
FAST AND EXACT SIGNED EUCLIDEAN DISTANCE
TRANSFORMATION WITH LINEAR COMPLEXITY.

O. Cuisenaire and B. Macq

Communications and Remote Sensing Laboratory
Université catholique de Louvain

Place du Levant 2, B- 1348 Louvain-la-Neuve, Belgium

ABSTRACT
We propose a new signed or unsigned Euclidean distance
transformation algorithm, based on the local corrections of the
well-known 4SED algorithm of Danielsson. Those corrections are
only applied to a small neighborhood of a small subset of pixels
from the image, which keeps the cost of the operation low.

In contrast with all fast algorithms previously published, our
algorithm produces perfect Euclidean distance maps in a time
linearly proportional to the number of pixels in the image. The
computational cost is close to the cost of the 4SSED
approximation.

1. INTRODUCTION

A distance map is an image where the value of each pixel is the
distance to the nearest pixel from a set of objects. A distance
transformation (DT) is the algorithm producing this map from a
binary image describing the objects. A Euclidean DT is a
transformation that uses the Euclidean metric. A signed DT
produces in each pixel the vector of the relative position of the
nearest object pixel (NOP). Signed distance maps are a
representation of the Voronoi division of the object pixels. The
set of all points sharing the same NOP is called the tile of this
pixel in the Voronoi diagram.

The DT is an important tool in image processing with many
applications in image analysis and pattern recognition [5], [7],
[10], [13]. On the other hand, computing a EDT is not
straightforward since the direct application of the above definition
leads to a prohibitive computational cost. This has lead to the
development of many approximate or exact DT algorithms over
the last 20 years.

1.1 EDT Approximations

The first idea for producing fast DT algorithms was to use coarse
approximations of the Euclidean metric, such as the city-block
and chessboard metrics [1], and later the Chamfer DT [3], [5].
With these metrics, the value associated with a pixel can be
derived from the values of its neighbors, which allows these
algorithms to work in two raster scans over the image.
Unfortunately these approximations lack such important features
as rotational invariance, which makes them unpractical for some
applications.

Another approximation was proposed by Danielsson [2]. He
propagates a vector with the position of the nearest object pixel
instead of the scalar distance only. The 4SED and 8SED

algorithms – using direct and 3x3 neighborhoods respectively -
give the correct Euclidean value for most pixels, but can be
erroneous for some configurations of object pixels. The first such
error (Fig. 1) happens when the white pixel labeled 22 is
disconnected from the tile of A in the Voronoi division. This leads
to the pixel to be mislabeled as 30 or 03 by the 4SED algorithm -
which considers direct neighbors only. 8SED also considers
indirect neighbors and finds the correct value.

Figure 1: discontinuity of the area of influence of pixel A
on the discrete plane, considering direct neighborhoods
only. A pixel labeled “xy” means that the relative position
of the nearest object pixel (A,B or C) is (x,y) in absolute
value. Left: digital image. Right: equivalent continuous
plane.

1.2 Exact EDT

In order to produced error-free EDT, parallel algorithms [4],
[14], [15] allow multiple propagation fronts to follow each other
so that the pixel labeled 22 in the previous example will first be
reached by the information from A before B or C hides it.
Unfortunately, a direct implementation of parallel algorithms leads
to a prohibitive computational cost on sequential computers.

Distance transformations by propagation [6], [8], [9], [12], [19],
[20] provide efficient implementations of the parallel algorithm
principle. All of them have some original way to emulate the
multiple propagation front property, and most of the
computational time is usually spent in processing these multiple
fronts. Finally, raster-scanning EDT also provide such a
mechanism, either explicitly [11] or implicitly [16].

Because of this mechanism, none of the above algorithms has a
linear time complexity. Simple images such as a diagonal line or a
circle of object pixels are counter-examples for which the
complexity is at least o(N³) for NxN images. The only proven
o(N²) exact EDT algorithm [17] hasn’t - to the best of our
knowledge - been empirically evaluated, but is likely to be less

01

01

A

01

10

11

11

10

01

B

21

C

01

02

22

31

10

10

11

20

10

11

12

13

41
14

efficient than some other DTs for images of a reasonable size.
Finally, in [18], [21], we proposed a DT by propagation with
multiple neighborhoods which approaches the o(N²) behavior.

