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Abstract
In systems and synthetic biology, it is common to build chemical reaction network (CRN)
models of biochemical circuits and networks. Although automation and other
high-throughput techniques have led to an abundance of data enabling data-driven
quantitative modeling and parameter estimation, the intense amount of simulation needed
for these methods still frequently results in a computational bottleneck. Here we present
bioscrape (Bio-circuit Stochastic Single-cell Reaction Analysis and Parameter Estimation) -
a Python package for fast and flexible modeling and simulation of highly customizable
chemical reaction networks. Specifically, bioscrape supports deterministic and stochastic
simulations, which can incorporate delay, cell growth, and cell division. All functionalities -
reaction models, simulation algorithms, cell growth models, and partioning models - are
implemented as interfaces in an easily extensible and modular object-oriented framework.
Models can be constructed via Systems Biology Markup Language (SBML), a simple
internal XML language, or specified programmatically via a Python API. Simulation run
times obtained with the package are comparable to those obtained using C code - this is
particularly advantageous for computationally expensive applications such as Bayesian
inference or simulation of cell lineages. We first show the package’s simulation capabilities
on a variety of example simulations of stochastic gene expression. We then further
demonstrate the package by using it to do parameter inference on a model of integrase
enzyme-mediated DNA recombination dynamics with experimental data. The bioscrape
package is publicly available online (https://github.com/ananswam/bioscrape) along with
more detailed documentation and examples.
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Introduction
In the fields of systems and synthetic biology, it has become increasingly common to build
mathematical models of biochemical networks. In principle, such models allow for
quantitative predictions of the behavior of complex biological systems and efficient testing
of hypotheses regarding how real biological networks function. Such predictions would
transform the way in which we design and debug synthetic engineered biological circuits.
Many different scales of modeling exist, which are appropriate for different applications.
Molecular dynamics models may be used to understand detailed structure-function
relationships involving effects at the atomic level [1]. Colloidal simulations coarse-grain
individual atoms in order to illuminate the physical principles by which small groups of
macromolecules interact [2]. Reaction-diffusion models further reduce the geometry of
each molecule to a single point in order to understand spatial and temporal regulation of
chemical reactions [3]. Finally, chemical reaction network (CRN) models ignore geometry
completely by assuming that the reaction volume is well mixed and focus solely on the
chemical reactions that underlie a biological system [4,5].

CRN models are some of the most widely used in systems, synthetic, and molecular
biology. Typically, biological CRN models consist of systems where different species such
as DNA, RNA, and proteins can interact with each other via different types of molecular
interactions including transcription, translation, activation, repression, and sequestration.
Formally, these systems can be represented as a network of species X and reactions R.
Each reaction r ∈ R will have the form

∑

X∈Ir

X
ρr(x)
−−−→

∑

X∈Or

X. (1)

Here Ir and Or are the input and output multi-sets of species to reaction r, respectively.
The function ρr(x) is called a propensity or rate function and controls how quickly the
reaction occurs. In general, this can be an arbitrary function of the amount of the species
in the network, x. Common choices for rate functions include mass action kinetics [5],
which are appropriate for detailed mechanistic models, and various kinds of Hill functions
for coarse-grained models with sigmoidal saturating reaction rates [5].

A given CRN model may be simulated exactly as either a deterministic trajectory of
species’ concentrations or a stochastic trajectory of species’ counts. In the deterministic
case, the propensity functions can be used to construct a system of ordinary differential
equations (ODEs), which can be integrated to understand how a circuit functions in bulk
given some initial concentration [6]. This kind of simulation is appropriate when the
absolute number of species in the reaction chamber is high, such as in in vitro biochemical
circuits [7] and in modeling the mean behavior of a population of cells [8]. In the
stochastic case, a CRN is simulated as a Markov jump process using the stochastic
simulation algorithm (SSA) [9]. Many such simulations can further be combined to
understand the time-evolution and steady state of the distribution of the species counts.
Biological circuits can often be noisy [10,11], especially in single cells with low molecular
copy numbers [12]. In these cases, a stochastic model is often necessary to capture the
noise characteristics of a circuit.

