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ABSTRACT 
Clustering is a powerful technique for large-scale topic discovery 
from text. It involves two phases: first, feature extraction maps 
each document or record to a point in high-dimensional space, 
then clustering algorithms automatically group the points into a 
hierarchy of clusters. We describe an unsupervised, near-linear 
time text clustering system that offers a number of algorithm 
choices for each phase. We introduce a methodology for 
measuring the quality of a cluster hierarchy in terms of F- 
Measure, and present the results of experiments comparing 
different algorithms. The evaluation considers some feature 
selection parameters (tfidfand feature vector length) but focuses 
on the clustering algorithms, namely techniques from 
Scatter/Gather (buckshot, fractionation, and split/join) and k- 
means. Our experiments suggest that continuous center 
adjustment contributes more to cluster quality than seed selection 
does. It follows that using a simpler seed selection algorithm 
gives a better time/quality tradeoff. We describe a refinement to 
center adjustment, “vector average damping,” that further 
improves cluster quality. We also compare the near-linear time 
algorithms to a group average greedy agglomerative clustering 
algorithm to demonstrate the time/quality tradeoff quantitatively. 
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1. INTRODUCTION 
The information age is surrounding us with increasingly 
overwhelming quantities of electronic data. Users need software 
tools that can help them rapidly explore the most frequent form of 
data, collections of text. Hand-built directories of web content 
such as Yahoo! offer one solution to the problem, but 
unfortunately creating and maintaining such directories requires 
enormous amounts of human effort. Routing/categorization 
systems can help automate the assignment of documents to a topic 
hierarchy, but they require training and prior knowledge of the 
topics in a corpus. For many situations, a more practical solution 
is to discover and approximate these topic hierarchies using 
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unsupervised clustering methods. 

Document clustering helps tackle the information overload 
problem in several ways. One is exploration; the top level of a 
cluster hierarchy summarizes at a glance the contents of a 
document collection, enabling users to selectively drill deeper to 
explore specific topics of interest without reading every document 
(e.g., [7], [9], [13]). Used in retrieval (e.g., [6], [lo], [14]), 
clustering organizes search results by topic similarity and 
potentially helps users find relevant documents more quickly. 
Some clustering algorithms excel at quickly and accurately 
grouping duplicate or near-duplicate documents. Though each of 
these uses is important, the focus of our paper is the first use, i.e., 
multi-document summarization through the discovery of topic 
hierarchies. 

In this paper, we first describe our fast, scalable document 
clustering system. This text mining tool is designed to discover 
topic hierarchies in gigabytes of documents per day 1, and to 
present the results in an intuitive GUI (cf. Figure 1). We describe 
the algorithms we use, for both feature extraction and clustering 
of extracted features. Then, we evaluate the impact of different 
algorithms on the quality of the generated cluster hierarchies and 
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Figure 1 - User Interface 

1 Current throughput using the default near-linear algorithms, 
including all pre-processing (e.g., for building a term frequency 
baseline) and feature-extraction, is 1.5 hours for 1 gigabyte of 
text (-200,000 documents) on a Sun ULTRA 1 with 256MB 
RAM. 

16 



on the processing time required to build those hierarchies. 

Figure 1 shows the top level clusters for a small corpus (972 
documents), a large portion of which are news stories. The first 
cluster (239 documents) is about “quake, earthquake, richter 
scale” etc., so we can conclude that it contains documents about 
earthquakes. Each cluster is labeled with related terms (from the 
cluster centroid) that convey a coherent topic. The seventh cluster 
(84 documents) appears to be on medical issues (“heart, patient, 
euthanasia, doctor, drug, hospital, medical” etc.) We have 
expanded this cluster to show the nine sub-clusters (which 
represent medical subtopics) - two of these are documents (i.e., 
from a cluster of size one), shaded in gray. 

2. SYSTEM DESCRIPTION 
The primary steps to generating a hierarchy are the extraction of 
features from documents, followed by clustering or grouping 
based on those features. Over forty configurable parameters 
control the algorithms in this process - we will describe the most 
significant variations. 

2.1 Feature Extraction 
Feature extraction maps each document into a concise 
representation of its topic. These extracted features are used to 
compare documents and to label their content for users. We use 
the vector space model [l l] to represent documents as points in a 
high dimensional topic space, where each dimension corresponds 
to a unique word or concept from the corpus. The mapping 
process extracts a list of unique terms from each document, 
assigns each a weight, and represents the document using the n 
highest-weighted terms. We refer to the parameter n as the feature 
vector length, and our default is 25. 