In this paper, we propose a new exact EDT algorithm whose
computation time is similar to the approximate DT algorithms. In
section 2, we produce a first approximation of the signed DT. In
section 3, we detect and correct the erroneous pixels. The
computational and memory requirements of the algorithm are
evaluated at section 4, and compared with other well known DTs.

2. EUCLIDEAN DT APPROXIMATION

As a first step, we produce an approximation of the signed
Euclidean DT using the signed version Danielsson’s 4SED
algorithm.

Figure 2: Masks used for the 4SSED algorithm. a) the
original mask. b) the propagation masks.

This algorithm relies on the following assumption: “the relative
location of the NOP for a pixel can be inferred from the location
of the NOP of its direct neighbors”. For each pixel, the NOP
minimizes the distance among the 5 possible locations found by
adding the values of the mask of Figure 2a to the respective
neighbors’ NOP locations.

This mask is split (Fig. 2b) to allow a propagation in two raster
scans, with a backward propagation for each line during the raster
scan, as suggested by the arrows. In total, 6 comparisons per
pixel are performed.

As pointed out in the introduction, the assumption on which
4SED is based isn’t verified for some configurations of object
pixels (Fig. 1). This has led Danielsson to propose the 8SED
algorithm, a better approximation using a larger (3x3) mask, but
which is not error-free either. Actually, whatever the size of the
neighborhood N used, one can find a configuration of pixels for
which a tile of the Voronoi diagram isn’t N-connected, which
leads to possible errors in a NSED algorithm.

3. POST-PROCESSING

3.1 Principle

All errors in the map created by the 4SED DT compared to the
exact EDT are located at pixels that are disconnected from the tile

of pixels that share the same NOP. This only happens on the
corners of tiles of the Voronoi diagram of the object pixels.

A corner pixel in the approximate distance map is easily detected
since it has at least two direct neighbors belonging to different
tiles then itself. An efficient implementation of such a test only
requires one comparison per non-corner pixel.

For each corner in the approximate DT, we only need to check
that the corner of the tile in the continuous plane includes no
disconnected pixel in the discrete lattice. While we obviously do
not know the exact shape of this tile in the continuous plane, we
can define boundaries that include it and efficiently limit the
number of pixels to be checked.

At Figure 3, the pixel labeled (0,0) is such a corner in the signed
map created by 4SSED. It belongs to the tile of object pixel X,
while its first quadrant neighbors, up and right, are closer to Y and
Z respectively (similar developments could of course be done for
the other 3 quadrants). The neighbors (i,j) for which we should
check if they belong to the tile of X are those in the gray area.
Indeed, they must be closer to X than Y, and thus below the line
labeled “Max-line”, and closer to X than Z, i.e. above “min-line”.
Max-line and min-line are the mid-perpendiculars of XY and XZ
respectively.

From the signed DT, we know the positions of X,Y and Z
relatively to (0,0). They are (-x1,-x2), (-y1,-y2+1) and (-z1+1,-z2)
respectively. Thus, we can determine the equations of both lines,
i.e. the coefficients of the two half planes defining the gray area.

Figure 3: Only the gray region needs to be searched for
improvements to 4SSED.

stepmimj

stepMiMj

*

*

+≥
+≤

The coefficients for Max-line are

0,1

1,0

-1,0

1,0

-1,0

0,-1

0,1

0,0

1,0

-1,0

0,-1

a. b.

stepm

(0,0)

(0,m)

(0,M)

x2

x1

y1

y2

stepM

1

(imax,j)

1

z1

z2

Z

X

Y

min-line

Max-line

()()1*.
2
1

1

2211

22

11

+−−+=

+−
−

=

yxyxstepMM

yx
xy

stepM

and the coefficients of min-line

()()2211

22

11

1*.
2
1

1

zxzxstepmm

zx
xz

stepm

−−−+=

−
−−

=

Finally, we determine the value (imax ,j) at the intersection of both
lines.

stepMstepm
mM

i
−
−

=max

Singular cases happen when x2 = z2 or stepm = stepM. In the first
case, min-line is vertical and no pixel is ever included in the gray
area. In the second case, there are two possibilities. If Y and Z are
identical, both lines are merged and no pixel is included in the gray
area. Otherwise, stepm = stepM = 1 and the lines are parallel. In
this case, the pixels are checked until one does not belong to the
tile of X, and no further.