Stochastic simulation also allows for the inclusion of delay into chemical reactions.
Processes like protein production are not instantaneous, and there is often a significant
delay between when transcription of a gene is initiated and when a mature protein is
produced. This type of delay can lead to nontrivial behavior such as oscillations [13], and
thus it is often important to incorporate delay into the modeling framework. Additionally,
delays can be both fixed and distributed in their duration. While adding a fixed delay to a
biological circuit might destabilize the circuit and create oscillatory behavior, distributing
that delay across multiple durations might maintain circuit stability [14].
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Cell growth and division are also critical aspects of biological circuits that operate in
single cells. Typically, a dilution term in the model accounts for cell growth. However, in
stochastic models, modeling the continuous dilution process with a stochastic and discrete
degradation reaction might not be accurate. Another source of noise is the partitioning of
molecules between daughter cells at cell division, which can be difficult to distinguish from
other forms of noise [15]. Therefore, modeling cell growth as well as division and
partitioning is important for investigating noise in gene expression across a lineage of cells.

Regardless of simulation framework, it is necessary to first specify the values of the
parameters of each propensity function ρr(x) in the model along with the initial levels of
the model species. In some cases, these parameters and initial conditions are
experimentally known. Often, however, they have to be inferred from from biological data
via a process known as parameter inference, parameter estimation, or parameter
identification [16]. Bayesian inference [17,18] is one of the most rigorous methods of
parameter identification because it provides a full posterior distribution over the parameter
space. This gives insight into the accuracy and identifiability of the model. Also, such an
approach allows for an easy comparison between different model classes using the model
evidence. The drawback of these approaches is that their implementation is
computationally expensive and is based on repeated forward simulations of the model
within the framework of Markov chain Monte Carlo (MCMC) [17]. Therefore, it is
important to have the underlying simulations running as fast as possible in order to speed
up computation time.

Once a given model is fully specified, it is then important to validate the model against
additional biological data. In this workflow, it is often necessary to add or remove
reactions from the model or to perform a different type of simulation. For example, one
might decide that a circuit behaves too noisily for deterministic simulations and want to
switch to a stochastic simulation framework. If delays are playing a significant role in the
dynamics, one might want to incorporate previously unmodeled delays into the model.

The result is that a very large amount of data is needed to first parameterize and then
validate models. The increasing use of technologies for lab automation makes this data
collection increasingly accessible and economical. For deterministic models, this may
include data collected at many different operating conditions which can be achieved with
high throughput measurement techniques involving liquid handling automation [19]. For
stochastic models this may include large sample sizes of single cell cell measurements such
as flow cytometry [20,21] and tracking single cell lineages with fluorescent microscopy [22].

This paper presents bioscrape (Bio-circuit Stochastic Single-cell Reaction Analysis and
Parameter Estimation), which is a Python package for fast and flexible modeling and
simulation of biological circuits. The bioscrape package uses Cython [23], an extension for
Python that compiles code using a C compiler to vastly increase speed. This helps assuage
the computational time issues that arise in parameter estimation and stochastic
simulation. Bioscrape provides an object oriented framework which allows for easily
customizable models that can be simulated in many different ways including
deterministically, stochastically, or as growing and dividing lineages of single cells. Flexible
easy-to-use wrappers, a Python API and simple internal XML model specification make it
straightforward for a researcher to change their model and try simulating it under diverse
conditions. Some popular software packages that do somewhat similar tasks to the
bioscrape package are MATLAB’s SimBiology toolbox [24] and Stochpy [25]. However,
the bioscrape package is faster, supports fully general propensity functions, and allows
more kinds of simulation than these alternatives making it more flexible and more efficient
than alternative packages.

This paper first details the flexible model specification and simulation capabilities as
well as the speed of bioscrape, prior to delving into an example of using bioscrape to
perform parameter estimation for integrase enzyme mediated DNA recombination dynamics
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using experimental data. More detailed documentation and the code for the examples as
well the package itself are available online (https://github.com/ananswam/bioscrape).

Materials and Methods
A flexible modeling language for biological circuits
In bioscrape, models can be defined by using a simple human composable XML format, by
building the model using Python code, or by importing SBML [26]. The XML specification
consists of a global model tag within which reactions (including propensities and delays),
parameter values, and initial species levels are specified. The Python model interface
allows for the same models to be specified via simple Python functions and then
accessed/modified inside Python scripts or saved to XML. Figure 1 illustrates a simple
transcription translation model of gene expression and the corresponding bioscrape XML,
Python API model construction, and code necessary to simulate the model with bioscrape.
A list of the delay and propensity types supported by bioscrape can be found in
Supplemental Table 1 with complete documentation on the bioscrape github Wiki.

