
Fast and Effective Text Mining Using Linear-time
Document Clustering
Bjornar Larsen and Chinatsu Aone

SRA International, Inc.
4300 Fair Lakes Cow-l

Fairfax, VA 22033

{bjornar-larsen, aonec}@sra.com

ABSTRACT
Clustering is a powerful technique for large-scale topic discovery
from text. It involves two phases: first, feature extraction maps
each document or record to a point in high-dimensional space,
then clustering algorithms automatically group the points into a
hierarchy of clusters. We describe an unsupervised, near-linear
time text clustering system that offers a number of algorithm
choices for each phase. We introduce a methodology for
measuring the quality of a cluster hierarchy in terms of F-
Measure, and present the results of experiments comparing
different algorithms. The evaluation considers some feature
selection parameters (tfidfand feature vector length) but focuses
on the clustering algorithms, namely techniques from
Scatter/Gather (buckshot, fractionation, and split/join) and k-
means. Our experiments suggest that continuous center
adjustment contributes more to cluster quality than seed selection
does. It follows that using a simpler seed selection algorithm
gives a better time/quality tradeoff. We describe a refinement to
center adjustment, “vector average damping,” that further
improves cluster quality. We also compare the near-linear time
algorithms to a group average greedy agglomerative clustering
algorithm to demonstrate the time/quality tradeoff quantitatively.

Keywords
Clustering, text mining, multi-document summarization

1. INTRODUCTION
The information age is surrounding us with increasingly
overwhelming quantities of electronic data. Users need software
tools that can help them rapidly explore the most frequent form of
data, collections of text. Hand-built directories of web content
such as Yahoo! offer one solution to the problem, but
unfortunately creating and maintaining such directories requires
enormous amounts of human effort. Routing/categorization
systems can help automate the assignment of documents to a topic
hierarchy, but they require training and prior knowledge of the
topics in a corpus. For many situations, a more practical solution
is to discover and approximate these topic hierarchies using

permission to nlakc digital or lxwd copies of all or part of this wd fbl
personal or classroom use is granted without fee provided that copies
arc: not made or distributed Ibr profit or commercial advdn@Y and that

copies hear this notice and the I’ull citation on the lint page. To c(VY
othcr\visc, to republish, to post on scrvcrs or to rcdistrihutc to lists.

requires prior specific permission and/or a fee.

KDD-99 San Diego CA l!SA
Copyright ACM 1999 l-581 13-143-7/99/08...%00

unsupervised clustering methods.

Document clustering helps tackle the information overload
problem in several ways. One is exploration; the top level of a
cluster hierarchy summarizes at a glance the contents of a
document collection, enabling users to selectively drill deeper to
explore specific topics of interest without reading every document
(e.g., [7], [9], [13]). Used in retrieval (e.g., [6], [lo], [14]),
clustering organizes search results by topic similarity and
potentially helps users find relevant documents more quickly.
Some clustering algorithms excel at quickly and accurately
grouping duplicate or near-duplicate documents. Though each of
these uses is important, the focus of our paper is the first use, i.e.,
multi-document summarization through the discovery of topic
hierarchies.

In this paper, we first describe our fast, scalable document
clustering system. This text mining tool is designed to discover
topic hierarchies in gigabytes of documents per day 1, and to
present the results in an intuitive GUI (cf. Figure 1). We describe
the algorithms we use, for both feature extraction and clustering
of extracted features. Then, we evaluate the impact of different
algorithms on the quality of the generated cluster hierarchies and

tax. quake. computer, earthquake, nchter scale. violence. damage, VW% pot
wake. earthquake. rlchter scale, damage, msgnitude, mile, measure. m

gun.towan, handgun, gang. shoot, police, rosy. law, matyland, ban.
soviet. Armenian. armema, gorbachev. lass, wake, leninokan, mus:*w I
heart. patlent. euthanasia. doctor, drug, hospital. medical, ama, artew, su

heart patient, artery. surgeru, atack, angioplasty. corona, study. h351
euthanasia, ama, patient, doctor, mercv, delegate, ptvsl::lan, adv, me’
ethic, puma, baby, doctor, transplant, ethical, organ. h053ital. consulti
drug, fda. roche. approval, committee, pharmaceutical, centurx, flsorls
tube, feed, gray, cruzan, die, court, mr, connor, remow, dwgnte!,