3.2 Algorithm

The first step of the algorithm is of course the 4SSED double
raster scan over the image. The second step can be written as
follows

For most pixels, the first test is not passed and only one
comparison is needed. For corner pixels, the procedure
check(p,n) is called, where p is the pixel and n the quadrant in
which to check. For instance, for the first quadrant used in
section 3.1, we have the following procedure

where d(p,q) is the Euclidean distance between pixels p and q.
We call this algorithm Corrected Sequential Signed Euclidean
Distance, or CSSED.

4. COMPUTATIONAL COST

In order to assess the computational efficiency of our algorithm,
we compare it to the most efficient unsigned exact EDT known to
this day, those of Eggers [19], Saito [16] and our own PMN [21].
The tests performed are those suggested by Saito and Eggers
themselves. Test 1 is an image including a maximal inscribed disk
of non-object pixels. The size of the image varies from 200x200
to 1600x1600. Test 2 is a 1024x1024 image with 15% of object
pixels made of random placed squares with a common orientation
varying from 0 to 45°. The criteria used for comparison are the
CPU time per pixel and the absolute CPU time, respectively.

Figure 4: Comparison of CPU time required for each
algorithm. “o” Chamfer 34, “+” 4SSED, “◊” Eggers, “*”
Saito, “∆” PMN, “_” CSSED.

Test 1 shows that Chamfer, 4SSED, CSSED and PMN are o(N²)
for NxN images, while Eggers is o(N³) and Saito o(N4). CSSED
only has a 15% additional cost compared to the approximate
4SSED, whatever the size of the image. Besides, CSSED is the
absolute fastest exact EDT for images larger than 400x400 pixels.

200 400 600 800 1000 1200 1400 1600 10 -7

10 -6

10 -5

10 -4
Test 1: one circle

image size (NxN)

C
P

U
 ti

m
e

(s
ec

on
ds

 p
er

 p
ix

el
)

0 5 10 15 20 25 30 35 40 45 0

0.5

1

1.5

2

2.5

3
Test 2: Random Squares

Orientation (°)

C
P

U
 ti

m
e

(s
ec

on
ds

)

For all pixel p but the last column
 if NOP(p) != NOP(p+(0,1))
 then

 if NOP(p) != NOP(p+(-1,0)) then check (p,1);
 if NOP(p) != NOP(p+(1,0)) then check (p,2);
 if NOP(p+(0,1)) != NOP(p+(1,1)) then check (p+(0,1),3);
 if NOP(p+(0,1)) != NOP(p+(-1,1)) then check (p+(0,1),4);

get (x1,x2), (y1,y2) and (z1,z2) from the distance map;
check for singular cases;
compute m,M,stepm,stepM;
compute imax ;

for i = 1 → imax

m = m+stepm; M = M+stepM
for j = m → M
 testp = p + (i,j);
 if d(testp , NOP(p)) < d (testp, NOP(testp))
 NOP(testp) = NOP (p);

Our algorithm is even an order of magnitude faster than Saito’s or
Eggers for the largest images of the test.

Test2 shows that the computational cost of Chamfer, 4SSED and
CSSED are orientation independent. PMN, Saito and Eggers are
all orientation dependant, with a maximal variability for Eggers’
algorithm. CSSED is the absolute fastest exact EDT apart from
the exceptional case where all edges in the image are either vertical
or horizontal.

As a conclusion, although CSSED provides an exact EDT, its
cost is similar to those of the approximate algorithms.

5. CONCLUSION AND PERSPECTIVES

We have developed an extension of the 4SSED algorithm that
provides an exact Euclidean distance transformation in a time
typical of the DT approximations. Its complexity is optimal, i.e.
linear relatively to the number of pixels that the image contains.
Besides, it is fast even for small images. This result is close to the
theoretical optimum for such algorithms.

Other versions of this algorithm could be produced by using a
different approximate DT for the first step. For instance, one
could use Ragnelmam [12] without the delayed updating
mechanism, or our PSN algorithm [21], if those prove to be faster
on the computer used. This is largely machine dependant.