<model>

<reaction text="--" after="--mRNA">
<propensity type="massaction" k="beta" species="" />
<delay type="fixed" delay="tx_delay" />

</reaction>

<reaction text="mRNA--" after="--">
<propensity type="massaction" k="delta" species="mRNA" />
<delay type="none" />

</reaction>

<parameter name="beta" value="2.0" />
<parameter name="delta" value="0.2" />
<parameter name="tx_delay" value="10" />

<species name="mRNA" value="0" />

...Translation and Protein Degradation Not Shown...

</model>

from bioscrape.types import Model

M = Model()

M.create_reaction(
reactants = [],
products = [],
propensity_type = "massaction",
propensity_param_dict = {"k":"beta"},
delay_reactants = [],
delay_products = ["mRNA"],
delay_type = "fixed",
delay_param_dict = {"delay":"tx_delay"})

M.create_reaction(
reactants = ["mRNA"],
products = [],
propensity_type = "massaction",
propensity_param_dict = {"k":"beta"})

M.set_parameter("beta", 2)
M.set_parameter("delta", 0.2)
M.set_parameter("tx_delay", 10)

M.set_species("mRNA", 0)

...Translation and Protein Degradation Not
Shown...

from bioscrape.simulator import py_simulate_model

time = [0.01*s for s in range(1000)]

Results = py_simulate(time, Model = M)

Gene mRNA Protein
Transcription
(fixed delay)

Translation
(gamma delay)

Degradation
(No Delay)

a c

d

b

Fig 1. (a) A simple model of gene expression with transcription, translation, mRNA
degradation, and protein degradation. The quantity of the gene encoding for mRNA is
considered constant and absorbed into the transcription rate β. (b) Example bioscrape
XML for transcription and mRNA degredation of this model. (c) Python code to construct
the same model. (d) Models constructed via bioscrape XML, SBML, or the Python API
can be easily simulated with results returned as a pandas Dataframe [27].

Fast simulation of biological circuits
In addition to the flexible model specification described previously, another critical aspect
of a software package for quantitative analysis of biological circuits is speed. This package
is written using Cython [23], a language extension for Python that creates compiled
Python libraries. Some alternative methods for doing stochastic simulation are to use the
SimBiology toolbox in MATLAB [24], write code in C from scratch, or to use a pure
Python library such as StochPy [25]. In this section, the simulation speed of the bioscrape
package is benchmarked against these other three common simulation options.

The benchmark test used for comparing the speed of these different simulators is a
simple gene expression model consisting of just four stochastic reactions: transcription,
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translation, and degradation of mRNA and protein. The full model is available in S5
Appendix. As MATLAB SimBiology does not support delayed reactions, the system was
simulated ignoring delays for 100,000 minutes of simulation time starting from an initial
condition of zero. Additionally, both SimBiology and StochPy output each step of the
stochastic simulation as opposed to outputting the system state at specific times. For the
simulation conditions in this system, the number of steps taken in 100,000 minutes is
always around ten million steps. Therefore, to make the comparison fair, the simulation in
the bioscrape package is done with ten million desired time points in order to keep the
output size similar in all cases. Finally, the C code is a pure C implementation of the
simulation using the same fixed interval algorithm as the bioscrape Python package, so the
C implementation is also run with ten million desired time points.

Table 1. A speed comparison between this Python package and other common simulation
platforms.

Software Benchmark time (s) Speed-up
SimBiology 5.8 8.3x

StochPy 190 270x
C 0.38 0.54x

bioscrape 0.70 -

The simulation times are available in Table 1. The table shows that bioscrape
outperforms SimBiology by almost one order of magnitude, but it outperforms the pure
Python StochPy package by a factor of 270. The C simulation is used as a surrogate for
the maximum speed possible. The bioscrape package is about twice as slow as custom
pure C code. This is due to polymorphism in the way propensities and delays are handled,
which greatly improves code readability and flexibility but does cost some speed.

