

1228 VICTOR PAN AND JOHN REIF

and an alternative version of the nested dissection algorithm in [GT]). Many applications to
the sciences and engineering require the solution of such large linear systems; such systems
are frequently so large that parallel implementation of the (generalized) nested dissection
algorithms is necessary in order to make the solution feasible. (We recall some examples of
such problems in 3.)

Work on parallel sparse matrix algorithms can be traced back, at least, to [Ca]. The
extension of the idea of nested dissection from the sequential to the parallel case was not
immediate since many sets of separators must be eliminated in each parallel step. Linear-time
parallel algorithms based on the nested dissection of grids were first described in [Lil] and
[Ga]. The survey paper [OV] gives references to early attempts at parallelizing the LINEAR-
SOLVE algorithms by nested dissection. Here and hereafter, by "parallel nested dissection"
we mean a parallel algorithm for solving sparse linear systems and not a parallel algorithm for
computing a dissection ordering. The subsequent literature on the parallel implementation of
the nested dissection algorithms includes the papers [GHLN] and [ZG], which give a parallel
time bound of O(,v/-ff) for grid graphs.

In the proceedings version of our paper [PR], nested dissection was applied for the first
time to yield a numerically stable and processor efficient parallel algorithm for sparseLINEAR-
SOLVE with poly-log time bounds, thus reaching (within poly-log factors) the optimum bounds
for both time and the number of processors. Furthermore, our nested dissection parallel
algorithm has been applied to a much larger class of graphs than grid graphs, including planar
graphs and s(n)-separatable graphs (see Definition 3.1 below) with s(n) o(n), whereas in
the previous literature the parallel nested dissection was restricted to grid graphs. Such an
enhanced generality required us to exploit the intricate construction of [LRT] (rather than the
simpler constructions of the earlier nested dissection papers, more familiar to the numerical
analysis audience); to devise the desired processor efficient version of this approach, we had
to elaborate the construction of [LRT] by including the recursive factorization of the input
matrix and by proving several properties of the associated graphs. This paper assumes the
reader has some exposure to graph techniques. These generalizations of the nested dissection
algorithms, including the recursive factorization techniques, are required in several important
applications, particularly path-algebra computation in graphs (see [T1], [T2], [PR1], [PR4],
and 3 below).

Remark 1.1. Some readers may agree to sacrifice the generality of the results in order
to simplify the graph techniques involved. Such readers may replace our Definition 3.1 of
separators in graphs by the definition from [GT]. The difference between these approaches
is that our definition requires the inclusion of the separator stbgraph S into both subgraphs
G1 and G2, otherwise separated from each other by S in the original graph G, whereas the
definition of [GT] requires the elimination of all of the vertices of S and all of the edges
adjacent to them from both subgraphs G1 and G2. The resulting construction of [GT] is a
little simpler than ours, and its application decreases by a constant factor the complexity of
the performance of the algorithm in the case of planar graphs G, but the results are applied to
a class of graphs that is strictly more narrow than the class we address. As in our proceedings
paper, [PR1], we extend to parallel computation the more general algorithm of [LRT], rather
than one of [GT], but we demonstrate the vertex elimination construction of [GT] for a 7 7
grid graph in our Figs. 1-5 below (in this case, using the version of [GT], rather than ours,
made our display simpler and more compact).

[Li2] and [OR] describe two recent implementations of the parallel nested dissection
algorithm on massively parallel SIMD machines. The first implementation is very general
and applies to any s (n)-separatable graph; it runs on the CONNECTION MACHINE, which is
a hypercube-connected parallel machine with 65,536 processors; the second implementation is

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1229

2,5 2 43 9 31

18 44

6 4’7

i20 48

,8 49

17 26

,3 ,27

5 28

19 29

7 30

13 34

22

,42

FIG. l(a). 7 7 grid graph Go with elimination numbering.

I() 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39,10 ,12 43 44 45 46 47,18 49

FIG. (b). The matrix Ao. denotes a nonzero entry. Go is the sparsity graph of the matrix Ao.
restricted to grid graphs and runs on the MPP, which is a grid-connected parallel machine with
16,384 processors. Both implementations represent a version of the parallel nested dissection
algorithm using O(s(n)) time and s(n)2 processors (see the end of 3).

In the papers [PR2]-[PR4], [PR6], [PR7] we extend our parallel nested dissection algo-
rithm to the linear least-squares problem, to the linear programming problem, and to path-

1230 VICTOR PAN AND JOHN REIF

Xo Y.

Z

FIG. (C). Recursivefactorization of the matrix Ai.

algebra computation in graphs; in all these papers the resulting algorithms are ultimately
reduced to application of the algorithm of the present paper.

The rest of the paper is organized as follows: In 2 we briefly recall the known parallel
algorithms for MULT and INVERT, and we review their complexity estimates. In 3 we recall
some definitions and then state our estimates for the complexity of LINEAR-SOLVE. In 4
we present the parallel nested dissection algorithm for LINEAR-SOLVE for the case of sparse
symmetric positive definite systems. In 5, we state our main theorem, which provides bounds
on the complexity of the nested dissection algorithm. In 6-8 we prove these bounds. In
Remark 6.1 in 6 we comment on the extension of our results to the nonsymmetric sparse
linear systems associated with directed graphs.

2. Auxiliary results on matrix multiplication and inversion. Our algorithm for
LINEAR-SOLVE recursively reduces the original problem of large size to a sequence of
problems ofMULT and INVERT of smaller sizes. Let us recall the complexity of the solution
of the two latter problems.

Let M(n) denote an upper bound on the number of processors that suffice to multiply
a pair of n n matrices in O(log n) time. Here and hereafter the numbers of processors
are defined within a constant factor (we assume Brent’s (slowdown) scheduling principle of
parallel computations, according to which we may decrease the number of processors from P
to P/s] by using s times as many parallel steps for any natural s _< P). By the upper bound
of [Ch], obtained by the straightforward parallelization of the algorithm of [Stral], we may
chose M(n) <_ n281. In [PR1] and [Panl0] we show that if k k matrices can be multiplied
in O(k) arithmetic operations and/3 < 9/for some 9/, then we may choose M(n) <_ n for
some co < 9/ and for all n. The current best upper bound on/3 and co is 2.375 [CW1]; for
surveys of the exciting history of the asymptotic acceleration of matrix multiplications, see
also [Pan6], [Pan7], or the original works [Stral (the first and justly celebrated breakthrough
in this area), [PanlI-[Pan5], [BCLR], [Bi], [Sch6], [CW2], [Stra2]. In practice, however, even
for matrices of reasonably large sizes, we should only count on M(n) n3/log n or, at best,
on M(n) O(n 2"78) because of the considerable overhead of the known asymptotically faster
algorithms for matrix multiplication (see [Pan7]).

Let us next estimate the complexity of INVERT.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1231

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49

4 5 6 9 10111213141516

2 4 6 9 1011 12 13 14 15 16

FIG. (d). Submatrices Yo and Xo of the matrLr Ao.

DEFINITION 2.1. We call an n x n matrix W well conditioned if log cond W O (log n),
where cond W 11W 11W-1[[for a fixed matrix norm (this definition is invariant in for all
/-norms of matrices).

Now we may recall the following estimate from [PR5] based on the algorithm of [Be]
(compare [PaS]):

Fact 2.1. The problem INVERT for an n n well-conditioned matrix A and for a positive
e < such that log log(1 /e) O (log n) can be solved within errorbound e by using O (log2 n)
parallel time and M(n) processors.

Furthermore, matrix multiplication can be reduced to matrix inversion (see [BM, p. 51]
or [Pan7]), so that the processor bound, as well as the parallel and sequential time bounds

1232 VICTOR PAN AND JOHN REIF

,22

,42

,24

FIG. 2(a). Graph G1 derivedfrom Go by simultaneous elimination of R0 {1, 2 16}.