Several parameters control term selection and weighting. By 
default, we remove stop words. The weight assigned to each 
remaining term is a function of either the tf (term frequency) or 
tf;df (term frequency - inverse document frequency). To use tfidf; 
the system makes an initial pass over the text collection to create a 
“baseline” - the baseline stores the total number of documents 
that each unique term occurs in (i.e., the document frequency). 
Feature extraction consults this baseline to set term weights as a 
function of both the term’s frequency within the document and 
the number of documents the term occurs in. An important word 
is one that appears frequently within the current document, but 
infrequently across the other documents in the collection. For 
example, the word ‘excavation’ is uncommon in most corpora, so 
if it appeared frequently in a particular document, it would be 
given a high topic weight. Conversely, words like ‘say’ that might 
appear in almost every document are assigned a low weight (even 
if they occur frequently in a given document.) 

Because feature extraction produces generic points in space as 
input to the clustering algorithms, the system is not limited to 
text; by implementing new feature extraction modules to map data 
to high-dimensional points, we could cluster any type of data. 

2.2 Clustering 
The goal of clustering is to group the points in a feature space 
optimally based on proximity, in order to form a hierarchy of 
clusters. We unified near-linear time complexity techniques from 
k-means ([8], [4]) and Scatter/Gather [l]. The techniques are all 
partitional, meaning that they simply separate a flat collection of 

items into a single set of “bins.” A hierarchy is built by 
recursively applying a partitional algorithm. The partitional 
algorithms each run in O(N) with respect to the number of 
documents, N, so the overall hierarchy is generated in O(N log N) 
time (assuming a balanced hierarchy.) 

Because documents and clusters are represented as points in 
space, we can compare them using vector cosine. Clusters include 
a “center” or “centroid” vector that is the weighted average of the 
documents or clusters they contain. To prevent longer documents 
from dominating centroid calculations, we normalize all 
document vectors to unit length. To compare a document to a 
cluster, we simply calculate the cosine between the document 
vector and the cluster’s centroid vector. 

The partitional algorithms have three stages: seed selection, center 
adjustment, and cluster refinement. Seed selection is the process 
of choosing k candidate points in the feature space to serve as 
centers for the partitions2. During center adjustment, documents 
are repeatedly assigned to the nearest center, and the center is 
recalculated based on the average location of all documents 
assigned to it, thereby moving it through the feature space. This 
process may be repeated multiple times. Afterwards, all 
documents are removed from the centers, and reassigned to the 
new closest center. Thus, it is important that the centers be 
distributed effectively enough that they each attract sufficient 
nearby, topically related documents. Cluster refinement is an 
optional final step for improving the new partitions. 

2.2.1 Seed Selection 
Seed selection picks centers to which the system can assign each 
point in the input set to form a partition. We implemented three 
seed selection algorithms: random, buckshot, and fractionation. 
Random is the simplest; it picks k points randomly from the input 
set as the initial centers. 

The second method is buckshot, described by [I]. Buckshot picks 

2/k. y1 points randomly from the input set of n items, and clusters 
them using a high quality O(N2) clustering algorithm. The k 
centroids resulting from this clustering become the initial centers. 
For the O(N2) algorithm we use the group average variation of 
greedy agglomerative clustering, as did [l]. We will also refer to 
this as the “cluster subroutine.” 

The third method, fractionation, is also described by [I]. It uses 
the same cluster subroutine to build a bottom-up hierarchy from 
the initial input set, clustering fixed-size groups of points at each 
step to maintain a linear time complexity. The top-level clusters 
of this hierarchy become the initial seeds. 

2.2.2 Center Adjustment 
Once k seeds are selected as centers, the system can iteratively 
assign each point in the input set to the closest center and adjust 
that center accordingly. If a point’s similarity to every center is 
below the assignment similarity threshold, t, it is not assigned to 
any center. By default, we use a small non-zero fixed value for t, 
though we are investigating techniques for setting t dynamically. 
Continuous k-means [4] consists of following random seed 
selection with some number of iterations of center adjustment. In 

2 k defaults to 9 in our system. 
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our implementation, an iteration is an entire pass over a random 
ordering of the input set. A parameter specifies whether to adjust 
the centers after each point is assigned (continuous), or only at the 
end of an iteration when all points have been assigned (non- 
continuous). Our default is continuous center adjustment. 

