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ABSTRACT 
We propose a new signed or unsigned Euclidean distance 
transformation algorithm, based on the local corrections of the 
well-known 4SED algorithm of Danielsson. Those corrections are 
only applied to a small neighborhood of a small subset of pixels 
from the image, which keeps the cost of the operation low.  

In contrast with all fast algorithms previously published, our 
algorithm produces perfect Euclidean distance maps in a time 
linearly proportional to the number of pixels in the image. The  
computational cost is close to the cost of the 4SSED 
approximation.  

1. INTRODUCTION 

A distance map is an image where the value of each pixel is the 
distance to the nearest pixel from a set of objects. A distance 
transformation (DT) is the algorithm producing this map from a 
binary image describing the objects. A Euclidean DT is a 
transformation that uses the Euclidean metric. A signed DT 
produces in each pixel the vector of the relative position of the 
nearest object pixel (NOP). Signed distance maps are a 
representation of the Voronoi division of the object pixels. The 
set of all points sharing the same NOP is called the tile of this 
pixel in the Voronoi diagram.  

The DT is an important tool in image processing with many 
applications in image analysis and pattern recognition [5], [7], 
[10], [13]. On the other hand, computing a EDT is not 
straightforward since the direct application of the above definition 
leads to a prohibitive computational cost. This has lead to the 
development of many approximate or exact DT algorithms over 
the last 20 years.  

1.1 EDT Approximations 

The first idea for producing fast DT algorithms was to use coarse  
approximations of the Euclidean metric, such as the city-block 
and chessboard metrics [1], and later the Chamfer DT [3], [5]. 
With these metrics, the value associated with a pixel can be 
derived from the values of its neighbors, which allows these 
algorithms to work in two raster scans over the image. 
Unfortunately these approximations lack such important features 
as rotational invariance, which makes them unpractical for some 
applications.  

Another approximation was proposed by Danielsson [2]. He 
propagates a vector with the position of the nearest object pixel 
instead of the scalar distance only. The 4SED and 8SED 

algorithms – using direct and 3x3 neighborhoods respectively - 
give the correct Euclidean value for most pixels, but can be 
erroneous for some configurations of object pixels. The first such 
error (Fig. 1) happens when the white pixel labeled 22 is 
disconnected from the tile of A in the Voronoi division. This leads 
to the pixel to be mislabeled as 30 or 03 by the 4SED algorithm - 
which considers direct neighbors only. 8SED also considers 
indirect neighbors and finds the correct value.        

 

 

 

 

 

 

 

Figure 1: discontinuity of the area of influence of pixel A 
on the discrete plane, considering direct neighborhoods 
only. A pixel labeled “xy” means that the relative position 
of the nearest object pixel (A,B or C) is (x,y) in absolute 
value. Left: digital image. Right: equivalent continuous 
plane.  

1.2 Exact EDT 

In order to produced error-free EDT, parallel algorithms [4], 
[14], [15] allow multiple propagation fronts to follow each other 
so that the pixel labeled 22 in the previous example will first be 
reached by the information from A before B or C hides it. 
Unfortunately, a direct implementation of parallel algorithms leads 
to a prohibitive computational cost on sequential computers. 

Distance transformations by propagation  [6], [8], [9], [12], [19], 
[20] provide efficient implementations of the parallel algorithm 
principle. All of them have some original way to emulate the 
multiple propagation front property, and most of the 
computational time is usually spent in processing these multiple 
fronts. Finally, raster-scanning EDT also provide such a 
mechanism, either explicitly [11] or implicitly [16].  

Because of this mechanism, none of the above algorithms has a 
linear time complexity. Simple images such as a diagonal line or a 
circle of object pixels are counter-examples for which the 
complexity is at least o(N³) for NxN images. The only proven 
o(N²) exact EDT algorithm [17] hasn’t - to the best of our 
knowledge - been empirically evaluated, but is likely to be less 
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efficient than some other DTs for images of a reasonable size. 
Finally, in [18], [21], we proposed a DT by propagation with 
multiple neighborhoods which approaches the o(N²) behavior. 