Al=

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

FIG. 2(b). The matrix A1. G1 is the sparsity graph of the matrix A1.

attained this way, are optimal or nearly optimal (to within a factor of O(log n)). In [Pan8]
the above results for dense matrices are extended to the exact evaluation of the inverse of A,
of the determinant of A, andof all the coefficients of the characteristic polynomial of A in
O(log2 n) steps by using M(n) processors in the case for which A is an arbitrary matrix filled
with integers and such that log IIA n (a) (see proceedings papers [GP1, Part 1] and [Pan9],
which cite and (partly) reproduce [Pan8], and see also its extensions in [Panl0], [Panl], and
[KS]).

In 3 we state our estimates for the complexity of sparse LINEAR-SOLVE by using the
above estimates for the complexity of MULT and INVERT.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1233

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

17 18 19 20 21 22 23 24

17
18
19
20
21
22
23
24

17 18 19 20 21 22 23 24

FIG. 2(c). Submatrices Y1 and XI of the matrix A .

FIG. 3(a). Graph G2 derivedfrom G by simultaneous elimination ofR 17, 18 24}.

Let us point out two alternatives. In the current applications of our algorithm (see the
end of 3) we apply Gaussian elimination for matrix inversion, which for an n n matrix
means O(n) steps and n 2 processors. On the other hand, theoretically, we may rely on the
exact evaluation of the inverse of an n n matrix over rationals. This problem has interesting
combinatorial applications (see [Lo], [GP1], [GP2], [MVV]). The known parallel algorithms

1234 VICTOR PAN AND JOHN REIF

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

25 26 27 28 29 30 31 32 33 34 35 36

25 26 27 28 29 30 31 32 33 34 35 36

FIG. 3(b). The matrix A2 and its submatrices Y2 and X2. G2 is the sparsity graph of the matrix A2.

for its solution use O(log2 n) steps and n M(n) processors, where ot varies from in [Cs] to
in [GP3]; furthermore, ot 0 even for INVERT over the+/- in [PrS] and to slightly less than2

real matrices if we allow randomized Las Vegas algorithms, because of combining [KS] and
[Panl 1] (see also [KP], [BP]), although the problem of numerical stability arises with all of
these matrix inversion algorithms. The parallel cost of solving sparse linear systems varies,
respectively, with the change of matrix inversion algorithms.

3. Some definitions and the complexity of sparse LINEAR-SOLVE. To characterize
the linear systems Ax b that our algorithm solves, we will need some definitions.

DEFINITION 3.1. A graph G (V, E) is said to have an s (n)-separator family (with
respect to two constants, ot < and no) if either VI _< no or, by deleting some separator set S
of vertices such that ISI _< s(IVI), we may partition G into two disconnected subgraphs with

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1235

49

FIG. 4(a). Graph G3 derivedfrom G2 by simultaneous elimination of R2 {25, 26 36}.

37 38 39 40 41 42 43 44 45 46 47 48 49

Y3 =
37 38 39 40 41 42

37 38 39 40 41 42

FIG. 4(b). The matrix A3 and its submatrices Y3 and X3. G3 is the sparsity graph of the matrix A3.

the vertex sets V1 and V2 such that Vil lV[, 1, 2, and if, furthermore, each of the two
subgraphs of G defined by the vertex sets S U Vi, 1, 2, also has an s (n)-separator family
(with respect to the same constants ot and no). The resulting recursive decomposition of G is
known as the s (n)-separator tree, so that each partition of the subgraph G defines its children
in the tree. The vertices of the tree can thus be interpreted as subgraphs of G or as their vertex
sets (we will assume the latter interpretation), and the edges of the tree can be interpreted as the

1236 VICTOR PAN AND JOHN REIF

47

49

FIG. 5(a). Graph G4 derivedfrom G3 by simultaneous elimination of R3 {37, 38 42}.

44 45 46 47 48 49
44
45
46
47
48
49

FIG. 5(b). The matrix A4. G4 is the sparsity graph of the matrix A4.

separator sets. Then the vertex set V equals the union of all the vertex subsets in V associated
with the edges of the s(n)-separator tree and with its leaves. We call a graph s(n)-separatable
if it has an s(n)-separator family and if its s(n)-separator tree is available.

The above definition of a separator tree follows [LT] and includes a separator in each
induced subgraph, unlike the definition of [GT] (see Remark 1.1).

Binary trees obviously have a 1-separator family. A d-dimensional grid (of a uniform size
in each dimension) has an n 1-(1/d)-separator family. [LRT] shows that the planar graphs have
a V/--separator family and that every n-vertex finite element graph with at most k boundary
vertices in every element has a 4 Ik/2J ,,/-if-separator family. An improved construction due to
[D] gives a V/-6--separator family for planar graphs. (Similar small separator bounds have also
been derived by Djidjev for bounded genus graphs and for several other classes of graphs.)

DEFINITION 3.2. Given an n x n symmetric matrix A (aij), define G(A) (V, E) to be
the undirected graph with the vertex set V n} and the edge set E {{i, j}laij 0}.
(We may say that A is sparse if IEI o(n2).)

The very large linear systems Ax b that arise in practice are often sparse and, further-
more, have graphs G(A) with small separators. Important examples of such systems can be
found in circuit analysis (e.g., in the analysis of the electrical properties of a VLSI circuit),
in structural mechanics (e.g., in the stress analysis of large structures), and in fluid mechanics
(e.g., in the design of airplane wings and in weather prediction). These problems require the
solution of (nonlinear) partial differential equations, which are then closely approximated by
very large linear differential equations whose graphs are planar graphs or three-dimensional
grids. Certain weather prediction models, for example, consist of a three-dimensional grid of
size H1 x H2 x H3 with a very large number n H1H2H3 of grid points, but this grid has
only a constant height H3, and hence it has an s(n)-separator family for which s(n) <_ vH3n.

Our algorithm for LINEAR-SOLVE is effective for the systems whose associated graphs
have s(n)-separator families for which s(n) o(n) and for which s(n)-separator trees are

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1237

readily available. Thus our result can be viewed as a reduction of sparse LINEAR-SOLVE to
the problems of (1) computing an s (n)-separator tree in parallel and (2) solving dense linear
systems of s(n) equations with s(n) unknowns.

Efficient parallel computation of s(n)-separator trees is not simple in general, but it
is rather straightforward in the practically important cases of grid graphs (see Figs. 1-5);
similarly, such computation is simple for many finite element graphs (see [Ge]). The recent
O(log2 n)-time, n l+e processor (for any e > 0) randomized parallel algorithm of [GM1 gives
O (fd)-separator trees for all the planar graphs.

Many very large sparse linear systems of algebraic equations found in practice, such as
linear systems arising in the solution of two-dimensional linear partial differential equations
with variable coefficients, have associated graphs that are not grid graphs but that have s(n)-
separators for s(n) o(n). The correctness of the generalized parallel nested dissection
algorithm applied in the case of graphs with s(n)-separators (and thus already in the impor-
tant case of planar graphs) requires a considerably more complex substantiation and a more
advanced proof technique than does the case of grid graphs; in particular, a sophisticated
inductive argument is required (see 7 and 8). This occurs because grid graphs are more
regular than are general graphs with s (n)-separators.

Let us state the complexity estimates for our solution of sparse LINEAR-SOLVE. Our
main result is the decrease of the previous processor bound (supporting the poly-log parallel
time) from M(n) to (IEI + M(s))/log n, whereas the time bound increases from O(log2 n) to
O(log n). (Since in all the known applications of interest s(n) exceeds cn for some positive
constants c and 6, we will write O (log n) rather than O (log s (n)) to simplify the notation.
Also note that 2IEI is roughly the number ofnonzero input entries, so that we cannot generally
count on decreasing the sequential time (and therefore also the total work, that is, parallel time
times the processor bound) below IEI.) It follows, for example, that our improvement of the
previous processor bound is by a factor of n if s(n) n 1/2, IEI 0(n3/2). Because practical
implementations of the algorithms would be slowed down to satisfy processor limitations of
the actual computers (see discussion at the end of this section), we will decrease the processor
bound of M(n) log2n T(n) to (IEI -+- M(s(n))) log2n T(n) in our algorithm, provided that
it runs in T (n) time, where T (n) > c log n, c O (1).