Flexible simulation of biological circuits
In addition to speed and flexible modeling, bioscrape also enables flexible simulation of
biological circuits. Simulations can be performed in a deterministic or stochastic setting,
and stochastic simulations can optionally account for delay as well as cell growth and
division. A list of available simulators can be found in Supplemental Table 1 with complete
documentation on the bioscrape github Wiki.

Using bioscrape, a simple model of gene expression, illustrated in Figure 1a, is
simulated under a variety of different conditions and the results are displayed in Figure 2.
This model only contains transcription, translation, and degradation of mRNA and protein
as its reactions. In a deterministic simulation, the mRNA and protein levels smoothly trend
to their steady state values, while in the stochastic simulations the trajectories are noisy
(Figure 2a, b). The delays in the model are a fixed ten minute delay for transcription and
a gamma-distributed delay with a mean of ten minutes for translation. When the
simulation is performed with delay, mRNA levels spike sharply after a ten minute delay,
while protein levels gradually increase at the twenty minute mark. Using the stochastic
mRNA trajectories to compute the mRNA distribution as well as the mRNA
autocorrelation function results in Figure 2e and Figure 2f, showing that the empirically
computed mRNA distribution and autocorrelation match their theoretical counterparts.

Because living cells can grow and divide, bioscrape can also simulate biological circuits
within the context of a growing and dividing cell lineage (Figure 2c, d). When simulated
without delay, the mRNA level in the lineage trends to a steady state of 10 just like in the
deterministic simulation, while the protein level trends to its deterministic steady state
value of 1000. When delay is introduced, the steady state values of mRNA and protein
both decrease. This is because the effective current mRNA or protein production rate with
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delay is proportional to the number of cells that existed at some time in the past, which in
a growing lineage is fewer than the current number of cells. This decreases the effective
mRNA and protein production rate per cell, thus decreasing the steady state
concentrations.

All of these types of simulations can be performed with a single bioscrape model.
Furthermore, toggling between different types of simulations only requires a few lines of
code. For example, switching between standard deterministic and stochastic simulations
only requires a single line of code, while including volume and cell division requires a few
lines of code from the user to specify parameters for cell growth and partitioning of species
between daughter cells. All functionalities - simulation algorithms, cell growth models, and
partioning models - are implemented as interfaces in an object-oriented manner. This not
only ensures ease of switching simulation methods or partitioning models, but also it
allows for easy extension of the source code itself to implement new functionality in a
modular fashion.

A more in-depth demonstration of the stochastic capabilities of bioscrape, in which
bioscrape is used to model the replication and partitioning of plasmids within a growing
and dividing lineage of cells, is given in S2 Appendix.
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Fig 2. Flexible simulation of a simple model of gene expression with delay. (a,b) mRNA
and protein trajectories for the model using a deterministic simulator, a stochastic
simulator, and a stochastic simulator accounting for delays. With transcription and
translation delays of ten minutes each, mRNA production beings at ten minutes, with
protein production starting at twenty minutes. (c,d) mRNA and protein trajectories across
a simulated lineage of cells with and without delay. Steady state mRNA and protein levels
are lower with delays in transcription and translation. (e) The empirical distribution
function for mRNA in the simple model of gene expression matches the theoretical Poisson
distribution. (f) The empirical autocorrelation function for mRNA in the stochastic
simulation matches the theoretical exponential curve.
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Results
In the previous sections, we demonstrated the capabilities of bioscrape for performing fast,
flexible, and efficient simulations of biological circuits. In this section, we use the
package’s parameter inference capabilities to do parameter inference for a model of
enzyme-mediated DNA recombination dynamics based on in vitro experimental data. We
first start by giving background on integrase systems and in vitro prototyping of biological
circuits. We then describe the experimental procedure and the experimental data
collected. Finally, we introduce the model and perform parameter inference on the model
for both simulated data as well as the actual experimental data.