[4] suggests that for a large data set the centers may stabilize 
when only a fraction of the points have been considered. We tried 
having the system stop adjusting centers when they stabilize 
rather than after a fixed number of iterations, but found that the 
centers rarely stop moving entirely, and the extra time cost of 
checking for minima1 movement outweighs the advantages gained 
from knowing exactly when to stop. 

[l] describes a step called ‘iterated assign-to-nearest’ that appears 
equivalent to k-means center adjustment, but it is not clear 
whether their technique was continuous or non-continuous. 

3. EVALUATION 

3.1 Evaluation Methodology 
Because we use clustering as an exploration tool, our evaluation 
approach focuses on the overall quality of generated cluster 
hierarchies (as opposed to, for example, measurements of retrieval 
effectiveness.) We compare how closely each hierarchy generated 
by the system matches a set of categories previously assigned to 
the documents by human judges. This required (I) the preparation 
of document collections in which each document had been 
assigned a topic label and (2) the specification of a scoring 
algorithm. We recognize that our scoring scheme is not perfect 
(for example, it does not account for the fact that documents often 
have multiple topics), but in practice it captures the strengths and 
shortcomings of the clustering algorithms. 

We introduce a modification to k-means, called vector average 
damping, that increases its effectiveness. As each point is 
assigned to an existing center, that center is normally recalculated 
as the average of all points that have been assigned to it. We 
provide a damping parameter for this averaging function that 
lowers the weight of the existing center relative to the point being 
averaged in (which has weight ‘ 1’). This allows points toward the 
end of our random ordering of the input set to continue moving 
the center more than they otherwise could. 

To reduce the risk that our conclusions might be valid only on a 
particular corpus, we used two distinct test corpora: a subset of 
the TREC-5 collection [5], and a subset of the Reuters-21578 
collection4. For each, we formed two test sets of different sizes, 
ranging from 5 to 100 megabytes5, as shown in Table I. 
Document topic labels were used only for scoring, i.e., not during 
feature extraction or clustering. 

Test Corpus # of documents Size (MB) # of topics 

I-TREC 5524 103.0 50 

When we finish adjusting the centers, we again iterate over the 
input set and assign each point to the closest center. A new 
“unmatched” cluster3 is created to hold the points that do not 
match any center (i.e., their similarity to each center falls below 
the threshold t). Though their contents may include many 
differing topics, we recursively partition the unmatched clusters 
just like the main clusters. 

Table 1 - Test corpora 

Our evaluation algorithm treats the cluster hierarchy as if it were 
output from an automatic multi-level routing system. For each 

2.2.3 Cluster Refinement 
We experimented with cluster refinement algorithms to determine 
if they can improve the quality of the partitioning. We 
implemented the basic split/join algorithm described in [l], and 
then experimented with various modifications to it. This 
algorithm first breaks each cluster in two (we exclude the 
“unmatched” cluster) using the cluster subroutine, then rejoins the 
closest pairs. This split and join process can be repeated any 
number of times, theoretically improving the quality of the 
partitioning. 

Different criteria may be used to decide which clusters to join. 
We initially tried combining clusters whose cluster centroids 
share more than p common keywords, where p is a fixed 
parameter [I]. We then tried applying the clustering subroutine to 
the join problem, and experimented with three different 
approaches for deciding when to stop joining clusters. First, we 
tried combining all pairs for which the cosine between them 
exceeded a fixed parameter. Second, we tried measuring the 
parent cluster’s variance [4], and combining pairs whose cosine 
similarity exceeded a constant multiple of this variance. Third, we 
simply applied the greedy cluster subroutine to the 2k split 
clusters, combining each closest pair of clusters until exactly k 
clusters remained. 

3 [6] refers to these as “junk” clusters. 

hand-labeled topic T in the document set, we &ume that a cluster 
C corresponding to that topic will form automatically somewhere 
in the hierarchy. This is because topic clusters sometimes form at 
many levels. For example, the system often built a cluster of 
documents from the TREC topic “domestic violence” and a 
cluster from the topic “gun control” under a single unifying 
parent cluster. To find C, we traverse the hierarchy, calculating 
precision, recall, and F-Measure for each cluster with respect to 
the topic in question. For any topic T and cluster X: 

NL = # of documents judged to be of topic T in cluster X 

N2 = # of documents in cluster X 

N3 = # of documents judged to be of topic T in entire hierarchy 

Precision(X, T) = N l / N2 

Recall(X, T) = Nl / N3 

F= 2pR - where F=F-Measure, P=precision, and R=recall. 
P+R 

4 The Reuters-21 578, Distribution 1 .O test collection is available 
from David D. Lewis’ professional home page, currently 
http://www.research.att.com/-lewis. 