Let us comment further on how we arrive at our estimates. In general, the inverse A -1

of a sparse matrix A (even of one with small separators) is dense, and, in fact, if G(A)
is connected, A -1 may have no zero entries. Therefore, it is common to avoid computing
the inverse matrix and instead to factorize it. Our algorithm for LINEAR-SOLVE follows
this custom: It computes a special recursive factorization of A. For sparse matrices with
small separators, our poly-log-time algorithm yields processor bounds that are of an order of
magnitude lower than the bounds attained by means of other poly-log-time parallel algorithms,
which compute the inverse matrix. Specifically, let an n n positive definite symmetric well-
conditioned matrix A be given, such that G (A) has an s (n)-separator family, its s (n)-separator
tree is known, and s(n) is of the form otn for two constants cr < and c. Then we first
compute a special recursive factorization of A (within the error bound 2-no for a positive
constant c) in O(log n) time by using M(s(n))/logn processors (see Theorem 5.1 below),
and finally we compute the desired solution vector x A -lb. The complexity of this final
stage is lower than the complexity of computing the recursive factorization.

For comparison the inversion of an s(n) s(n) dense matrix is one of the steps of
computing the recursive factorization of A, and the current parallel cost of this step alone
is at best O(log2 n) time and M(s(n)) processors (by using the parallel algorithm of [Be],
[PR1].) When our special recursive factorization has been computed, the solution of Ax
b (for any given b) requires only O(log2 n) time and (IEI/logn) + s(n)2 processors. It

1238 VICTOR PAN AND JOHN REIF

is interesting that by multiplying our parallel time and processor bounds we arrive at the
sequential complexity estimate of O(M(s(n))log2 n) o(s(n) 2"4) arithmetic operations,
which matches the theoretical upper bound of [LRT].

Let us demonstrate some consequences of the complexity bounds of our algorithm. We
will first assume the weak bound M(n) n3/log n for matrix multiplication. It is significant
that already under this assumption our parallel nested dissection algorithm, for poly-log time
bounds, has processor bounds that substantially improve the previously known bounds. Let G
be a fixed planar graph with n vertices given with its O (x/-d)-separator tree. (For example, G
might be a graph with a x grid.) Then, for any n x n matrix A such that G G(A),
our parallel nested dissection algorithm takes O(log n) time and n1"5/log2n processors to

compute the special recursive factorization of A and then O (log2 n) time and n processors to
solve any linear system Ax b with A fixed. We have the time bounds O(log (kn)) and
O(log2(kn)) and the processor bounds k3nl5/log2(kn) and kn, respectively, if G(A) is an
n-vertex finite element graph with at most k vertices on the boundary of each face. In yet
another example, G(A) is a three-dimensional grid, so that it has an n2/3-separator family. In
this case we have the same asymptotic time bounds as for planar graphs and our processor
bounds are n2/log2 n and n 1.33, respectively. Furthermore, if we use the theoretical bounds
for matrix multiplication, say M(n) n 2"4, then our processor bounds for computing the
special recursive factorization are further decreased to n 1.2 in the planar case, to k2"4n 1.2 in the
case of the n-vertex finite elements graphs with at most k vertices per face, and to n 1.6 for the
three-dimensional grid.

In the current practical implementations of our algorithm ([LMNOR] and [OR]) we have
not reached the poly-log-time bounds because we have simply used the Gaussian elimination
rather than Ben-Israel’s algorithm at the stages of matrix inversions, and so we achieve time
s(n) with s(n)2 processors. The reason for this choice is the limitation on the number of
processors that we could efficiently use on the available computers. It is certain, however, that
the future parallel computers will have significantly more processors, and then the application
of Ben-Israel’s algorithm may be preferred; we cannot exactly estimate the threshold number
of processors that would in practice give the edge to Ben-Israel’s algorithm over Gaussian
elimination, but according to our theoretical estimates the former algorithm improves the
parallel time bounds of the latter one if more than s(n) 2 processors are available.

4. Outline of the parallel generalized nested dissection algorithm. In this section we
fix an undirected graph G having an s(n)-separator family (with respect to constants no and
or) (see Definition 3.1). Let A be an n x n real symmetric positive definite matrix with graph
G G(A) (see Definition 3.2). We will describe an efficient parallel algorithm that computes
a special recursive factorization of A. With such a factorization available it will become very
simple to solve the system of linear equations Ax b for any given vector b (see the last part
of Theorem 5.1 below).

DEFINITION 4.1. A recursive s(n)-factorization of a symmetric matrix A (associated with
a graph G G(a) having an s(n)-separator family with respect to two constants or, ot < 1,
and no) is a sequence of matrices, Ao, A1 Ad, such that Ao PAPr, where P is an
n x n permutation matrix, Ah has size n

(4.1) Ah=
Yh Zh

Zh Ah+l + YhX Y, h=0,1 d-l,

and Xh is a symmetric block diagonal matrix corresponding to the separators or, for h d,
to the vertex sets in V associated with the leaves of the s(n)-separator tree and consisting of
square blocks of sizes at most s (na_h) x s (ha_h), where

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1239

(4.2) nd= n, nh-1 < Otnh --}- S(nh), h 1 d.

Here and hereafter, W r denotes the transpose of a matrix or vector W. (Note that the constant

no used in Definition 3.1 for the separator family is also the order of the diagonal blocks
of the matrix X,/.) This recursive factorization is said to be numerically computed if the
computerized approximants of the induced matrices A1 Aa satisfy (4.1) within the error
norm 2-no (relative to A I1) for a positive constant c.

Our definition of a recursive s(n)-factorization relies on the matrix identities

(4.3) Ah
YhX- I 0 Ah+l 0 I

and

(4.4)
O I O A -1 -YX-1 Ih+l

Here the matrix Ah+l defined by (4.1) is known in linear algebra as Schur’s complement of
Xh, h ranges from 0 to d 1, I denotes the identity matrices, and O denotes the null matrices
of appropriate sizes. We show in 7 that Ah+l also has certain sparsity properties.

The recursive decomposition (4.1)-(4.4) is intimately related to the recursive decompo-
sition of the associated graph G G(A) defined by (and defining) the s(n)-separator tree.

Specifically, we will see that the matrices Xh are block diagonal matrices whose blocks for
h 0, d are associated with the separator sets of level h from the root of the tree,
whereas the blocks of Xa are associated with the leaves of the tree.

Given a symmetric n n matrix A associated with an s(n)-separable graph G(A), we
may compute the recursive s(n)-factorization (4.1)-(4.4) by performing the following stages:

Stage O. Compute an appropriate permutation matrix P, matrix A0 PAPr, and the
decreasing sequence of positive integers n n, n-i no satisfying (4.2) and defined
by the sizes of the separators in the s(n)-separator family of G G(A) (as specified below
in 7). The permutation matrix P and the integers nd, na-1 no completely define the
order of the elimination of the variables (vertices), so that first we eliminate the vertices of
G corresponding to the leaves of the s(n)-separator tree, then we eliminate the vertices of
G corresponding to the edges adjacent to the leaves of the tree (that is, the vertices of the
separators used at the final partition step), then we eliminate the vertices of G corresponding
to the next edge level of the tree (separators of the previous partition step), and so on; we
formally analyze this in7 and 8.

Stage h + (h 0 d 1). Compute the matrices X-I, yh X-I (which also gives
us the matrix -XIy (-YhX-I) r) and Ah+l Zh YhX-IY satisfying (4.1), (4.3),
(4.4) and such that Ah+l has size rid-h-1 nd-h-1. (Each of these stages amounts to inversion,
two multiplications, and subtraction of some matrices.)

