled to each pro-
cessor, and the best<task, processor> pair is selected
(e.g., the ready task that starts the earliest on the proces-
sor where this earliest start time is obtained for ETF, or
the ready task that finishes the earliest on the processor
where this earliest finish time is obtained for ERT). Thus,
at each step both the task and its destination processor are



selected at the same time.
Both static and dynamic approaches of list schedul-

ing have their advantages and drawbacks in terms of the
schedule quality they produce. Static approaches are more
suited for communication-intensive and irregular prob-
lems, where selecting important tasks first is more crucial.
Dynamic approaches are more suited for computation-
intensive applications with a high degree of parallelism,
because these algorithms focus on obtaining a good pro-
cessor utilization.

FCP (Fast Critical Path) [13] and FLB (Fast Load Bal-
ancing) [12] significantly reduce the cost of the static and
dynamic list scheduling approaches, respectively. In the
next two sections, we describe both algorithms and we
outline the differences between them and previous list
scheduling algorithms.

3.1 FCP

Static list scheduling algorithms have three important
steps: (a)task priorities computation, that takes at least
O(E + V ) time, since the whole task graph has to be
traversed, (b)task selectionaccording to their priori-
ties, that takesO(V logW ) time, and (c) processor se-
lection, that selects the “best” processor for the previ-
ously selected task, usually the processor where the cur-
rent task starts/finishes the earliest. Processor selection
takesO((E + V )P ) time, since each task is tentatively
scheduled to each processor. Thus, the highest complex-
ity steps are the task and processor selection steps, which
determine theO(V log (W )+(E+V )P ) time complexity
of the static list scheduling algorithms

In FCP, the processor selection complexity is signifi-
cantly reduced by restricting the choice for the destina-
tion processor from all processors to onlytwo proces-
sors: (a) the task’s enabling processor, or (b) the processor
which becomes idle the earliest. In [13] we prove that the
start time of a given task is minimized by selecting one
of these two destination processors. The proof is based
on the fact that the start time of a taskt on a candidate
processorp is defined as the maximum between (a) the
time the last message tot arrives, and (b) the timep be-
comes idle. As the above-mentioned processors minimize
the two components of the task’s start time, respectively,
it follows that one of the two processors minimizes the
task’s start time. Consequently, the algorithm’s perfor-

mance is not affected, while the time complexity is dras-
tically reduced fromO((E+V )P ) toO(V log (P )+E).

The task selection complexity can be reduced by main-
taining only aconstant sizesorted list of ready tasks.
Thus, we sort as many tasks as they fit in the fixed size
sorted list, while the others are stored in an unsorted FIFO
list which has anO(1) access time. The time complex-
ity of sorting tasks using a list of sizeH decreases to
O(V logH) as all the tasks are enqueued and dequeued
in the sorted list only once. We have found that for
FCP, which uses bottom level as task priority, a size of
P is required to achieve a performance comparable to
the original list scheduling algorithm (see Section 4). A
sorted list size ofP results in a task sorting complexity of
O(V logP ).

Using the described techniques for task sorting and
processor selection the total time complexity of FCP
(O(V log (P ) + E)) is clearly a significant improvement
over the time complexity of typical list scheduling ap-
proaches with statically computed priority.

3.2 FLB

In FLB, at each iteration of the algorithm, the ready task
that can start the earliest is scheduled to the processor on
which that start time is achieved. Note that FLB uses the
same task selection criterion as in ETF. In contrast to ETF
however, the preferred task and its destination processor
are identified inO(log (W ) + log (P )) time instead of
O(WP ).

To select the earliest starting task, pairs of a ready task
and the processor on which the task starts the earliest need
to be considered. As shown earlier, in order to obtain the
earliest start time of a ready task on a partial schedule,
the given task must be scheduled either (a) to the task’s
enabling processor, or (b) to the processor becoming idle
the earliest.

Given a partial schedule, there are only two pairs task-
processor that can achieve the minimum start time for a
task: (a) the EP type taskt with the minimum estimated
start timeEST (t; EP (t)) on its enabling processor, and
(b) the non-EP type taskt0 with the minimum last message
arrival timeLMT (t0) on the processor becoming idle the
earliest. The first case minimizes the earliest start time
of the EP type tasks, while the second case minimizes the
earliest start time of the non-EP type tasks. If in both cases
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Figure 1: Miniature task graphs

the same earliest start time is obtained, the non-EP type
task is preferred, because the communication caused by
the messages sent from the task’s predecessors are already
overlapped with the previous computation. Considering
the two cases discussed above guarantees that the ready
task with the earliest start time will be identified. A formal
proof is given in [12].

To reduce the complexity even further, the same
scheme as in FCP can be used. Instead of maintaining all
EP and non-EP tasks sorted, only a fixed number of tasks
are stored sorted, while the other are stored in FIFO order.
The FLB’s complexity is reduced toO(V log (P ) + E),
while the performance is maintained at a level comparable
to using the fully sorted task lists (see Section 4).