Background and experimental design

attB attP

attB attP

attL attR
       A     

       B     

       C     

       D     

       E     

       F     

       G     

       H     

       1            2            3            4            5            6            7            8            9            10            11            12     

S30 E. coli 

cell extract
Buffer

DNA

TX-TL Reactions

attB attP
YFP

Reporter Plasmid

a b c

integrase-CFP

Integrase Plasmid

YFP

Activated Reporter Plasmid

attL attR

Fig 3. Testing serine integrase recombination dynamics using TX-TL. (a) The TX-TL
system allows for prototyping synthetic circuits in vitro by adding DNA to cell extract and
buffer. (b) Four serine integrase monomers cooperate to recombine attB and attP DNA
sites to form attL and attR sites while reversing the DNA segment between the sites. (c)
A constitutive integrase expression plasmid expresses integrase fused to cyan fluorescent
protein (CFP), which flips a promoter on a a reporter plasmid and leads to yellow
fluorescent protein (YFP) expression.

Both serine integrase systems and in vitro prototyping using cell free extracts are
well-studied tools in synthetic biology. Serine integrases are proteins that can recognize
and recombine two specific target DNA sequences [28,29]. Depending on the original
directionality of the target sites, the recombination causes the segment of DNA between
the target sites to either be excised or reversed. Figure 3b depicts the process by which
four serine integrase monomers bind to attB and attP DNA recognition sites and
recombine them into attL and attR sites. In synthetic biology, this functionality has been
leveraged to build synthetic gene circuits for state machines [30], temporal event
detection [31], and rewritable memory [32]. However, existing applications of integrases
rely on their digital behavior over long time scales (hours), and not much is known about
the dynamics of their action upon DNA.

One way to assay the dynamics of integrase DNA recombination is to test an integrase
system using TX-TL, an E. coli cell extract in vitro system for testing and protoyping
synthetic gene circuits [33]. Plasmid or linear DNA encoding the genes in a synthetic
circuit can be added to a TX-TL master mix to prototype genetic circuits outside the cell
as depicted in Figure 3a. In this case, we can create a simple synthetic circuit involving
constitutive integrase production and reporter expression following DNA recombination to
assay DNA recombination as a function of integrase levels. The circuit consists of two
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plasmids as shown in Figure 3c. On the first plasmid, the integrase plasmid, we
constitutively express Bxb1, a commonly used serine integrase, as a part of a fusion protein
in which Bxb1 is fused to CFP (cyan fluorescent protein). This allows us to use CFP
fluorescence to measure the amount of Bxb1 present in the TX-TL reaction. The second
plasmid is a reporter plasmid in which a promoter initially pointing away from a yellow
fluorescent protein (YFP) gene can be reversed by integrase DNA recombination to point
towards the YFP gene, which leads to production of YFP. Therefore, YFP expression can
be used to infer when DNA recombination has occurred. Detailed plasmid maps are
available in S4 Appendix.

Experimental Results
Using automated acoustic liquid handling (Labcyte Echo 525), we varied the level of
integrase plasmid and reporter plasmid between 0 and 1 nM across 100 different TX-TL
reactions. Each reaction contained integrase and reporter plasmid both independently at
one of five concentrations of 0 nM, 0.25 nM, 0.50 nM, 0.75 nM, or 1 nM. Therefore, there
were 25 possible combinations of concentrations of the two plasmids. Four replicates were
done for each combination of concentrations, yielding a total of 100 TX-TL reactions. The
reactions were incubated at 37 degrees Celsius, and CFP and YFP fluorescence were
collected every 5 minutes for each reaction using a plate reader. Using a previously
performed calibration of fluorescence to concentration, we were able to convert the
fluorescence measurements for CFP and YFP to actual concentrations in nM. Notably, the
CFP concentration allowed us to measure the concentration of Bxb1 integrase in the
reaction.

Figure 4a shows the median expression over time for integrase and reporter for each
combination of concentrations of integrase and reporter plasmid. Each column of plots
corresponds to a reporter plasmid concentration, while darker lines correspond to
increasing integrase plasmid concentration. As expected, increasing integrase plasmid
increases CFP expression. With no reporter or no integrase plasmid, YFP expression is
absent as expected. It is also clear that reporter expression generally begins sooner and
ends at a higher level when there is more integrase expression. The full set of experimental
data is available in S1 Appendix.

Model of integrase recombination
In order to estimate parameters for the integrase data presented in the previous section, we
needed a model of integrase recombination of DNA. We created a simple model of
integrase dynamics consisting of three reactions: integrase production, DNA
recombination, and reporter production. As TX-TL is a bulk environment, we chose to use
a deterministic model for our system, which we easily set up using bioscrape.