Figure 1 - User Interface

1 Current throughput using the default near-linear algorithms,
including all pre-processing (e.g., for building a term frequency
baseline) and feature-extraction, is 1.5 hours for 1 gigabyte of
text (-200,000 documents) on a Sun ULTRA 1 with 256MB
RAM.

16

on the processing time required to build those hierarchies.

Figure 1 shows the top level clusters for a small corpus (972
documents), a large portion of which are news stories. The first
cluster (239 documents) is about “quake, earthquake, richter
scale” etc., so we can conclude that it contains documents about
earthquakes. Each cluster is labeled with related terms (from the
cluster centroid) that convey a coherent topic. The seventh cluster
(84 documents) appears to be on medical issues (“heart, patient,
euthanasia, doctor, drug, hospital, medical” etc.) We have
expanded this cluster to show the nine sub-clusters (which
represent medical subtopics) - two of these are documents (i.e.,
from a cluster of size one), shaded in gray.

2. SYSTEM DESCRIPTION
The primary steps to generating a hierarchy are the extraction of
features from documents, followed by clustering or grouping
based on those features. Over forty configurable parameters
control the algorithms in this process - we will describe the most
significant variations.

2.1 Feature Extraction
Feature extraction maps each document into a concise
representation of its topic. These extracted features are used to
compare documents and to label their content for users. We use
the vector space model [l l] to represent documents as points in a
high dimensional topic space, where each dimension corresponds
to a unique word or concept from the corpus. The mapping
process extracts a list of unique terms from each document,
assigns each a weight, and represents the document using the n
highest-weighted terms. We refer to the parameter n as the feature
vector length, and our default is 25.

Several parameters control term selection and weighting. By
default, we remove stop words. The weight assigned to each
remaining term is a function of either the tf (term frequency) or
tf;df (term frequency - inverse document frequency). To use tfidf;
the system makes an initial pass over the text collection to create a
“baseline” - the baseline stores the total number of documents
that each unique term occurs in (i.e., the document frequency).
Feature extraction consults this baseline to set term weights as a
function of both the term’s frequency within the document and
the number of documents the term occurs in. An important word
is one that appears frequently within the current document, but
infrequently across the other documents in the collection. For
example, the word ‘excavation’ is uncommon in most corpora, so
if it appeared frequently in a particular document, it would be
given a high topic weight. Conversely, words like ‘say’ that might
appear in almost every document are assigned a low weight (even
if they occur frequently in a given document.)

Because feature extraction produces generic points in space as
input to the clustering algorithms, the system is not limited to
text; by implementing new feature extraction modules to map data
to high-dimensional points, we could cluster any type of data.

2.2 Clustering
The goal of clustering is to group the points in a feature space
optimally based on proximity, in order to form a hierarchy of
clusters. We unified near-linear time complexity techniques from
k-means ([8], [4]) and Scatter/Gather [l]. The techniques are all
partitional, meaning that they simply separate a flat collection of

items into a single set of “bins.” A hierarchy is built by
recursively applying a partitional algorithm. The partitional
algorithms each run in O(N) with respect to the number of
documents, N, so the overall hierarchy is generated in O(N log N)
time (assuming a balanced hierarchy.)

Because documents and clusters are represented as points in
space, we can compare them using vector cosine. Clusters include
a “center” or “centroid” vector that is the weighted average of the
documents or clusters they contain. To prevent longer documents
from dominating centroid calculations, we normalize all
document vectors to unit length. To compare a document to a
cluster, we simply calculate the cosine between the document
vector and the cluster’s centroid vector.