In this paper, we propose a new exact EDT algorithm whose 
computation time is similar to the approximate DT algorithms. In 
section 2, we produce a first approximation of the signed DT. In 
section 3, we detect and correct the erroneous pixels. The 
computational and memory requirements of the algorithm are 
evaluated at section 4, and compared with other well known DTs.    

2. EUCLIDEAN DT APPROXIMATION 

As a first step, we produce an approximation of the signed 
Euclidean DT using the signed version Danielsson’s 4SED 
algorithm.  

 

 

 

 

 

 

 

 

 

Figure 2: Masks used for the 4SSED algorithm. a) the 
original mask. b) the propagation masks.  

This algorithm relies on the following assumption: “the relative 
location of the NOP for a pixel can be inferred from the location 
of the NOP of its direct neighbors”. For each pixel, the NOP 
minimizes the distance among the 5 possible locations found by 
adding the values of the mask of Figure 2a to the respective 
neighbors’ NOP locations. 

This mask is split (Fig. 2b) to allow a propagation in two raster 
scans, with a backward propagation for each line during the raster 
scan, as suggested by the arrows. In total, 6 comparisons per 
pixel are performed.  

As pointed out in the introduction, the assumption on which 
4SED is based isn’t verified for some configurations of object 
pixels (Fig. 1). This has led Danielsson to propose the 8SED 
algorithm, a better approximation using a larger (3x3) mask, but 
which is not error-free either. Actually, whatever the size of the 
neighborhood N used, one can find a configuration of pixels for 
which a tile of the Voronoi diagram isn’t N-connected, which 
leads to possible errors in a NSED algorithm.  

3. POST-PROCESSING 

3.1 Principle 

All errors in the map created by the 4SED DT compared to the 
exact EDT are located at pixels that are disconnected from the tile 

of pixels that share the same NOP. This only happens on the 
corners of tiles of the Voronoi diagram of the object pixels. 

A corner pixel in the approximate distance map is easily detected 
since it has at least two direct neighbors belonging to different 
tiles then itself. An efficient implementation of such a test only 
requires one comparison per non-corner pixel.   

For each corner in the approximate DT, we only need to check 
that the corner of the tile in the continuous plane includes no 
disconnected pixel in the discrete lattice. While we obviously do 
not know the exact shape of this tile in the continuous plane, we 
can define boundaries that include it and efficiently limit the 
number of pixels to be checked.  

At Figure 3, the pixel labeled (0,0) is such a corner in the signed 
map created by 4SSED. It belongs to the tile of object pixel X, 
while its first quadrant neighbors, up and right, are closer to Y and 
Z respectively (similar developments could of course be done for 
the other 3 quadrants). The neighbors (i,j) for which we should 
check if they belong to the tile of X are those in the gray area. 
Indeed, they must be closer to X than Y, and thus below the line 
labeled “Max-line”, and closer to X than Z, i.e. above “min-line”. 
Max-line and min-line are the mid-perpendiculars of XY and XZ 
respectively.  

From the signed DT, we know the positions of X,Y and Z 
relatively to (0,0). They are (-x1,-x2), (-y1,-y2+1) and (-z1+1,-z2) 
respectively. Thus, we can determine the equations of both lines, 
i.e. the coefficients of the two half planes defining the gray area. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Only the  gray region needs to be searched for 
improvements to 4SSED. 
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and the coefficients of min-line  
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Finally, we determine the value (imax ,j) at the intersection of both 
lines.  
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Singular cases happen when x2 = z2 or stepm = stepM. In the first 
case, min-line is vertical and no pixel is ever included in the gray 
area. In the second case, there are two possibilities. If Y and Z are 
identical, both lines are merged and no pixel is included in the gray 
area. Otherwise, stepm = stepM = 1 and the lines are parallel. In 
this case, the pixels are checked until one does not belong to the 
tile of X, and no further.  