When the recursive factorization (4.4) has been computed, it will remain to compute the
vector x A-lb pTAl(pb) for a column vector b. This can be done by means of
recursive premultiplications of some subvectors of the vector Pb by the matrices

-YX- I O A -1 O Ih+l

for h 0, 1 d. At the stage of the premultiplication by the second matrix above, the
premultiplication by X-1 is done explicitly and the premultiplication by Ah is performed

1240 VICTOR PAN AND JOHN REIF

by means of recursive application of (4.4), so that (4.4) defines a simple recursive algorithm
for computing A-lb for any column vector b of length n, provided that a recursive s(n)-
factorization (4.1) is given.

It is instructive to compare the recursive s (n)-factorization (4.1)-(4.4) with the Cholesky
factorization of Ah used in [LRT]. The notations in [LRT] are distinct from ours, but for the
sake of making the comparison we assume that the notation is adjusted to the same format.
Then we may say that both factorizations rely on the matrix identities (4.3), (4.4) which, in
fact, just represent the block Jordan elimination algorithm for a 2 2 block matrix Ah of (4.1).
The Cholesky factorization PAPr LDL 7" is obtained in [LRT] by the application of the
Jordan elimination to the matrix PAP T", which is equivalent to the recursive application of
(4.3) to both submatrices Xh and Ah+l. (This defines L and L 7" in factorized form, but the
entries of the factors do not interfere with each other, so that all the entries of YhX coincide
with the respective entries of L.) Efficient parallelization of this recursive algorithm (yielding
O(log n) parallel time) is straightforward, except for the stage of the factorization of the
matrices Xh (which, by Lemma 7.2 below, are block diagonal with dense diagonal blocks of
sizes of the order of S(rlh) S(rth)). However, for the purpose of solving the systems Ax b,
we do not have to factorize the matrices Xh. It suffices to invert them, and this can be efficiently
done by using the techniques of [Be], provided that A is a well-conditioned matrix. Thus we
arrive at the recursive s(n)-factorization (4.1)-(4.4), where we recursively factorize only the

-1 in (4.4) but not the matrices Xh and X- This modification ofmatrices Ah+l in (4.3) and Ah+
the factorization scheme is crucial in some important combinatorial computations (see [PR4],
[PR6]).

5. Parallel generalized nested dissection: The main theorem. Hereafter, we will as-
sume that c and r are constants such that

(5.1) s(n) cn ! < r <2

Equation (5.1) holds in all the interesting applications (such as planar graphs, grid graphs, and
finite element graphs) for which s (n)-separator families are defined.

For simplicity, we will also assume hereafter that

(5.2) M(n) n* for some constant co* > 2 > +/-

and consequently that

(5.3) M(ab) M(a)M(b).

THEOREM 5.1. Let G (V, E) be an s(n)-separatable graph for s(n) satisfying (5.1).
Then, given an n n symmetric positive definite matrix A such that cond A n() and
G G (A), we can numerically compute a recursive s (n)-factorization ofA in time 0 (log n)
with M(s(n)) / log n processors (provided that M(s(n)) processors suffice to multiply apair of
s(n) s(n) matrices in time O(log n) and that M(n) satisfies (5.2)). Whenever such a recursive
s(n)-factorization ofA is available, O(log2 n) time and (IE[/ log n) + s(n)2 processors suffice
to solve a system of linear equations Ax b for any given vector b ofdimension n.

Remark 5.1. It is possible to extend Theorem 5.1 to the case for which (5.1) does not
hold by using [LRT, Thms. 7-9]. On the other hand, the restriction to the class of symmetric
positive definite input matrices A in the statements of Theorem 5.1 is needed only to support
numerical stability of the factorization (4.3), (4.4).

Remark 5.2. The product of our parallel time and processor bounds is the same, TP
(PARALLEL TIME) PROCESSOR O(M(s(n)) log2 n), both for computing the whole
recursive factorization (4.3), (4.4) and for its proper stage of inverting Xa-1.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1241

Remark 5.3. As was noted by Gazit and Miller [GM2], the recursive s(n)-factorization
can be computed by using O(log2 n log log n) time and M(s(n)) processors. Moreover, their
approach can be extended to reach the bounds of O(log2 n log(1/)) time and simultaneously
O(M(s(n))1+) processors for a positive parameter 6 JAR]. One may try to improve the
processor efficiency of the latter estimates by applying a relatively minor super effective
slowdown of the computations [PP].

6. Outline of the proof of the main theorem. We will show that the parallel algorithm
uses only d O (log n) stages. Let 6 3 (n) denote cn-1 s (n)/n, and let no be large
enough, so that

(6.1) ak+s(k)-(ot+3)k=/3k, /3=ot+6 < ifk>n0.

Equations (4.2) and (6.1) together imply that

(6.2) nh < (Or + 6)d-hn fld-hn, h --O, d.

LEMMA 6.1. d O (log n) forfixed no and ot < 1.

Proof. Relation (6.2) for h 0 implies that d < log(n/no)/log(1/(a + 3))
O(logn). [-1

The next lemma shows that for all h the auxiliary matrices A h and Xh are positive definite
(and therefore nonsingular) and have condition numbers not exceeding the condition number
of A. This implies that our parallel algorithm is numerically stable. The lemma follows from

-1the observation that Ah+ is a principal submatrix ofA- and from the interlacing property of
the eigenvalues of a symmetric matrix (see [GoL] or [Par]).

LEMMA 6.2. The matrices Ah+l and Xh are symmetric positive definite if the matrix Ah
is symmetric positive definite, and, furthermore, max{(cond A h)2, (cond Xh)2} < (cond A)2
for all h.

In the remainder of this paper we further specify our parallel nested dissection algorithm
and estimate its complexity. We observe that all its arithmetic operations (except those needed
in order to invert Xh for all h) are also involved in the sequential algorithm of [LRT]. (As in
the latter paper, we ignore the arithmetic operations for which at least one operand is zero;
we assume that no random cancellations of nonzero entries takes place, for if there are such
cancellations, we would only arrive at more optimistic bounds; we will treat both Xh andX-I

as block diagonal matrices having nonzero blocks in the same places.)
For each h we group all the arithmetic operations involved to reduce these operations to a

pair of matrix multiplications Uh YhS (which also gives X- yhT UhT) and Wh UhY
and to a (low-cost) matrix subtraction Ah+l Zh Wh (it is assumed here that the matrix

X-1 has been precomputed). Below, Theorem 7.1 provides a bound on the complexity of
numerically computing the inverse of the auxiliary matrices X0 Xd, and Theorem 8.1
provides a bound on the cost of parallel multiplication of the auxiliary matrices and implies
the time bound of O (log2 n) for the entire computation, excluding the stage of the inversion
of the matrices Xh. The number of processors is bounded above by the number of arithmetic
operations used in the algorithm of [LRT], that is, by O(s(n)3) (see [LRT, Thm. 3] and Remark
5.2).

The estimates of Theorem 5.1 for the cost of computing the recursive factorization (4.1)-
(4.4) immediately follow from Theorems 7.1 and 8.1 below.

Next we discuss the parallel complexity of back solving the linear system Ax b, given
the recursive factorization. As we have already pointed out, when the recursive factorization
(4.1)-(4.4) has been computed, we evaluate x A-lb by means of successive premultiplica-
tions of some subvectors of b by the matrices Yh X-I, X-I, and X-I yhv for h ranging between

1242 VICTOR PAN AND JOHN REIF

0 and d. The parallel time bounds are O (log n) for each h and O (log2 n) for all h. The obvious
processor bound is (IEI + IFl)/logn, where IEI + IFI denotes the number of entries of an
n x n array corresponding to the nonzeros of at least one of the submatrices X-1Y, YhX- 1,
and X-I of (4.4) for h 0, d (for each h, X y, YhX- l, and X-1 occupy the
upper-right, lower-left, and upper-left comers of the array, respectively). The nonzeros of A0
form the set E of the edges of G(A); other nonzeros form the set F calledfill-in (associated
with the nonzeros introduced in the process of computing the s(n)-factorization (4.1)-(4.4)).