The partitional algorithms have three stages: seed selection, center
adjustment, and cluster refinement. Seed selection is the process
of choosing k candidate points in the feature space to serve as
centers for the partitions2. During center adjustment, documents
are repeatedly assigned to the nearest center, and the center is
recalculated based on the average location of all documents
assigned to it, thereby moving it through the feature space. This
process may be repeated multiple times. Afterwards, all
documents are removed from the centers, and reassigned to the
new closest center. Thus, it is important that the centers be
distributed effectively enough that they each attract sufficient
nearby, topically related documents. Cluster refinement is an
optional final step for improving the new partitions.

2.2.1 Seed Selection
Seed selection picks centers to which the system can assign each
point in the input set to form a partition. We implemented three
seed selection algorithms: random, buckshot, and fractionation.
Random is the simplest; it picks k points randomly from the input
set as the initial centers.

The second method is buckshot, described by [I]. Buckshot picks

2/k. y1 points randomly from the input set of n items, and clusters
them using a high quality O(N2) clustering algorithm. The k
centroids resulting from this clustering become the initial centers.
For the O(N2) algorithm we use the group average variation of
greedy agglomerative clustering, as did [l]. We will also refer to
this as the “cluster subroutine.”

The third method, fractionation, is also described by [I]. It uses
the same cluster subroutine to build a bottom-up hierarchy from
the initial input set, clustering fixed-size groups of points at each
step to maintain a linear time complexity. The top-level clusters
of this hierarchy become the initial seeds.

2.2.2 Center Adjustment
Once k seeds are selected as centers, the system can iteratively
assign each point in the input set to the closest center and adjust
that center accordingly. If a point’s similarity to every center is
below the assignment similarity threshold, t, it is not assigned to
any center. By default, we use a small non-zero fixed value for t,
though we are investigating techniques for setting t dynamically.
Continuous k-means [4] consists of following random seed
selection with some number of iterations of center adjustment. In

2 k defaults to 9 in our system.

17

our implementation, an iteration is an entire pass over a random
ordering of the input set. A parameter specifies whether to adjust
the centers after each point is assigned (continuous), or only at the
end of an iteration when all points have been assigned (non-
continuous). Our default is continuous center adjustment.

[4] suggests that for a large data set the centers may stabilize
when only a fraction of the points have been considered. We tried
having the system stop adjusting centers when they stabilize
rather than after a fixed number of iterations, but found that the
centers rarely stop moving entirely, and the extra time cost of
checking for minima1 movement outweighs the advantages gained
from knowing exactly when to stop.

[l] describes a step called ‘iterated assign-to-nearest’ that appears
equivalent to k-means center adjustment, but it is not clear
whether their technique was continuous or non-continuous.

3. EVALUATION

3.1 Evaluation Methodology
Because we use clustering as an exploration tool, our evaluation
approach focuses on the overall quality of generated cluster
hierarchies (as opposed to, for example, measurements of retrieval
effectiveness.) We compare how closely each hierarchy generated
by the system matches a set of categories previously assigned to
the documents by human judges. This required (I) the preparation
of document collections in which each document had been
assigned a topic label and (2) the specification of a scoring
algorithm. We recognize that our scoring scheme is not perfect
(for example, it does not account for the fact that documents often
have multiple topics), but in practice it captures the strengths and
shortcomings of the clustering algorithms.

We introduce a modification to k-means, called vector average
damping, that increases its effectiveness. As each point is
assigned to an existing center, that center is normally recalculated
as the average of all points that have been assigned to it. We
provide a damping parameter for this averaging function that
lowers the weight of the existing center relative to the point being
averaged in (which has weight ‘ 1’). This allows points toward the
end of our random ordering of the input set to continue moving
the center more than they otherwise could.