In Table 2, we describe the species in the model. These species are then used in the
following set of ODE’s that describe the integrase recombination dynamics in the model.

İ = kIIpl

Ȧ = fR

(

I
Kf

)n

1 +
(

I
Kf

)n

Ṙ = −Ȧ

Ẏ = kY A

(2)

Equation 2 contains the ODE’s for the simple model. Integrase is produced at a
constitutive rate, where Ipl is the concentration of integrase plasmid and varies across
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Fig 4. Experimental and model simulation results. (a) Both integrase plasmid and
reporter plasmid were varied from 0 to 1 nM and fluorescence data was collected for 4
hours. The plotted lines are the median of 4 replicates per condition. Each pair of vertical
plots represents a concentration of the reporter plasmid. Darker lines correspond to higher
concentrations of the integrase plasmid. CFP expression corresponds to integrase
concentration, while YFP corresponds to reporter. (b) A simulated version of panel a using
the model.

experiments. The conversion of reporter plasmid to activated reporter plasmid is governed
by a Hill function that allows us to model the cooperativity and activation threshold for
the integrases in a simple way. We also assume that the DNA recombination reaction is
first order in reporter plasmid. Finally, we assume that YFP reporter is produced at a rate
proportional to the amount of activated reporter plasmid. While varying the integrase
plasmid changes the value of Ipl in the model, varying the reporter plasmid changes the
initial condition for R.
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Table 2. Species and parameters in the simple model of integrase recombination
Variable Species
I Integrase-CFP (nM)
A Activated reporter plasmid (nM)
R Unactivated reporter plasmid (nM)
Y YFP fluorescent reporter (nM)
Ipl Integrase plasmid (nM)
Parameter Description
kI Rate of integrase production (nM integrase per minute per nM inte-

grase plasmid)
f Maximum rate of integrase flipping of DNA (nM activated plasmid

per nM reporter plasmid per minute)
Kf Hill threshold for integrase activation (nM integrase)
n Hill coefficient
kY Rate of reporter production (nM reporter per minute per nM acti-

vated plasmid)

Using representative values for the model, we created a simulated version of Figure 4a
using the model. The plot is given in Figure 4b, and there are some qualitative differences
between integrase expression in the simulations and in the experimental data. Namely,
while in the model the expression of integrase increases linearly with a slope proportional
to the amount of integrase plasmid, in the experimental data, integrase expression only
increases after a delay and then levels off after about two hours. This behavior is common
in cell free extracts due to depletion of resources, and this effect should be included in a
future more detailed model of the system. The full XML model for integrase dynamics is
included in S5 Appendix.

Parameter inference for integrase dynamics
Using the model given in Equation 2, we attempted to perform parameter inference using
bioscrape to fit the model parameters to both the simulated data from Figure 4b as well as
the experimental median data from Figure 4a. Fitting the model to simulated data was a
computational test of the identifiability of the model from the collected data. If a
simulated version of the data were uninformative about parameter values in the models,
then the real data would not be informative about the parameters either.

The parameter inference code in bioscrape allows a user to enter a set of experiments
into a likelihood function as well as specify a prior distribution on parameters. This
information is then sent to an off-the-shelf ensemble Markov chain Monte Carlo package
that generally works well on parameter inference problems [34,35].

Figure 5 contains the posterior distributions for the parameters obtained after
performing parameter estimation on the simulated data. From Figure 5a, it is clear that
the posterior parameter distributions are tightly centered around the true parameter values,
demonstrating that the true parameters are identifiable from the simulated data. This can
be considered an empirical identifiability analysis that is necessary for parameter estimation
on the experimental data to be meaningful.

Figure 5b contains the posterior parameter estimates from parameter estimation on the
experimental data. In this case, the production rate parameters kI and kY and the Hill
threshold Kf have strongly peaked posterior distributions. However, the Hill coefficient is
essentially unidentifiable across the space, and the integrase throughput rate f is peaked
towards the bottom end of the allowable parameter regime. This suggests that integrase
recombination is quite slow in practice. Details on the parameter estimation procedure and
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Fig 5. Posterior parameter estimates from MCMC. (a) Parameter distributions (blue) for
the simulated data are strongly peaked around the true parameter values (green). (b)
Parameter distributions for the experimental data from Figure 4a. (c) Simulated
trajectories using the model with parameters from the posterior distribution (translucent)
overlaid on median experimental data (solid lines) for both CFP and YFP with integrase
and reporter plasmid at 0.5 nM.

the comparison of simulated trajectories generated by the estimated parameters to the
experimental data are available in S3 Appendix.