Finally, we must discuss the space bounds of the algorithm. By [LRT, Thm. 2], IF]
O(n +s(n)2 log n), and this bound can be applied to our algorithm as well. The proofs in [LRT]
are under the assumption that s(n) O (v/-ff), but the extension to any s(n) satisfying (5.1) is
immediate. Likewise, Lipton, Rose, and Tarjan estimated only the number of multiplications
involved, but including the additions and subtractions would increase the upper estimates
yielded in their and our algorithms by only a constant factor.

Remark 6.1. The algorithms and the complexity estimates of this paper will be immedi-
ately extended to the case of nonsymmetric linear systems with directed graphs if for all h we
replace the matrices Y by matrices Wh (which are not generally the transposes of Yh) and
remove the assumption that the matrices Xh are symmetric. Of all the results and proofs, only
Lemma 6.2 and the numerical stability of our s(n)-recursive factorization (4.1)-(4.4) are not
extended. This lack of extension of Lemma 6.2 surely devalues the resulting numerical algo-
rithm, but the algorithm remains powerful for the computations over the semirings (dioids),
with interesting combinatorial applications (see [PR4], [PR6], [PR7]).

7. Cost of parallel inversion of the auxiliary matrices Xh. In this section we specify
Stage 0 of computing the recursive factorization (4.1)-(4.4) (see 4) and prove the following
result:

THEOREM 7.1. Let A be an n n well-conditioned symmetric positive definite matrix
having a recursive s(n)-factorization. Then O(log n) parallel time and M(s(n))/ log n pro-
cessors suffice to numerically invert the auxiliary matrices Xo Xd that appear in the
recursive s(n)-factorization (4.1)-(4.4).

Proof We first reexamine the well-known correlations between the elimination of the
variables and of the associated vertices of G G (A), which we will derive from the previous
analysis of nested dissection in [R] and [GEL]. We observe that the elimination of a vertex
(variable) v is associated with the replacement of the edges in the graph G as follows: (1)
First, for every pair of edges {Ul, v} and {v, u2}, the fill-in edge {Ul, u2} is to be added to the
set of edges (unless {Ul, u2} is already in the graph); (2) then every edge with an end point v
is deleted.

Adding an edge such as {Ul, u2} to the edge set corresponds to four arithmetic operations
ofthe formz-ylx-ly2, where x, Yl, y2, z represent the edges {v, v}, {Ul, v}, {v, U2}, {Ul, U2},
respectively (see Figs. 1-5 and the end of Remark 1.1). If a block of variables is eliminated,
then a set S, representing this block, should replace a vertex in the above description, so that, at
first, for every pair ofedges u 1, Sl }, u2, s2 with the end points s and s2 in S, the edge u 1, u2

is added to the set of edges, and then, when all such pairs of edges have been scanned, all the
edges with one or two end points in S are deleted. This corresponds to the matrix operations of
the form Z Y1 X-1 yf, where X, Y1, Yf, Z represent the blocks of edges of the form {$1, $2 },
{Ul, sl}, {s2, u2}, {ul, u2}, respectively, where Sl, s2 6 S and where ul, u2 denote two vertices
connected by edges with S. For symmetric matrices we may assume that Y1 Y2 Y. Of
course, the objective is to arrange the elimination so as to decrease the fill-in and the (sequential
and parallel) arithmetic cost. This objective is achieved in the nested dissection algorithm, in
which the elimination is ordered so that every eliminated block of vertices is connected by

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1243

edges with only relatively few vertices (confined to an s(nh)-separator, separating the vertices
of the eliminated block from all other vertices).

To ensure the latter property we exploit the existence of an s (n)-separator family for the
graph G G(A) and order the elimination by using a separator tree T6 defined for a graph
G as follows:

DEFINITION 7.1. See Fig. 6. Suppose that the graph G (V, E) has n vertices. If n < no
(see Definition 3.1), let T6 be the trivial tree with no edges and with the single leaf (V, S),
where S V. If n > no, we know an s(n)-separator S of G, so that we can find a partition
V (1), V (2), S of V such that there exists no edge in E between the sets V (1) and V (2) and,
furthermore, IV(1)I _< otn, IV(2)I _< otn, and ISl _< s(n). Then Ta is defined to be the binary
tree with the root (V, S) having exactly two children that are the roots of the subtrees Ta
Ta of T6, where Gj is the subgraph of G induced by the vertex set S tA V (j) for j 1, 2.
(Note that T6 is not equivalent to the elimination trees of [Schr], [Li2], and [GHLN] or to
the separator trees of [GT], since the latter trees do not include the separator in the induced
subgraphs.)

(V
1 Sl,2)

(V ,V (V ,V (V ,V
0,I 0,i 0,2 0,2 0,3 0,3

(Vo’4’Vo 4)

FIG. 6. Tree Tc for the case d 2.

The following definitions are equivalent to the usual ones, as, for example, given in [LRT].
DEFINITION 7.2. Let the height of a node v in Ta equal d minus the length of the path

from the root to v, where d, the height of the root, is the maximum length of a path from the
root to a leaf. Let Nh be the number of nodes of height h in Ta. Since Ta is a binary tree,

Nh < 2d-h. Let (Vh,1, Sh,1) (Vh,Nh, Sh,Nh) be a list of all the nodes of height h in T6, and

let Sh J Sh,k.
Let n be the number of vertices of G. Since G has an s(n)-separator family, IVh,l _< nh

and [Sh,k[< s(nh) for each h > and for k 1 Nh (see (4.2) for the definition of nh);
furthermore, v0,l _< no and S0,k V0,k for k 1, .., No by the definition of the tree T6.

DEFINITION 7.3. For each k 1 Nh let Rh,k denote the set of all the elements of Sh,k
that are not in Sh. for h* > h, so that Rh,k Sh,k USh.,k., where the union is over all the

Nhancestors (Vh.,., Sh.,k.) of (Vh,k, Sh,) in T6. Let Rh -Jk=l Rh,k.
Observe that, by the definition of the sets Rh,k and Rh and of an s(n)-separator family,

Rh,kl f’) Rh,k2 J if kl k2, Rh f’) Rh* J if h h*, and V ha=0 Rh. Also observe that
for distinct k the subsets Rh,k of Rh are not connected by edges with each other; moreover, the
vertices of each set Rh,k can be connected by edges only with the vertices of the set Rh,k itself
and of the separator sets Sh+g,q in the ancestor nodes of (Vh,k, Sh,k) of the tree T6. Now we are

ready to describe the order of elimination of vertices and of the associated variables. We will
eliminate the vertices in the following order: first the vertices of R0, then the vertices of R1,
then the vertices of R2, and so on. (For each h we will eliminate the vertices of Rh in parallel

1244 VICTOR PAN AND JOHN REIF

for all the disjoint subsets Rh,1, Rh,2 Rh,Nh .) This way all the vertices of V Jh Rh will
be processed. In particular, the rows and columns of Ah associated with the vertices of Rh,k
form an [Rh,k[x [Rh,k[diagonal block of Xh for k 1, 2 Nh; Xh is the block diagonal
submatrix of Ah with these Nh diagonal blocks, and nh+ nh [Rh [.

Let us now formally define the desired permutation matrix P and set of integers na, ha-l,

no, which we need in Stage 0 (see 4). Let re {1 n} -+ {1 n} be any enu-
meration of the n vertices of G such that re(v) < re(v*) if v Rh, v* Rh., h* > h, and,
furthermore, re consecutively orders the vertices of Rh,k for each h and k. Thus the elements
of re(Rh) are in the range 3h + 6h+, where 6h g<h [Rg[. Such an enumeration can

be easily computed directly from the separator tree in parallel time O (log2 n) with n / log n
processors by first numbering the vertices of Rd Sd as n, n and then numbering
(also in the decreasing order) all the previously unnumbered vertices of Rh of height h for
each h, where h d 1, d 2 0.