To reduce the risk that our conclusions might be valid only on a
particular corpus, we used two distinct test corpora: a subset of
the TREC-5 collection [5], and a subset of the Reuters-21578
collection4. For each, we formed two test sets of different sizes,
ranging from 5 to 100 megabytes5, as shown in Table I.
Document topic labels were used only for scoring, i.e., not during
feature extraction or clustering.

Test Corpus # of documents Size (MB) # of topics

I-TREC 5524 103.0 50

When we finish adjusting the centers, we again iterate over the
input set and assign each point to the closest center. A new
“unmatched” cluster3 is created to hold the points that do not
match any center (i.e., their similarity to each center falls below
the threshold t). Though their contents may include many
differing topics, we recursively partition the unmatched clusters
just like the main clusters.

Table 1 - Test corpora

Our evaluation algorithm treats the cluster hierarchy as if it were
output from an automatic multi-level routing system. For each

2.2.3 Cluster Refinement
We experimented with cluster refinement algorithms to determine
if they can improve the quality of the partitioning. We
implemented the basic split/join algorithm described in [l], and
then experimented with various modifications to it. This
algorithm first breaks each cluster in two (we exclude the
“unmatched” cluster) using the cluster subroutine, then rejoins the
closest pairs. This split and join process can be repeated any
number of times, theoretically improving the quality of the
partitioning.

Different criteria may be used to decide which clusters to join.
We initially tried combining clusters whose cluster centroids
share more than p common keywords, where p is a fixed
parameter [I]. We then tried applying the clustering subroutine to
the join problem, and experimented with three different
approaches for deciding when to stop joining clusters. First, we
tried combining all pairs for which the cosine between them
exceeded a fixed parameter. Second, we tried measuring the
parent cluster’s variance [4], and combining pairs whose cosine
similarity exceeded a constant multiple of this variance. Third, we
simply applied the greedy cluster subroutine to the 2k split
clusters, combining each closest pair of clusters until exactly k
clusters remained.

3 [6] refers to these as “junk” clusters.

hand-labeled topic T in the document set, we &ume that a cluster
C corresponding to that topic will form automatically somewhere
in the hierarchy. This is because topic clusters sometimes form at
many levels. For example, the system often built a cluster of
documents from the TREC topic “domestic violence” and a
cluster from the topic “gun control” under a single unifying
parent cluster. To find C, we traverse the hierarchy, calculating
precision, recall, and F-Measure for each cluster with respect to
the topic in question. For any topic T and cluster X:

NL = # of documents judged to be of topic T in cluster X

N2 = # of documents in cluster X

N3 = # of documents judged to be of topic T in entire hierarchy

Precision(X, T) = N l / N2

Recall(X, T) = Nl / N3

F= 2pR - where F=F-Measure, P=precision, and R=recall.
P+R

4 The Reuters-21 578, Distribution 1 .O test collection is available
from David D. Lewis’ professional home page, currently
http://www.research.att.com/-lewis.

5 For both corpora the second sub-collection is a subset of the
first.

18

To calculate precision and recall for a cluster, we “flatten” the
cluster to also include the documents from all sub-clusters. We
consider the cluster with the highest F-Measure to be C, and that
F-Measure becomes the system’s score for topic T. The overall F-
Measure for the hierarchy is the weighted average of the F-
Measures for each topic T.

c ((TI * F(T))

Overall F - Measure = TEM
CITI

, where M is

TEM

the set of topics, ITI is the number of documents

judged of topic T, and F(T) is the F - Measure for

topic T

The near-linear clustering algorithms we use are nondeterministic
due to their use of random seed selection; consequently clustering
the same corpus multiple times with the same parameters will
produce a different hierarchy each time. This necessitates multiple
trials - we repeat each experiment ten times, then calculate the
average, high, low, and standard deviation for each measured
value (e.g., F-Measure). Though we simplify the presented results
by showing only the average value, it should be noted that
standard deviation for F-Measure is typically around 0.01, and
occasionally as high as 0.02. Thus when we report that certain
parameters score higher than others, we are looking at the average
over multiple trials and considering the standard deviation.