5 For both corpora the second sub-collection is a subset of the 
first. 
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To calculate precision and recall for a cluster, we “flatten” the 
cluster to also include the documents from all sub-clusters. We 
consider the cluster with the highest F-Measure to be C, and that 
F-Measure becomes the system’s score for topic T. The overall F- 
Measure for the hierarchy is the weighted average of the F- 
Measures for each topic T. 

c ((TI * F(T)) 

Overall F - Measure = TEM 
CITI 

, where M is 

TEM 

the set of topics, ITI is the number of documents 

judged of topic T, and F(T) is the F - Measure for 

topic T 

The near-linear clustering algorithms we use are nondeterministic 
due to their use of random seed selection; consequently clustering 
the same corpus multiple times with the same parameters will 
produce a different hierarchy each time. This necessitates multiple 
trials - we repeat each experiment ten times, then calculate the 
average, high, low, and standard deviation for each measured 
value (e.g., F-Measure). Though we simplify the presented results 
by showing only the average value, it should be noted that 
standard deviation for F-Measure is typically around 0.01, and 
occasionally as high as 0.02. Thus when we report that certain 
parameters score higher than others, we are looking at the average 
over multiple trials and considering the standard deviation. 

We discuss the results in terms of F-Measure and processing time. 
The results of each experiment (except tf;& as we describe 
below) were consistent for each test corpus, so in most cases we 
present results for only corpus I 6. 

3.2 Overall System Performance 
System performance for the default parameters is displayed in 
Table 2. All results are from a 166 MHz single CPU Spare Ultra 1 
with 256 MB of RAM. 

Corp- Size ‘Number Baseline Feature Clustering Overall 
US (MB) of Dots Creation Extraction Time Time 

Time Time (se4 
CW (set) 

1 103.0 5524 156 178 9.7 5 min 44 

2 8.1 372 11 14 1.1 

set 

26 set 

3 11.0 8654 14 22 24.1 60 set 

4 4.7 2794 6 8 3.4 17 set 

Table 2: Clustering System Performance Measurements 

3.3 Feature Extraction Results 
3.3. I &If Results 
Except for on corpora with a very small number of documents, 
weighting terms by tfidf works better than weighting by tf (term 
frequency). Figure 2 shows that for three of the four test corpora, 

6 We do not present a complete set of results due to space 
considerations. 
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Figure 2 - Differences in clustering quality for tfidf 
and tfused in feature extraction 

t’df outperformed tf: In Corpus 1, average F-Measure increases 
from 0.44 to 0.52 with tf;dJ a difference that significantly exceeds 
the standard deviation of around 0.01. Damping the frequency 
using a square root or logarithm function [l] makes no difference. 
Only in Corpus 2, the one with the fewest documents, did term 
frequency perform better. However, we noticed that the clarity of 
the cluster and document labels (viewed in the GUI) was inferior 
for tf as compared to tf;df: Corpus 3’s results are surprising 
because the score difference between tfdf and tf is small, yet this 
corpus has the most documents. We think this is because Corpus 
3 contains many tiny earnings report documents with no 
sentences, only sets of numbers and acronyms - in fact, we 
created Corpus 4 by removing these documents. These four test 
sets may be too small to provide conclusive evidence, but our 
experience suggests that larger document sets consistently benefit 
from tjid$ 

3.3.2 Feature Vector Length Results 
Our experiments varying feature vector length show that longer 
vectors increase the quality of a topic hierarchy but require 
additional compute time (cf. Figure 3). For example, using length 
250 vectors instead of length 25 vectors increases the F-Measure 
from 0.53 to 0.60, but increases clustering time from 10 seconds 
to 110 seconds. Longer vectors also require additional memory. 
For our purposes, length 25 vectors offer an appropriate default 
quality/time/memory tradeoff. [12] also measured the effect of 
truncating feature vectors, concluding that except for radical 
truncation (length 20), truncation does not affect quality. We 
attribute the difference in results to different evaluation 
techniques; their evaluation measured retrieval effectiveness on 
retrieved subsets of the corpus (using precision), while ours 
considers the quality of a complete hierarchy (using F-Measure). 