3.3 The Modifications

As mentioned earlier, task scheduling algorithms for het-
erogeneous systems perform better when they sort tasks
by their finish time rather than start time. The reason is
that sorting by finish time implicitly takes into considera-
tion processor speeds. However, in order to maintain their
very low complexity, FCP and FLB must sort the tasks
according to their start time. As a consequence, the pro-
cessor speed is not considered when scheduling a non-EP
task, but only the time the processors becomes idle.

To overcome this deficiency, we change the priority cri-
terion for processors for both FCP and FLB. Instead of
using the time the processor becomes idle the earliest as a
priority, we now use thesumof the processor idle time and

the mean task execution time. Using this priority scheme,
we are now able to incorporate the processor speed when
selecting the processor for a non-EP task. This is a raw
approximation of finding the processor where a non-EP
type task finishes the earliest.

In FLB, we also modify the task priority for the EP-type
tasks. The EP-type tasks are sorted by their finish time on
their enabling processor instead of their start time.

Finally, for both FCP and FLB, we change the final
choice between the two candidate tasks, by selecting the
task finishing the earliest instead of the task starting the
earliest.

Note, that all these modifications of FCP and FLB do
not involve any extra cost compared to the original ver-
sions. As a consequence, the cost of both FCP and FLB
is maintained at the same very low level.

4 Performance Results

The FCP and FLB algorithms are compared with
ERT (Earliest Task First) [9] and HEFT (Heterogeneous
Earliest-Finish-Time) [17]. ERT (O(W (E + V )P )) and
HEFT (O(V logW + (E + V )P )) are well-known and
have been shown to obtain competitive results in hetero-
geneous systems [9, 17].

For both FCP and FLB we used two versions. The first
version usesfully sorted task lists. For this first version,
FCP and FLB have exactly the same scheduling criteria
as MCP and ETF, respectively. The second version uses
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partially sorted priority lists of sizeP . We call the first
version of the algorithms FCP-f and FLB-f, and the sec-
ond FCP-p and FLB-p, respectively.

We consider task graphs representing various types of
parallel algorithms. The selected problems areLU decom-
position(“LU”), Laplace equation solver(“Laplace”) and
a stencil algorithm(“Stencil”). For each of these prob-
lems, we adjusted the problem size to obtain task graphs
of about2000 nodes. For each problem, we varied the
task graph granularities, by varying the communication-
to-computation ratio (CCR). The values used forCCR
are 0.2 and 5.0. For each problem and eachCCR value,
we generated 5 graphs with random execution times and
communication delays (i.i.d. uniform distribution with
unit coefficient of variation), the results being the aver-
age over the 5 graphs (in view of the low overall variance,
5 samples are sufficient). Miniature task graphs samples
of each type are shown in Figure 1.

We schedule the task graphs on2, 4, 8, 16 and 32
processors. For eachP , we use10 heterogeneous con-
figurations in which the processors’ speed are uniformly
distributed over the following intervals:[8; 12], [6; 14]
and [4; 16]. Thus, the total number of test configura-
tions is3 (problems)� 2 (CCR)� 5 (sample graphs)�
5 (processor ranges)� 10 (processor configurations)�
3 (processor intervals)= 5500.

4.1 Running Times

In Fig. 2 the average running time of the algorithms
is shown in CPU seconds as measured on a Pentium

Pro/300MHz PC with 64Mb RAM running Linux 2.0.32.
ERT is the most costly among the compared algorithms.
Its cost increases from72 ms for2 processors up to11 s
for 64 processors (we do not include ERT’s running times
for P � 16 in Figure 2 due to their too much higher val-
ues). HEFT’s cost also increases with the number of pro-
cessors, but it is significantly lower. ForP = 2, it runs
for 17 ms, while forP = 64, the running time is279 ms.

Both versions of the FCP and FLB have considerably
lower running times. FCP-p’s running time is the lowest,
varying from16 ms for P = 2 to 25 ms forP = 64.
FCP-f varies from21 ms forP = 2 to 24 ms forP = 64.
One can note that for larger number of processors both
versions of FCP have the same running times. The reason
is that the ready tasks fit in the sorted part of the FCP-f’s
priority list.

FLB has a slightly higher cost compared to FCP, be-
cause of the more complicated task and processor selec-
tion schemes. The running times vary around26 ms and
24 ms for FLB-f and FLB-p, respectively. Their running
times do not vary significantly with the number of proces-
sors. One can note that for larger number of processors,
FCP and FLB’s running times tend to become similar.

4.2 Scheduling Performance

In this section we study how the FCP and FLB algorithms
perform. We first compare FCP and FLB’s performance
to ERT and HEFT’s performance, with respect to gran-
ularity, problem type and processor heterogeneity. Next,
we show the speedups achieved by FCP and FLB.
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Figure 3: Performance comparison with respect to the problem

For performance comparison, we use thenormalized
schedule length(NSL), defined as the ratio between the
schedule length of the given algorithm and the schedule
length of ERT.