We discuss the results in terms of F-Measure and processing time.
The results of each experiment (except tf;& as we describe
below) were consistent for each test corpus, so in most cases we
present results for only corpus I 6.

3.2 Overall System Performance
System performance for the default parameters is displayed in
Table 2. All results are from a 166 MHz single CPU Spare Ultra 1
with 256 MB of RAM.

Corp- Size ‘Number Baseline Feature Clustering Overall
US (MB) of Dots Creation Extraction Time Time

Time Time (se4
CW (set)

1 103.0 5524 156 178 9.7 5 min 44

2 8.1 372 11 14 1.1

set

26 set

3 11.0 8654 14 22 24.1 60 set

4 4.7 2794 6 8 3.4 17 set

Table 2: Clustering System Performance Measurements

3.3 Feature Extraction Results
3.3. I &If Results
Except for on corpora with a very small number of documents,
weighting terms by tfidf works better than weighting by tf (term
frequency). Figure 2 shows that for three of the four test corpora,

6 We do not present a complete set of results due to space
considerations.

1 (5524 dccs) 2 (972 dots) 3 (8654 dots) 4 (2794 dccs)

/-

/

corpus
/

-

Figure 2 - Differences in clustering quality for tfidf
and tfused in feature extraction

t’df outperformed tf: In Corpus 1, average F-Measure increases
from 0.44 to 0.52 with tf;dJ a difference that significantly exceeds
the standard deviation of around 0.01. Damping the frequency
using a square root or logarithm function [l] makes no difference.
Only in Corpus 2, the one with the fewest documents, did term
frequency perform better. However, we noticed that the clarity of
the cluster and document labels (viewed in the GUI) was inferior
for tf as compared to tf;df: Corpus 3’s results are surprising
because the score difference between tfdf and tf is small, yet this
corpus has the most documents. We think this is because Corpus
3 contains many tiny earnings report documents with no
sentences, only sets of numbers and acronyms - in fact, we
created Corpus 4 by removing these documents. These four test
sets may be too small to provide conclusive evidence, but our
experience suggests that larger document sets consistently benefit
from tjid$

3.3.2 Feature Vector Length Results
Our experiments varying feature vector length show that longer
vectors increase the quality of a topic hierarchy but require
additional compute time (cf. Figure 3). For example, using length
250 vectors instead of length 25 vectors increases the F-Measure
from 0.53 to 0.60, but increases clustering time from 10 seconds
to 110 seconds. Longer vectors also require additional memory.
For our purposes, length 25 vectors offer an appropriate default
quality/time/memory tradeoff. [12] also measured the effect of
truncating feature vectors, concluding that except for radical
truncation (length 20), truncation does not affect quality. We
attribute the difference in results to different evaluation
techniques; their evaluation measured retrieval effectiveness on
retrieved subsets of the corpus (using precision), while ours
considers the quality of a complete hierarchy (using F-Measure).

3.4 Clustering Results
3.4. I Seed Selection and Center Adjustment Results
Figure 4 shows the results of a series of tests comparing seed
selection techniques and center adjustment variations. Each x-axis
label includes a letter (i(c” for continuous center adjustment or
“n” for non-continuous adjustment) and a number that
corresponds to the number of iterations of center adjustment that
were performed (0, 1, 2, or 4). Without any center adjustment,
random seed selection performs very poorly (0.352 F-Measure)