Table 3. Estimates for Hill coefficient and activation threshold
Variable Median 16th to 84th percentile interval
Hill coefficient n 3.0 (1.2,6.5)
Activation threshold Kf (nM) 13 (11,18)

Estimates for the Hill coefficient and activation threshold for integrase activity are
given in Table 3 along with their confidence intervals based on the posterior distributions.
We found that the Hill activation threshold was on the order of tens of nanomolar, which
would correspond to an in vivo concentration of a few dozen molecules per cell. The Hill
coefficient was mainly unidentifiable.

In general, the amount of data required for identifiability and parameter estimation to
work will vary on a case-by-case basis. Our recommendation is that the user always
perform a simulated version of the experiment and parameter estimation on the simulation
results to determine whether parameter estimation is feasible in each scenario. However,
even if parameter estimation works well on the simulated data, it may still not work well
on the experimental data. This may occur because the model does not perfectly describe
reality, or because there is noise in the system and measurements. These errors can
particularly confound estimation of the less sensitive parameters in the model, such as the
Hill coefficient above.
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Availability and Future Directions
The advent of increased computational resources and high-throughput data collection for
biological circuits has made quantitative modeling and parameter estimation for biological
circuits more feasible. Since the most attractive parameter estimation techniques rely on
Bayesian inference and Markov chain Monte Carlo (MCMC), it is important to have a
simulator that can perform fast forward simulations of the model. Additionally, the
simulator must be able to produce the same types of data that are observed in standard
biological assays such as flow cytometry or fluorescence microscopy, so that simulated and
experimental data can be compared. Also, as models often need to be tweaked to fit the
data, it should be easy to change the model or the way the model is simulated (e.g.
switching from a deterministic to a stochastic simulation).

The bioscrape package addresses all of these issues. The flexible XML based language
for model specification allows a user to easily make modifications to a biological circuit
model by simply spending a minute editing a text file. The flexible Python based library for
performing simulations allows for easily swapping between deterministic and stochastic
simulations as well as consideration of other common effects in biological circuits such as
cell growth and division and delays. Finally, because the package is written in Cython, its
speed is comparable to the speed obtained using C code.

Performing simulations that incorporate effects such as cell growth, division, and delay
can provide insight into the behavior of biological circuits. For example, in this paper, it is
demonstrated that in an exponentially dividing colony of cells, delays in gene expression
can lead to a lower steady-state protein concentration.

However, the ultimate aim of bioscrape is to provide tools for doing parameter
estimation for synthetic and systems biology. Here, we demonstrated the use of the
bioscrape package to perform parameter estimation for both simulated and experimental
data for integrase recombination dynamics in the TX-TL cell-free in vitro system. As a
result of this demonstration, we were able to estimate dynamic parameters for integrases
that may be relevant for synthetic circuit design.

The fast simulators presented here will be the computational workhorse for more
complex MCMC schemes, enabling parameter inference on stochastic models of synthetic
gene circuits. Future work and future updates to the software will include inference
methods and an experimental demonstration for a stochastic model.
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Supporting information

Supplemental Table 1: Bioscrape Features
Propensities

Type Functional Form Notes
Massaction (Deterministic) k

∏

i∈Inputs x
ni

i ni is the number of input species Xi

Massaction (Stochastic) k
∏

i∈Inputs
xi!

(xi−ni)!
ni is the number of input species Xi.

Positive Hill Function k(x/K)n

(1+(x/K)n) x is a specie. n, k, and K are parameters.
Positive Proportional Hill Function ky

(x/K)n/(1+(x/K)n) x and y are species; n, k, and K are parameters.
Negative Hill Function k

(1+(x/K)n) x a specie; n, k, and K are parameters.
Negative Proportional Hill Function ky

(1+(x/K)n) x and y are species; n, k, and K are parameters.
General Arbitrary f(x) f(x) expressed as a string.