We define the permutation matrix P [Pij] such that pij if j zr(i) and pij 0
otherwise. This gives us the initial matrix A0 PA Pr. Recursively, for h 0, d- 1,
let n h n 3h, and this completes Stage 0.

Now we define

the (n 6h) x (n 6h) symmetric matrix, where Xh is the Rhl x Rhl upper-left submatrix
of Ah, Yh is the (n 3h [Rh[[Rh 1) lower-left submatrix of Ah, and Zh is the (n 3h
IRhl) (n --h --]Rhl) lower-right submatrix of Ah. We then define Ah+ Zh YhX- Y.
Thus in Stage h + of computing the recursive factorization (see 4) we have eliminated the
variables (vertices) associated with Rh.

We now claim that for a fixed h we can compute Ah+l from Xh, Zh, and Yh in time
O(log2 s(n)) with at most M(s(n)) processors. To prove this we will investigate the sparsity
of Ah and the connectivity of G h.

(h)Let Ah aij). We define the associated graph Gh (Vh, Eh) with the vertex set

Vh {h + h + 2, n} and the edge set Eh {{i + h., j + h}’laij 0}; that is, Gh is
derived from G(Ah) by adding 6h to each vertex number (see Figs. 1-5). Note that i, j Vh
if the edge {i, j} belongs to Eh. (The fill-in in stage h is the set of edges that are in Eh but not
in Eh-1.)

Now we are ready to establish a lemma that provides some useful information about the
fill-in, about the connectivity of G h, and, consequently, about the sparsity of Xh. By usual
arguments (see [GEL], [Li2], [GT]) we arrive at the following lemma:

LEMMA 7.1. Let h > O. Then the following hold:
(a) Ifp is a path in Gh between two vertices q Vh,,k and j Rh,,kfor some h* > h and

some k, then p visits some vertex v such that re(v) > 6,+, that is, v q Rq for q < h*.
(b)

Eh+l E tA Fh,

E- {{i, j} 6 Eh[i, j q Rh},

Fh t_J{{/, j}lk{i, j}, {j, j2} {jt-, jl}, {j, j} Eh}

provided that jl jl Rh,k and that re(i) > 3h+, re(j) > h+l in the definition of Fh.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1245

Lemma 7.1 defines the desired restriction on the edge connections in G (Ah). In particular,
part (a) of Lemma 7.1 implies that Eh contains no edge between Rh,k and Rh,k* for k # k*.

Since zr groups the vertices of Rh,k together and since maxk IRh,kl < max s(IVh,l) <_
s (n h), we immediately arrive at the following lemma:

LEMMA 7.2. Xh is a block diagonal matrix consisting of Nh < 2d-h square blocks of
sizes Rh,k[Rh,k[, so that each block is of size at most s(nh) s (nh).

Lemma 7.2 implies that for h > 0 the numerical inversion of Xh can be reduced to

Nh < 2d-h parallel numerical inversions of generally dense matrices, each of size at most
S(nh) S(nh) (that is, one dense matrix is associated with each Rh,k, SO that its size is at
most [Rh,kl [Rh,k[). By Fact 2.1 such inversions can be performed in O(log2 n) time with
NhM(s(nh)) <_ 2d-h M(s(nh)) processors.

The next lemma is from [LT]. Its proof is simplified in [PR for the case in which or* > ,
and we need only this case. Both proofs also show simple transformations of the respective
s(n)-separator tree into s* (n -separator trees.

LEMMA 7.3. For any triple of constants or, or*, and no such that <_ < ot < and
no > O, if a graph has an s(n)-separator family with respect to ot and no (see Definition
3.1), then this graph has an s* (n)-separatorfamily with respect to or* and no, where s* (n) <_

dyh=oS(nh) in particular, s*(n) < cn/(1 fl) if s(n) < cn for some positive constants
c, 1, and r, where t3 < (see (5.1), (6.1), (6.2)).

LEMMA 7.4. 2d-h M(s(nh)) < M(s(n))oc-h for some 0 < 1.

Proof Equation (5.1) and relation (6.2) imply that s(nh) <_ c(a + 6)(-hn, so that
M(s(nh)) <_ c; (or + 3)*(-hn* (see (5.2)). We may choose no sufficiently large so as
to make 6 sufficiently small and then apply Lemma 7.3 to make sure that ot + 6 lies as close
to as we like. Since rco* > (see (5.2)), we may assume that (or + 6)* < , so that

0 2(or +)o* < 1. Then

2a-hM(s(nh)) <_ od-hc*nr; od-hM(s(n)).]

From Fact 2.1 and Brent’s slowdown principle of parallel computation, we may invert Xh
by using O(k log2 n) steps and [2a-hM(s(nh))/k] <_ [M(s(n))od-h/k] processors for some
0 < and for any k such that < k k(h). Choosing the minimum k k(h) >_ such that
M(s(n))a-h/k(h) <_ M(s(n))/logn (so that k(h) Oa-h logn if h > d + loglogn/log0
and k(h) otherwise), we simultaneously obtain the time bound O(log n) (see Lemma
6.1) and the processor bound M(s(n))/log n, required in Theorem 7.1. 7]

8. Estimating the cost of parallel multiplication of auxiliary matrices.
THEOREM 8.1. All the 2d matrix multiplications

(8.1) Oh YhX; 1, Wh VhY h O, 1,..., d-

involved in the recursive s(n)-factorization (4.1)-(4.4) can be performed by using O(log2 n)
parallel time and M(s(n)) processors or (if we slow down the computations by a factor of
log n) by using O(log n) parallel time and M(s(n))/ logn processors.

Proof We will prove Theorem 8.1 by estimating the cost of parallel evaluation of the
matrix products of (8.1) (given Yh andX-1) for h 0, 1 d 1. First we will arrange the
matrix multiplications of (8.1) by reducing them to several matrix multiplications of the form

(8.2) Uh k Yh, -1kXh,k, mh,k Uh,kY,k k-l,2 Nh, h-0,1 d-1.

To arrive at such a rearrangement, partition Yh into Nh submatrices Yh,k having columns
associated with the row sets Rh,k and having the sizes m h,k Rh,I, where m h,k < n 3h

1246 VICTOR PAN AND JOHN REIF

for k Nh The dense diagonal blocks of X; are denoted X-1 respectively. By theh,k’
definition of Gh and T6 and by virtue ofLemma 7.1, the matrix Yh, may have nonzero entries
only in rows such that lies in one of the sets Rh+g,q (for < g < d h, q q (g, h, k))
corresponding to an ancestor (Vh+g,q Sh+g,q) of the node (Vh,k, Sh,k) in T6.

To deduce the desired complexity estimates, examine the cost of all the latter matrix
multiplications (8.2), grouping them not in the above horizontal order (where k ranges from
to Nh for a fixed h) but in the vertical order of Definition 3.1, that is, going from the root of

the tree Ta to its leaves.
By slightly abusing the notation, denote n [Rh,k[, m m h,k for a fixed pair h and k,

and consider the matrix multiplications of (8.2) associated with the node (Vh,k, Sh,k) and with
its descendents in the tree Ta. These matrix multiplications can be performed in O(log2 n)
time (this is required in Theorem 8.1); let P(n, m) denote the associated processor bound.
For the two children of the node (Vh,k, Sh,k) the two associated numbers of processors will be
denoted by P(nl, m) and P(n2, m2), where, by virtue of Lemma 7.2 and Definition 3.1 (see
also [LRT]),

(8.3)

m + m2 _< m + 2s(n),

n <_ n + rt2 <_ n -+-s(n),

(1 ot)n < ni <_ otn + s(n) for 1, 2.