Formal proofs of the correctness of the algorithm and the
extendibility to 3 dimensions or anisotropic data are under study.

6. ACKNOWLEDGEMENTS

The work of Olivier Cuisenaire is supported by the Belgian FRIA
Fund.

7. REFERENCES

[1] A.Rosenfeld and J.L. Pfaltz “Distance functions on digital
pictures” Pattern Recognition, 1 (1) 1968, pp. 33-61.

[2] P.E. Danielsson “Euclidean distance mapping”. Computer
Graphics and Image Processing, 14, 1980, pp. 227-248.

[3] G. Borgefors “Distance transformations in arbitrary
dimensions”. Computer Vision, Graphics and Image
Processing, 27, 1984, pp. 321-345

[4] H. Yamada, “Complete Euclidean Distance Transformation
by Parallel Operation”. Proc. 7th Internationl Conference on
Pattern Recognition, Montreal, pp. 69-71, 1984.

[5] G. Borgefors. “Distance transformations in digital images”.
CVGIP, 34, 1986, pp. 344-371

[6] J. Piper and E. Granum “Computing Distance
Transformations in Convex and Non-Convex Domains”.
Pattern Recognition, 20(6), 1987, pp. 599-615.

[7] G. Borgefors “Hierarchical chamfer matching: a parametric
edge matching algorithm”. IEEE Trans. Pattern Analysis
and Machine Intelligence, 10 (6), 1988, pp. 849,865

[8] B.J.H. Verwer, P.W. Verbeek and S.T. Dekker “An Efficient
Uniform Cost Algorithm Applied to Distance Transforms”.
IEEE Trans. PAMI, 11(4), 1989, pp 425-429.

[9] L. Vincent “Exact Euclidean Distance Function by Chain
Propagation”. Proc. Computer Vision and Pattern
Recognition Conference, Hawaii, pp. 520-525, June 1991.

[10] D.W. Paglieroni “Distance transforms: properties and
machine vision applications”. CVGIP: Graphical Models
and Image Processing, 54 (1), 1992, pp.56-74.

[11] J. Mullikin “The vector distance transform in two and three
dimensions”. CVGIP, 54(6), 1992, pp. 526-535

[12] I. Ragnelmam “Neighborhoods for Distance
Transformations Using Ordered Propagation” CVGIP,
Image Understanding, 56(3), 1992, pp. 399-409

[13] I. Ragnelmam “Fast Erosion and Dilation by Contour
Processing and Thresholding of Distance Maps” Pattern
Recognition Letters, 13, 1992, pp. 161-166

[14] F.Y-C. Shih and O.R. Mitchell “A Mathematical
Morphology Approach to Euclidean Distance
Transformation”. IEEE Trans. Image Processing, 1(2),
1992, pp. 197-204.

[15] C.T. Huang and O.R. Mitchell “A Euclidean Distance
Transform Using Greyscale Morphology Decomposition”
IEEE Trans. PAMI, 16(4), 1994, pp. 443-448.

[16] T. Saito and J.I. Toriwaki “New Algorithms For Euclidean
Distance Transformations of an n-Dimensional Digitised
Picture with Applications”. Pattern Recognition, 27(11),
1994, pp. 1551-1565.

[17] H. Breu, J. Gil, D. Kirkpatrick and M. Werman, “Linear
Time Euclidean Distance Transform Algorithms”, IEEE
Trans. PAMI, 17(5), 1995, pp. 529-533.

[18] O. Cuisenaire “Region growing Euclidean distance
transforms”. in Proceedings 9th International Conference
on Image Analysis and Processing (ICIAP’97), vol. 1, pp.
263-270, Florence, September 1997.

[19] H. Eggers “Two Fast Euclidean Distance Transformations in
Z² Based on Sufficient Propagation”. Computer Vision and
Image Understanding, 69(1) 1998, pp 106-116.

[20] W. Guan and S. Ma. “A List-Processing Approach to
Compute Voronoi Diagrams and the Euclidean Distance
Transform”. IEEE Trans. PAMI, 20(7), 1998, pp 757-761.

[21] O. Cuisenaire and B. Macq, “Fast Euclidean Distance
Transformation by Propagation using Multiple
Neighborhoods”, submitted to CVIU.