19

: 0 65 ,--- -- ..__ - _._... -----

06

5 10 25 50 loo 250 5co

Feahrre Vector Length

5 10 25 50 100 250 500

Feature vector Length

Figure 3 - The effects of feature vector length on
clustering quality and time

compared with buckshot and fractionation, as one might expect.
Random is significantly faster, however, requiring 1.7 seconds to
run compared to buckshot’s 11.9 seconds and fractionation’s 90.0
seconds. The more significant observation is that a single iteration
of continuous center adjustment brings all the scores into a close
range, regardless of the seed selection technique used. Additional
iterations (c-2, c-4) have almost no additional effect on cluster
quality. Adding this single round (c-l) of center adjustment is
computationally quite reasonable - clustering times jump to 5.7
seconds for random, 14.3 seconds for buckshot, and I 10.8
seconds for fractionation. While all these time differences may
seem inconsequential, they become much more significant when
clustering gigabytes of text.

Non-continuous center adjustment has similar time requirements
to continuous, but produces quite different F-Measure scores
when random seed selection is used. Multiple iterations of center
adjustment are required to bring random seed selection scores
anywhere near the scores from buckshot and fractionation. The
reason is that the initial cluster centers are not updated until after
the entire iteration over the corpus; if the initial seeds are a poor
representation of topics in the corpus, few documents will be
assigned to them, and they will remain poor.

We found that the choice of k does not affect F-measure - for
typical document sets, where the number of documents is much
larger than k, setting k to whatever cluster size the user finds
easiest to browse should not affect overall quality. However,
smaller values of k create deeper hierarchies, because there are
fewer items on each level.

Though our experiments yielded similar F-Measures for random,
buckshot, and fractionation seed selection (using continuous

center adjustment), we found that users’ ease of comprehension of
the respective output hierarchies differs. Browsing hierarchies
created using fractionation, we usually observed individual
documents at the top levels of the hierarchy more often than for
the other seed selection techniques. This makes it harder to
understand at a glance the topical composition of a corpus. Our
explanation is related to the fact that most real corpora have a
number of outlier documents whose vectors have no similarity to
any other document vector. Fractionation examines the entire
input set to generate seeds by agglomerating groups of documents
together until only k remain. If there are small groups of outliers,
the algorithm cannot join them with any other clusters, thus these
outliers sometimes contribute to the initial seeds. This may also
explain why fractionation, though more thorough, did not
consistently outscore random and buckshot seed selection. We
believe that the outlier problem could be minimized by
implementing a dynamic stopping point in the cluster subroutine,
allowing it to stop with more than k items remaining, to avoid
including outliers as centers.7

C-l c-2 c-4 n-o n-1 n-2 n4

Center Adjushent Iterations

'ii 120
B 100

I F 60

.; 60

d
1

40

Cl F 20

a 0
I

/

co C-l c-2 Cd n-o n-1 n-2 n4

Center Adjustment Iterations

Figure 4 - The effects of seed selection and center
adjustment on clustering quality and time

To support the theory that outliers can degrade the performance of
fractionation, we experimented on some small document sets
generated by hand with a “clean” outlier-free set of distinct topic
groups. Fractionation consistently outperformed random and
buckshot on these corpora. We plan to investigate this more
formally in the future.

7 Currently, if the set of clusters cannot be agglomerated to less
than m clusters, where m > k, then the top k largest clusters are
chosen.

20

3.4.2 Vector Average Damping Results
Our experiments show that vector average damping yields
increased cluster quality without additional computational time.
For example, Figure 5 shows that when random seed selection is
used with two iterations of continuous center adjustment, adding
vector average damping increases the F-Measure from 0.494 to
0.529. It also lowers standard deviation from 0.017 to 0.008,
suggesting that this technique can make results more predictable.
In this case, a damping value of 0.1 was used, as it seems to