Let M(p, q, r) hereafter denote the number of processors required in order to multiply
p x q by q x r matrices in O(log(pqr)) parallel steps, so that M(p, q, r) <_ M(q) [p/q] [r/q]
(all the processor bounds have been defined up to within constant factors). For fixed h and k
(and, therefore, for a fixed separator Sh,k) the matrix multiplications (8.2) can be performed by
using O(logn) parallel steps and M(s(n) + m, s(n), s(n) + m) <_ [(1 + m/s(n))ZM(s(n))
processors. Therefore, recursively,

(8.4) P(n, m) <_ 1+ 1-+- M(s(n)) + P(n, ml) + P(n2, m2)

for some n, n2, m, m2 satisfying (8.3).
Using (8.4), we will prove the following claim, which in its special case for m 0

amounts to Theorem 8.1 (recall that we already have the parallel time bound O (log2 n) of this
theorem):

CLAIM. P(n, m) < (co + cl(m/s(n)) + c2(m/s(n))Z)m(s(n)) for all m and n andfor
some constants co, c, c2.

Proof. Ifn < n0, then P(n,m) <_ M(n) < co provided that c0 > M(no). Thus letn > no
and prove the claim by induction on n. We may assume that no is large enough, so that (8.3)
implies that n < n for 1, 2. Then by the induction hypothesis the claim holds if n is
replaced by n for 1, 2, so that

P(nl, m) + P(n2, m2) _</1= co -+- Cl m!. mi

s(ni) + c2 M(s(n))Si?li’
Therefore,

(8.5) Z Z M(s(ni))Z P(ni, mi) < co M(s(ni)) "+-Cl mi
s(ni)

M(s(ni))
At-C2Z mZi n-ii

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1247

Next we deduce from (8.3) that for g and g 2

ZmgiM-(s--(-ni))
s(tli)g

< (mrg) mX t M(---fS(n!!) 1s(ni)g

< (m 4- 2s(n))gM(s(tn +
s(otn + s(n))g

< (m 4- 2s(n))gM(s(tn)) for/3 <
s(n)g

(apply (6.1) to deduce the last inequality). Applying here (5.1) and (5.2), we obtain that

(8.6) Z mgi M_(s_(._ni).) < y(m + 2s(n))gM(s(n))
s(ni)g s(n)g

where y =/3(*-g> is a constant, V < 1, g 1, 2, g < co*.
Furthermore, (5.1) and (8.3) imply that the sum M(s(nl)) + M(s(n2)) takes on its max-

imum value where one of nl, n2 is as large as possible (that is, equal to an 4- s(n)), which
makes the other as small as possible (that is, equal to (1 or)n). Therefore,

M(s(nl)) 4- M(s(n2)) < M(s(otn 4- s(n))) 4- M(s((1 -or)n))
< M(s((c 4- 3)n)) 4- M(s((1 or)n))

M(cn (or 4-)) 4- M(cn(1 o))

(see (5.1) and (6.1)). Applying here (5.3) and then (5.1) and (5.2), we deduce that

M(s(n)) 4- M(s(n2)) < (M((ot 4- 6)) 4- M((1 ot)))M(cn)
< ((or + 6); + (1 c)*)m(s(n)),

where co*r > 1. The positive 3 can be assumed to be arbitrarily close to 0, and so we deduce
that

(8.7) M(s(nl)) 4- M(s(n2)) < vM(s(n))

for a constant v < 1.
Combining (8.4)-(8.7), we obtain that

P(n, m) < (2 + vco 4- 2yCl + 4yc2)M(s(n))

rn

(8.8)
+(2 4- yC1 4- 4ycz)M(s(n))

s(n)

+(1 + Vc)M(s(n))

for two constants ?’ < 1, v < 1. We choose c large enough, so that 4- gc _< c, we then
choose c large enough so that 2 4- ,c 4- 4g c). _< c, and, finally, we chose co large enough, so
that 2 4- V.Co + 2yc + 47’c < co. Then (8.8) implies the claim and, consequently, Theorem
8.1.

Acknowledgments. The authors thank the referees for numerous helpful suggestions.
The paper was typed by Sally Goodall (with assistance from Joan Bentley, Bettye Kirkland,
and Chris Lane).

1248 VICTOR PAN AND JOHN REIF

[AR]

[BCLR]

[Be]

[BGH]

[Bi]

[BM]

[BP]

[Ca]

[Ch]

[Cs]
[CWl]

[cw2]

[D]

[EG]

[Ga]

[GEL]

[Gel

[GHLN]

[GM1]

[GM2]
[GoL]

[GP1]

[GP2]

[GP3]

[GT]

[KP]

[KR]

REFERENCES

D. ARMON AND J. REIF, Space and time efficient implementation of a parallel nested dissection, in
Proc. 4th Annual ACM Symposium on Parallel Algorithms and Architectures, Association for
Computing Machinery, New York, 1992, pp. 344-352.

D. BINI, M. CAPOVANI, G. LOTTI, AND E ROMANI, O(n2"7799) complexityfor matrix multiplication,
Inform. Process. Lett., 8 (1979), pp. 234-235.

A. BEN-ISRaEL, A note on iterative methodsfor generalized inversion of matrices, Math. Comput.,
20 (1966), pp. 439-440.

A. BORODIN, J. VON ZUR GATHEN, AND J. HOPCROFT, Fast parallel matrix and GCD computation,
Inform. and Control, 52 (1982), pp. 241-256.

D. BINI, Relations between EC-algorithms and APA-algorithms: Applications, Calcolo, 17 (1980),
pp. 87-97.

A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

D. BINI AND V. PAN, Numerical and Algebraic Computations with Matrices and Polynomials,
Birkhiuser-Verlag, Boston, 1993.

D. A. CALAIqAN, Parallel solution of sparse simultaneous linear equations, in Proc. th Allerton
Conference, 1973, pp. 729-738.

A. K. CHANDRA, Maximal Parallelism in Matrix Multiplication, Report RC-6193, IBM T. J. Watson
Research Center, Yorktown Heights, NY, 1976.

L. CSANKY, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976), pp. 618-623.
D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic progressions, in Proc. 19th

Annual ACM Symposium on Theory of Computing, Association for Computing Machinery,
New York, 1987, pp. 1-6; J. Symbolic Comput., 9 (1990), pp. 251-280.
, On the asymptotic complexity of matrix multiplication, SIAM J. Comput., 11 (1982), pp.

472-492.
H. N. DJIDJEV, On the problem ofpartitioningplanar graphs, SIAM J. Alg. Discrete Meth., 3 (1982),

pp. 229-240.
D. EPPSTEIN AND Z. GALIL, Parallel algorithmic techniquesfor combinatorial computation, Annual

Rev. Comput. Sci., 3 (1988), pp. 233-283.
D. A. GANNON, A note on pipelining mesh-connected multiprocessorforfinite element problems by

nested dissection, in Proc. International Conference on Parallel Processing, 1980, pp. 197-204.
J. A. GEORGE AND J. W. H. LIU, Computer Solution of Large Sparse Positive Definite Systems,

Prentice-Hall, Englewood Cliffs, NJ, 1981.
J. A. GEORGE, Nested dissection ofa regularfinite element mesh, SIAM J. Numer. Anal., 10 (1973),

pp. 345-367.
A. GEORGE, M. T. HEATH, J. W. H. LIU, AND E. G. Y. NG, Sparse Choleskyfactorization on a local-

memory multiprocessor, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 327-340.
H. GAZIT AND G. L. MILLER, A parallel algorithmforfinding a separator in planar graphs, in Proc.