3.4 Clustering Results 
3.4. I Seed Selection and Center Adjustment Results 
Figure 4 shows the results of a series of tests comparing seed 
selection techniques and center adjustment variations. Each x-axis 
label includes a letter (i(c” for continuous center adjustment or 
“n” for non-continuous adjustment) and a number that 
corresponds to the number of iterations of center adjustment that 
were performed (0, 1, 2, or 4). Without any center adjustment, 
random seed selection performs very poorly (0.352 F-Measure) 
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Figure 3 - The effects of feature vector length on 
clustering quality and time 

compared with buckshot and fractionation, as one might expect. 
Random is significantly faster, however, requiring 1.7 seconds to 
run compared to buckshot’s 11.9 seconds and fractionation’s 90.0 
seconds. The more significant observation is that a single iteration 
of continuous center adjustment brings all the scores into a close 
range, regardless of the seed selection technique used. Additional 
iterations (c-2, c-4) have almost no additional effect on cluster 
quality. Adding this single round (c-l) of center adjustment is 
computationally quite reasonable - clustering times jump to 5.7 
seconds for random, 14.3 seconds for buckshot, and I 10.8 
seconds for fractionation. While all these time differences may 
seem inconsequential, they become much more significant when 
clustering gigabytes of text. 

Non-continuous center adjustment has similar time requirements 
to continuous, but produces quite different F-Measure scores 
when random seed selection is used. Multiple iterations of center 
adjustment are required to bring random seed selection scores 
anywhere near the scores from buckshot and fractionation. The 
reason is that the initial cluster centers are not updated until after 
the entire iteration over the corpus; if the initial seeds are a poor 
representation of topics in the corpus, few documents will be 
assigned to them, and they will remain poor. 

We found that the choice of k does not affect F-measure - for 
typical document sets, where the number of documents is much 
larger than k, setting k to whatever cluster size the user finds 
easiest to browse should not affect overall quality. However, 
smaller values of k create deeper hierarchies, because there are 
fewer items on each level. 

Though our experiments yielded similar F-Measures for random, 
buckshot, and fractionation seed selection (using continuous 

center adjustment), we found that users’ ease of comprehension of 
the respective output hierarchies differs. Browsing hierarchies 
created using fractionation, we usually observed individual 
documents at the top levels of the hierarchy more often than for 
the other seed selection techniques. This makes it harder to 
understand at a glance the topical composition of a corpus. Our 
explanation is related to the fact that most real corpora have a 
number of outlier documents whose vectors have no similarity to 
any other document vector. Fractionation examines the entire 
input set to generate seeds by agglomerating groups of documents 
together until only k remain. If there are small groups of outliers, 
the algorithm cannot join them with any other clusters, thus these 
outliers sometimes contribute to the initial seeds. This may also 
explain why fractionation, though more thorough, did not 
consistently outscore random and buckshot seed selection. We 
believe that the outlier problem could be minimized by 
implementing a dynamic stopping point in the cluster subroutine, 
allowing it to stop with more than k items remaining, to avoid 
including outliers as centers.7 

C-l c-2 c-4 n-o n-1 n-2 n4 

# Center Adjushent Iterations 

'ii 120 
B 100 

I F 60 

.; 60 

d 
1 

40 

Cl F 20 

a 0 
I 

/ 

co C-l c-2 Cd n-o n-1 n-2 n4 

# Center Adjustment Iterations 

Figure 4 - The effects of seed selection and center 
adjustment on clustering quality and time 

To support the theory that outliers can degrade the performance of 
fractionation, we experimented on some small document sets 
generated by hand with a “clean” outlier-free set of distinct topic 
groups. Fractionation consistently outperformed random and 
buckshot on these corpora. We plan to investigate this more 
formally in the future. 

7 Currently, if the set of clusters cannot be agglomerated to less 
than m clusters, where m > k, then the top k largest clusters are 
chosen. 
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3.4.2 Vector Average Damping Results 
Our experiments show that vector average damping yields 
increased cluster quality without additional computational time. 
For example, Figure 5 shows that when random seed selection is 
used with two iterations of continuous center adjustment, adding 
vector average damping increases the F-Measure from 0.494 to 
0.529. It also lowers standard deviation from 0.017 to 0.008, 
suggesting that this technique can make results more predictable. 
In this case, a damping value of 0.1 was used, as it seems to 
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Figure 5 - The effects of vector average damping on 
clustering quality and time 

produce to best results for our system’s configuration. Because 
each cluster center’s weight was multiplied by 0.1 when 
averaging in a new document vector, the new document vectors 
were able to have more impact on the centroids than they 
otherwise would; this technique seems to let the algorithm “home 
in” on the best cluster centers more effectively. To ensure that the 
effects of this damping were not related to our truncation of 
feature vectors, we repeated the tests for vectors of length 500. 
With the longer vectors, we saw the same relative increase in 
scores, so the technique does not appear to be just correcting a 
truncation-related loss in quality. 