/ --- ---- ._-._; .~ ~~ ..; ..--. - -

I
/ aRandom .Buckshot q Fract~onat~on
-...----. -~ .-.- I

0 54 r --~__-__._-- ---.-- I

normal EC aq damping 0.1

q Random . Buckshot q Fractionation i

120

v 100

E
g 60

I=
F 60

‘5
Iii 40

a
$ 20
a

0

--.-~ ._-._-- .-.--.--

normal wx ag damping 0 1

I--.-- -

Figure 5 - The effects of vector average damping on
clustering quality and time

produce to best results for our system’s configuration. Because
each cluster center’s weight was multiplied by 0.1 when
averaging in a new document vector, the new document vectors
were able to have more impact on the centroids than they
otherwise would; this technique seems to let the algorithm “home
in” on the best cluster centers more effectively. To ensure that the
effects of this damping were not related to our truncation of
feature vectors, we repeated the tests for vectors of length 500.
With the longer vectors, we saw the same relative increase in
scores, so the technique does not appear to be just correcting a
truncation-related loss in quality.

3.4.3 Cluster Rejinement and Quadratic-Time
Clustering Results
We conducted other experiments intended to study the effects of
split/join and to compare near linear time clustering algorithms to
quadratic-time alternatives. Figure 6 shows the results when using
two iterations of continuous center adjustment with vector
average damping.

We found that a fixed threshold is ineffective for the join
algorithm. Toward the top of the hierarchy, very few clusters are
joined because these items tend to be the most dissimilar. Deep in

the hierarchy, the documents are more closely related, and the
same fixed threshold tends to join too many clusters, often
combining them all to form one cluster. We did not arrive at a
threshold algorithm based on depth or on cluster variance that was
consistently effective. Split/join was most effective when joining
clusters until a fixed number, k, remained; the results we report
are from this technique.

Average scores for random, buckshot, and fractionation center
adjustment are all in the 0.53 range. Adding a single iteration of
split/join for cluster refinement brings scores to almost 0.56. The
disadvantage of split/join is that it adds substantially to clustering
time; for the random seed selection case, clustering time jumps
from 9.7 seconds to 41.4 seconds. We found that additional
split/join iterations did not increase scores further.

0.56

g 0.57

E
go=

$3 0.55
D
g 054
IL

Y 053
a

0.52 4

I

1556
160

= 160

g140

’ ; 120

p 100

5 60

2 60

o B 40

a 20
0

1
t

I

J _--... -

Figure 6 -A Comparison of clustering techniques

Greedy agglomerative clustering applied to the entire document
set scores better than any of the other algorithms. However, its
cost of 1558 seconds is substantial. Worse still, because this is an
O(N2) algorithm, clustering time will be dramatically higher for
larger document sets. This algorithm clearly does not scale to
large text mining problems, but may be appropriate for some
small corpora.

4. SUMMARY AND FUTURE DIRECTION
We have described our text clustering system, including a number
of algorithms and an evaluation of their effectiveness. We used F-
Measure (a combination of precision and recall) to gauge the
quality of the generated hierarchies, averaging the results over ten
trials.

Our results support two feature extraction techniques. First,
weighting extracted terms using @“produces better results than

21

using term frequency alone for all corpora but those with the
smallest number of documents. Second, truncating feature vectors
saves time (clustering time and vector length appear to be very
roughly proportional), at the expense of cluster quality.

We evaluated several algorithms for seed selection, center
adjustment, and cluster refinement. For seed selection, random is
fastest, closely followed by buckshot, and fractionation is much
slower. With no center adjustment or with non-continuous center
adjustment, buckshot and fractionation significantly outperform
random seed selection. However, continuous center adjustment
seems capable of creating equally good partitions regardless of
seed selection technique. We also introduced a novel center
adjustment technique, vector average damping, that consistently
increases cluster quality without costing additional time. Another
way to consistently increase scores is performing cluster
refinement using split/join, but this algorithm is relatively slow.
We conclude that random or buckshot seed selection with a single
iteration of continuous center adjustment using vector average
damping offers the best time/quality tradeoff.

Another experiment compared these near linear time clustering
techniques to greedy agglomerative clustering. Though the latter
produces the highest scores of any of our algorithms (for a given
feature vector length), it is prohibitively slow and does not scale
beyond small corpora.