28th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Washington, DC, 1987, pp. 238-248.

private communication, 1992.
G. H. GOLUB AND C. E VAN LOAN, Matrix Computations, Johns Hopkins University Press, Baltimore,

MD, 1989.
Z. GALIL AND V. PAN, Improving processor bounds for algebraic and combinatorial problems in

RNC, in Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Washington, DC, 1985, pp. 490-495.
, Improved processor boundsfor combinatorial problems in RNC, Combinatorica, 8 (1988),

pp. 189-200.
Parallel evaluation ofthe determinant and ofthe inverse ofa matrix, Inform. Process. Lett.,

30 (1989), pp. 41-45.
J. R. GILBERT AND R. E. TARJAN, The analysis of a nested dissection algorithm, Numer. Math., 50

(1987), pp. 377-404.
E. KALTOFEN AND V. PAN, Processor efficient solution of linear systems over an abstract field, in

Proc. 3rd Annual ACM Symposium on Parallel Algorithms and Architecture, Association for
Computing Machinery, New York, 1991, pp. 180-191,

R. KARP AND V. RAMACHANDRAN, A Survey ofParallel Algorithmsfor Shared Memory Machines, in
Handbook of Theoretical Computer Science, North-Holland, Amsterdam, 1990, pp. 869-941.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1249

[KS]

[Lil]

[Li2]

[LMNOR]

[Lo]

[LRT]

[LT]

[MVV]

[OR]

[OV]

[Pan

[Pan2]

[Pan3]

[Pan4]
[Pan5]

[Pan6]
[Pan7]

[Pan8]

[Pan9]

[Panl0]
[Pan 11

[Par]
[PaS]

[PP]

[PR1]

[PR2]

E. KALTOFEN AND M. SINGER, Size Efficient Parallel Algebraic Circuitsfor Partial Derivatives, Tech.
Report 90-32, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY,
1990.

J. W. H. Lau, The Solution of Mesh Equations on a Parallel Computer, Tech. Report CS-78-19,
Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 1978.
, A compact row storage scheme for Cholesky factors using elimination trees, ACM Trans.

Math. Software, 12 (1986), pp. 127-148.
C. E. LEISERSON, J. E MESIROV, L. NEKLUDOVA, S. OMAHUNDRO, AND J. REIF, Solving sparse systems

oflinear equations on the connection machine, in Proc. Annual SIAM Conference, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1986, p. A51.

L. LovAsz, Connectivity algorithms using rubber-bands, in Proc. 6th Conference on Foundations of
Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science
241, Springer,Verlag, Berlin, 1986, pp. 394-412.

R. J. LIPTON, D. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer. Anal., 16
(1979), pp. 346-358.

R. J. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J. Appl. Math., 36
(1979), pp. 177-189.

K. MULMULEY, U. VAZIRANI, AND g. VAZIRANI, Matching is as easy as matrix inversion, Combina-
torica, 7 (1987), pp. 105-114.

T. OPSAHL AND J. REIF, Solving sparse systems of linear equations on the massive parallel machine,
in Proc. st Symposium on Frontiers of Scientific Computing, National Aeronautics and Space
Administration, Goddard Space Flight Center, Greenbelt, MD, 1986, pp. 2241-2248.

J. M. ORTEGA AND R. G. VOIGHT, Solution ofpartial differential equations on vector and parallel
computers, SIAM Rev., 27 (1985), pp. 149-240.

V. PAN, On schemesfor the evaluation ofproducts and inverses ofmatrices, Uspekhi Mat. Nauk, 27
(1972), pp. 249-250.
, Strassen’s algorithm is not optimal. Trilinear technique of aggregating, uniting, and can-

celing for constructing fast algorithms for matrix multiplication, in Proc. 19th Annual IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC,
1978, pp. 166-176.

Fields extension and trilinear aggregating, uniting and canceling for the acceleration of
matrix multiplication, in Proc. 20th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Washington, DC, 1979, pp. 28-38.

Newfast algorithmsfor matrix operations, SIAM J. Comput., 9 (1980), pp. 321-342.
,New combinations ofmethodsfor the acceleration ofmatrix multiplications, Comput. Mach.

Appl., 7 (1981), pp. 73-125.
,How can we speed up matrix multiplication? SIAM Rev., 26 (1984), pp. 393-415.

How to Multiply Matrices Faster, Lecture Notes in Computer Science 179, Springer-Verlag,
Berlin, 1984.

Fast and Efficient Parallel Algorithms for the Exact Inversion of Integer Matrices, Tech.
Report 85-2, Department of Computer Science, State University of New York, Albany, NY,
1985.

Fast and efficientparallel algorithmsfor the exact inversion ofinteger matrices, in Proc. 5th
Conference on the Foundation of Software Technology, Lecture Notes in Computer Science
206, Springer-Verlag, Berlin, 1985, pp. 504-521.

Complexity ofparallel matrix computations, Theoret. Comput. Sci., 54 (1987), pp. 65-85.
Parametrization ofNewton’s Iterationfor Computations with StructuredMatrices andAppli-

cations, Tech. Report CUCS-032-90, Department of Computer Science, Columbia University,
New York, 1990; Comput. Math. Appl., 24 (1992), pp. 61-75.

B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
V. PAN AND R. SCHREIBER, An improved Newton iteration for the generalized inverse of a matrix,

with applications, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1109-1131.
V. PAN AND E P. PREPARATA, Supereffective slowdown ofparallel computations, in Proc. 4th An-

nual ACM Symposium on Parallel Algorithms and Architectures, Association for Computing
Machinery, New York, 1992, pp. 402-409.

V. PAN AND J. REIF, Efficientparallel solution oflinear systems, in Proc. 17th Annual ACM Sympo-
sium on Theory of Computing, Association for Computing Machinery, New York, 1985, pp.
143-152.
, Efficient parallel linear programming, Oper. Res. Lett., 5 (1986), pp. 127-135.

1250 VICTOR PAN AND JOHN REIF

[PR3]

[PR4]

[PR5]

[PR6]

[PR7]

[PrS]

[R]

[Sch6]
[Schr]

[Stral]
[Stra2]

IT1]

[T2]
[ZG]

g. PAN AND J. REIF, Fast and efficient algorithms for linear programming andfor the linear least
squares problem, Comput. Math. Appl., 12A (1986), pp. 1217-1227.

Parallel nested dissection for path algebra computations, Oper. Res. Lett., 5 (1986), pp.
177-184.

Fastand efficientparallel solution ofdense linear systems, Comput. Math. Appl., 17 (1989),
pp. 1481-1491; preliminary version in Proc. 17th Annual ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1985, pp. 143-152.

Fast and efficient solution ofpath algebra problems, J. Comput. System Sci., 38 (1989), pp.
494-510.

The parallel computation ofminimum cost paths in graphs by stream contraction, Inform.
Process. Lett., 49 (1991), pp. 79-83.

E. P. PREPARATA AND D. V. SARWATE, An improved parallel processor bound infast matrix inversion,
Inform. Process. Lett., 7 (1978), pp. 148-149.

D. J. RosE, A graph-theoretic study of the numerical solution of sparse positive definite systems of
linear equations, in Graph Theory and Computing, R. Read, ed., Academic Press, New York,
1972, pp. 183-217.

A. SCHONHAGE, Partial and total matrix multiplication, SIAM J. Comput., 19 (1981), pp. 434-456.
R. SCHREIBER, A new implementation of sparse Gaussian elimination; Trans. Math. Software, 8

(1982), pp. 256-276.
V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
, Relative bilinear complexity and matrix multiplication, in Proc. 27th Annual IEEE Sympo-

sium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1986,
pp. 49-54.

R. E. TARJAN, Fast algorithmsfor solving path problems, J. Assoc. Comput. Mach., 28 (1981), pp.
594-614.

A unified approach to path problems, J. Assoc. Comput. Mach., 28 (1981), pp. 577-593.
E. ZMIJEWSKI AND J. R. GILBERT, A parallel algorithmfor sparse Choleskyfactorization on a multi-

processor, Parallel Comput., 7 (1988), pp. 199-210.