3.4.3 Cluster Rejinement and Quadratic-Time 
Clustering Results 
We conducted other experiments intended to study the effects of 
split/join and to compare near linear time clustering algorithms to 
quadratic-time alternatives. Figure 6 shows the results when using 
two iterations of continuous center adjustment with vector 
average damping. 

We found that a fixed threshold is ineffective for the join 
algorithm. Toward the top of the hierarchy, very few clusters are 
joined because these items tend to be the most dissimilar. Deep in 

the hierarchy, the documents are more closely related, and the 
same fixed threshold tends to join too many clusters, often 
combining them all to form one cluster. We did not arrive at a 
threshold algorithm based on depth or on cluster variance that was 
consistently effective. Split/join was most effective when joining 
clusters until a fixed number, k, remained; the results we report 
are from this technique. 

Average scores for random, buckshot, and fractionation center 
adjustment are all in the 0.53 range. Adding a single iteration of 
split/join for cluster refinement brings scores to almost 0.56. The 
disadvantage of split/join is that it adds substantially to clustering 
time; for the random seed selection case, clustering time jumps 
from 9.7 seconds to 41.4 seconds. We found that additional 
split/join iterations did not increase scores further. 
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Figure 6 -A Comparison of clustering techniques 

Greedy agglomerative clustering applied to the entire document 
set scores better than any of the other algorithms. However, its 
cost of 1558 seconds is substantial. Worse still, because this is an 
O(N2) algorithm, clustering time will be dramatically higher for 
larger document sets. This algorithm clearly does not scale to 
large text mining problems, but may be appropriate for some 
small corpora. 

4. SUMMARY AND FUTURE DIRECTION 
We have described our text clustering system, including a number 
of algorithms and an evaluation of their effectiveness. We used F- 
Measure (a combination of precision and recall) to gauge the 
quality of the generated hierarchies, averaging the results over ten 
trials. 

Our results support two feature extraction techniques. First, 
weighting extracted terms using @“produces better results than 
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using term frequency alone for all corpora but those with the 
smallest number of documents. Second, truncating feature vectors 
saves time (clustering time and vector length appear to be very 
roughly proportional), at the expense of cluster quality. 

We evaluated several algorithms for seed selection, center 
adjustment, and cluster refinement. For seed selection, random is 
fastest, closely followed by buckshot, and fractionation is much 
slower. With no center adjustment or with non-continuous center 
adjustment, buckshot and fractionation significantly outperform 
random seed selection. However, continuous center adjustment 
seems capable of creating equally good partitions regardless of 
seed selection technique. We also introduced a novel center 
adjustment technique, vector average damping, that consistently 
increases cluster quality without costing additional time. Another 
way to consistently increase scores is performing cluster 
refinement using split/join, but this algorithm is relatively slow. 
We conclude that random or buckshot seed selection with a single 
iteration of continuous center adjustment using vector average 
damping offers the best time/quality tradeoff. 

Another experiment compared these near linear time clustering 
techniques to greedy agglomerative clustering. Though the latter 
produces the highest scores of any of our algorithms (for a given 
feature vector length), it is prohibitively slow and does not scale 
beyond small corpora. 

In the future, we plan to improve upon our evaluation method in 
several respects. We would like to conduct a user-oriented 
evaluation in addition to using automatic scoring techniques, in 
order to confirm that increased scores do directly benefit users. 
However, due to the large quantity of parameters in our system, 
such an evaluation would need to focus on only a handful of 
variables. We might use a similar method to [9], who measured 
how well users could understand the topic structure presented to 
them during cluster exploration experiments. We also plan to do 
scoring on additional test corpora; the system was designed to 
scale to gigabytes of text, but unfortunately currently available 
topic-labeled collections are nowhere near that large8. 

Because a single document frequently belongs in more than one 
topic category, we also plan to enhance the system to handle 
automatic clustering of a document to multiple topic clusters. 
Finally, we plan to apply our clustering algorithms to structured 
data instead of text, and reevaluate their effectiveness in this new 
type of feature space. 
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