3.2 Algorithm 

The first step of the algorithm is of course the 4SSED double 
raster scan over the image. The second step can be written as 
follows 

 

 

 

 

 

For most pixels, the first test is not passed and only one 
comparison is needed. For corner pixels, the procedure 
check(p,n) is called, where p is the pixel and n the quadrant in 
which to check. For instance, for the first quadrant used in 
section 3.1, we have the following procedure 

  

 

 

 

 

 

 

where d(p,q) is the Euclidean distance between pixels p and q. 
We call this algorithm Corrected Sequential Signed Euclidean 
Distance, or CSSED.  

4. COMPUTATIONAL COST 

In order to assess the computational efficiency of our algorithm, 
we compare it to the most efficient unsigned exact EDT known to 
this day, those of Eggers [19], Saito [16] and our own PMN [21]. 
The tests performed are those suggested by Saito and Eggers 
themselves. Test 1 is an image including a maximal inscribed disk 
of non-object pixels. The size of the image varies from 200x200 
to 1600x1600. Test 2 is a 1024x1024 image with 15% of object 
pixels made of random placed squares with a common orientation 
varying from 0 to 45°. The criteria used for comparison are the 
CPU time per pixel and the absolute CPU time, respectively.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of CPU time required for each 
algorithm. “o” Chamfer 34, “+” 4SSED, “◊” Eggers, “*” 
Saito, “∆” PMN, “_” CSSED.  

Test 1 shows that Chamfer, 4SSED, CSSED and PMN are o(N²) 
for NxN images, while Eggers is o(N³) and Saito o(N4). CSSED 
only has a 15% additional cost compared to the approximate 
4SSED, whatever the size of the image. Besides, CSSED is the 
absolute fastest exact EDT for images larger than 400x400 pixels. 
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For all pixel p but the last column 
    if NOP(p) != NOP(p+(0,1))  
    then 

  if NOP(p) != NOP(p+(-1,0)) then check (p,1); 
  if NOP(p) != NOP(p+(1,0)) then check (p,2); 
  if NOP(p+(0,1)) != NOP(p+(1,1)) then check (p+(0,1),3); 
  if NOP(p+(0,1)) != NOP(p+(-1,1)) then check (p+(0,1),4); 

 

get (x1,x2), (y1,y2) and (z1,z2) from the distance map; 
check for singular cases; 
compute m,M,stepm,stepM; 
compute imax ; 
 
for i = 1 → imax 

m = m+stepm;  M = M+stepM 
for j = m → M 
 testp = p + (i,j); 
 if d( testp , NOP(p) ) < d ( testp, NOP(testp)) 
        NOP( testp ) = NOP ( p);  

 



Our algorithm is even an order of magnitude faster than Saito’s or 
Eggers for the largest images of the test.  

Test2 shows that the computational cost of Chamfer, 4SSED and 
CSSED are orientation independent. PMN, Saito and Eggers are 
all orientation dependant, with a maximal variability for Eggers’ 
algorithm. CSSED is the absolute fastest exact EDT apart from 
the exceptional case where all edges in the image are either vertical 
or horizontal.  

As a conclusion, although CSSED provides an exact EDT, its 
cost is similar to those of the approximate algorithms.  

5. CONCLUSION AND PERSPECTIVES 

We have developed an extension of the 4SSED algorithm that 
provides an exact Euclidean distance transformation in a time 
typical of the DT approximations. Its complexity is optimal, i.e. 
linear relatively to the number of pixels that the image contains. 
Besides, it is fast even for small images. This result is close to the 
theoretical optimum for such algorithms.  

Other versions of this algorithm could be produced by using a 
different approximate DT for the first step. For instance, one 
could use Ragnelmam [12] without the delayed updating 
mechanism, or our PSN algorithm [21], if those prove to be faster 
on the computer used. This is largely machine dependant.  

Formal proofs of the correctness of the algorithm and the 
extendibility to 3 dimensions or anisotropic data are under study.  
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