In the future, we plan to improve upon our evaluation method in
several respects. We would like to conduct a user-oriented
evaluation in addition to using automatic scoring techniques, in
order to confirm that increased scores do directly benefit users.
However, due to the large quantity of parameters in our system,
such an evaluation would need to focus on only a handful of
variables. We might use a similar method to [9], who measured
how well users could understand the topic structure presented to
them during cluster exploration experiments. We also plan to do
scoring on additional test corpora; the system was designed to
scale to gigabytes of text, but unfortunately currently available
topic-labeled collections are nowhere near that large8.

Because a single document frequently belongs in more than one
topic category, we also plan to enhance the system to handle
automatic clustering of a document to multiple topic clusters.
Finally, we plan to apply our clustering algorithms to structured
data instead of text, and reevaluate their effectiveness in this new
type of feature space.

5. REFERENCES
[l] Cutting, D., Karger, D., Pedersen, J., Tukey, J.

“Scatter/Gather: a Cluster-based Approach to Browsing
Large Document Collections”, in Proceedings of the 15th
ACM SIGIR, 1992.

[2] Cutting, D., Karger, D., and Pedersen, J. “Constant
Interactive-Time Scatter/Gather Browsing of Very barge
Document Collections”, in Proceedings of the 16th SIGIR,
1993.

8 We have not found a research-oriented topic-labeled corpus
larger than Reuters. An alternative might be to generate a large
test corpus from Usenet postings, using the Usenet group names
as the topic labels.

[31

141

PI

WI

171

PI

[91

El-Hamdouchi, A., and Willett, P. “Hierarchical document
clustering using Ward’s method,” in Proceedings of the 9th
ACM SIGIR, 1986.

Faber, V. “Clustering and the Continuous k-Means
Algorithm”, Los Alamos Science, November 22, 1994.

Harman, D. and Voorhees, E., editors. Proceedings of the
Fifth Text Retrieval Conference (TREC-5). National Institute
of Standards and Technology, Department of Commerce.
1996.

Hearst, M. and Pedersen, J. “Reexamining the Cluster
Hypothesis: Scatter/Gather on Retrieval Results”, in
Proceedings of the 19th ACM SIGIR, 1996.

Lagus, K., Honkela, T., Kaski, S., and Kohonen, T. “Self-
Organizing Maps of Document Collections: A New
Approach to Interactive Exploration,” in Proceedings of the
2nd International Conference on Knowledge Discovery and
Data Mining, 1996.

MacQueen, J. “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and
Probability. Volume I, Statistics. Edited by Lucien M. Le
Cam and Jerzy Neyman. University of California Press.
1967.

Pirolli, P., Schank, P., Hearst, M., and Diehl, C.
“Scatter/Gather Browsing Communicates the Topic Structure
of a Very Large Text Collection,” in Proceedings of the
ACM SIGCHI Conference on Human Factors in Computing
Systems, 1996.

[lo] Sahami, M., Yusufali, S., Bal-donado, M. Q. W. “SONIA: A
Service for Organizing Networked Information
Autonomously,” in Proceedings of Digital Libraries 98,
1998.

[1 I] Salton, G. Automatic Text Processing - The Transformation,
Analysis, and Retrieval of Information by Computer,
Addison-Wesley, Reading, MA. 1989.

[12] Schutze, H. and Silverstein, C. “Projections for Efficient
Document Clustering,” in Proceedings of: the 20th ACM
SIGIR, 1997.

[13] Yang, Y., Pierce, T., and Carbonell, J. “A Study on
Retrospective and On-Line Event Detection,” in Proceedings
of the 2 1 st ACM SIGIR. 1998.

[14] Zamir, O., Etzioni, O., Madani, O., and Karp, R. “Fast and
Intuitive Clustering of Web Documents,” in Proceedings of
the 3rd International Conference on Knowledge Discovery
and Data Mining, 1997.

22