In Figure 3 we study the algorithms’ performance with
respect to the problem type by comparing the schedule
lengths averaged over the three processor speed intervals.
One can note that for both FCP and FLB, the partial
versions obtain performance similar to the full versions.
Therefore we will further refer only to the partial versions
of FCP and FLB.

One can note that the overall performance of FCP is
comparable to ERT’s performance, although at a much
lower cost. For problems involving a large number of fork
and join tasks, such as LU and Laplace, for a large number
of processors ERT performs better, up to16% for both
coarse and fine-grain cases (Laplace,P = 32). For all
the other cases (i.e., for regular problems, such as Stencil,
or for small number of processors) FCP performs equal
or better compared to ERT, up to8% (Stencil,P = 32)
and7% (LU, P = 16) for coarse and fine-grain problems,

respectively.
Compared to HEFT, FCP is outperformed for problems

involving a large number of fork and join tasks, such as
LU and Laplace, for a large number of processors, with
up to 27% (Laplace,P = 32) and23% (LU, P = 32)
for coarse and fine-grain cases, respectively. However,
in all the other cases (i.e., for regular problems, such as
Stencil, or for small number of processors) FCP performs
comparable to HEFT.

FLB’s performance is generally worse, being outper-
formed by ERT, HEFT and FCP by up to46%, 57%, and
30% (all for coarse-grain Laplace,P = 32%), respec-
tively. However, even for FLB, the performance becomes
comparable to the other three algorithms for regular prob-
lems, such as Stencil, or small number of processors.

In Figure 4 we study the influence of the heterogene-
ity to the performance. The results are averaged over the
LU, Laplace and Stencil problems. Again, both FCP and
FLB obtain similar performance for the full and partial
versions.

Again, the overall performance of FCP is comparable
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Figure 4: Performance comparison with respect to heterogeneity

to ERT’s performance. For a large processor speed vari-
ance (i.e.,4 � 16) and for a large number of processors
ERT performs better, up to15% and12% for coarse and
fine-grain cases (4� 16 processor speed range,P = 32),
respectively. For all the other cases (i.e., small processor
speed variance, or for small number of processors) FCP
performs equal or even better compared to ERT, up to8%
and12% (both for Stencil,P = 16) for coarse and fine-
grain problems, respectively.

Compared to HEFT, FCP is also outperformed for a
large processor speed variance and for a large number of
processors, with up to28% and26% (both for4�16 pro-
cessor speed range,P = 32) for coarse and fine-grain
cases, respectively. However, for small processor speed
variance, or for small number of processors, FCP’s per-
formance tends to become comparable to HEFT.

FLB’s performance is generally worse, being outper-
formed by ERT, HEFT and FCP with up to50%, 63%, and
35% (all for 4 � 16 processor speed range, coarse-grain
problems,P = 32%), respectively. However, even for

FLB, the performance becomes comparable to the other
three algorithms for regular problems, such as Stencil, or
small number of processors.

One can note that for heterogeneous systems, the ver-
sions using fully and partially sorted priority lists perform
comparable for both FCP and FLB. Similar to homoge-
neous systems, a partially sorted list of sizeP yields com-
petitive results, while the scheduling complexity becomes
extremely low:O(V log (P ) +E).

Figures 5 and 6 show the speedups achieved for the
FCP and FLB algorithms respectively. Although FCP per-
forms better, the two algorithms perform similar with re-
spect to problem type, granularity and processor speed
range. For Stencil the speedup is almost linear. How-
ever, for LU and Laplace the speedup starts leveling off
for more than32 processors. The reason is that LU
and Laplace have a large number of fork and join nodes,
and as a consequence a limited parallelism, while Sten-
cil is a regular problem with a large and constant paral-
lelism. Also, one can note that for a large processor speed
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variance (i.e.,4 � 16) and a large number of processors
(P = 32) the speedup is lower compared to a small pro-
cessor speed variance. Also, for fine-grain problems, the
speedup is lower for a large number of processors. In
both cases the reason is that there are not enough tasks
to fully utilize the existing processors, and, as FCP and
FLB are not specifically designed for heterogeneous pro-
cessors, they do not always select the faster processors
first.

5 Conclusion

In this paper we investigate the performance of the low-
cost static list scheduling algorithm FCP and dynamic list
scheduling algorithm FLB, modified to schedule applica-
tions for heterogeneous systems. We show that making
minimal modifications that do not affect their very low
cost, FCP and FLB still obtain good performance in het-
erogeneous systems, at a cost that is considerably below
typical scheduling algorithms for heterogeneous systems.

We show that the performance of the modified versions
of FCP and FLB is generally comparable to algorithms
specifically designed for heterogeneous systems, such as
HEFT and ERT. There are only a few cases, mainly for
irregular problems and large processor speed variance,
where FCP and FLB’s performance drops down to32%
and63%, respectively.

Considering the overall performance and their very low
cost compared to the other algorithms, we believe FCP
and FLB to be interesting compile-time candidates for
heterogeneous systems, especially considering the large
problem sizes that are used in practice.
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