Delays
Type Functional Form Notes
Fixed Delay d ∼ D D is a parameter.
Gaussian Delay d ∼ N (µ, σ) Normal distribution with mean µ and standard deviation σ.
Gamma Delay d ∼ Γ(k, θ) Gamma distribution: shape parameter k > 0, scale parameter θ > 0

Simulators
Type Supports Example Usage
Deterministic Simulator ODE Integration at constant volume In Vitro Bulk CRNs
Deterministic Dilution Simulator ODE Integration with universal dilution ODE models of bulk cell populations
Stochastic (SSA) Simulator Simulates stochastic trajectories of the chemical master equation at constant volume CRNs involving low species counts.
Stochastic Volume Simulator Stochastic trajectories with changing volumes A single growing/shrinking cell.
Stochastic Delay Simulator Stochastic trajectories with delay at constant volume CRNs involving low species counts with delays.
Stochastic Delay Volume Simulator Stochastic Trajectories with delay at variable volume A single growing/shrinking cell with delay reactions.
Cell Lineage Simulator Stochastic trajectories Delay, changing volume, and partitioning due to cell division Populations of cells.

Molecular Partitioning
Type Example Usage
Duplication Genomically integrated genes
Even Partitioning Plasmids with partitioning control
Binomial Proteins, mRNA, uncontrolled plasmids
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S1 Appendix. Complete TX-TL data.
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Fig 6. The complete TX-TL data used to generate the median expression plots in Figure
4a. Each plot corresponds to a concentration of integrase plasmid and reporter plasmid.
Dots correspond to measured data points, and solid lines correspond to the median of four
replicates.
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S2 Appendix. A reduced order model for plasmid replication in single cells. Using
a simplified model of plasmid copy number control that is derived here, bioscrape is used
to model a system of plasmids that replicate and partition randomly between daughter
cells but also transcribe an mRNA. In doing so, bioscrape simulation results can be used to
model noise in transcription accounting for noise in plasmid copy number in addition to
intrinsic transcriptional noise.

The ColE1 plasmid regulates its own copy number by constitutively transcribing an
RNA that inhibits the RNA primer for DNA replication from initiating a replication
event [36]. Making a four simplifying assumptions enables the derivation of a simplified
model of plasmid copy number regulation. First, it is assumed that the inhibitory RNA
directly binds to the plasmid origin to inhibit replication. Second, it is assumed that that
the replication rate is proportional to number of free plasmids, which do not have
inhibitory RNA bound. Third, it assumed that the inhibitory RNA transcription and
degradation dynamics are much faster than the plasmid replication dynamics. Fourth, the
inhibitory RNA is assumed to be strongly transcribed and linearly degraded, so that the
steady state level of inhibitory RNA is much greater than the number of plasmids. The
third and fourth assumptions enable the inhibitory RNA to be considered as being at a
quasi-steady state level.

Given P copies of plasmid, the third and fourth assumptions above mean allow for the
steady state level of inhibitory RNA R to be approximated by kP , where k is a large
proportionality constant.

Then, assuming fast binding and unbinding of the RNA to and from the plasmid with
some dissociation constant Kd, the following equations describing dissociation and mass
conservation must hold.

Kd =
[Pf ][R]

[PR]

[P ] = [Pf ] + [PR]

(3)

Here, [P ] denotes the concentration of P , so [P ] = P
V
, where V is the cell volume.

The variable Pf denotes the number of free plasmids, while PR is the number of
plasmid-RNA complexes, which have to add up to the total number of plasmids. Solving
these two equations yields the following expression for [Pf ].

[Pf ] =
[P ]

Kd + [R]
(4)

Here, since k ≫ 1, [R] will be mostly unaffected by its binding to the plasmid, so
substituting the steady state expression of R gives the following expression for [Pf ].

[Pf ] =
[P ]

Kd + k[P ]
(5)

The initiation rate of plasmid replication is assumed to be proportional to the amount
of free plasmids Pf , so multiplying both sides by the volume and re-arranging variables
gives

Pf =
1
Kd

1 + [P ]
(

Kd
k

)

P. (6)

Since the propensity of plasmid replication is assumed to be proportional to the number
of free plasmids Pf , the variables can be re-arranged to write down the following
expression for the replication propensity, where the parameters have been combined into
two parameters β and K.
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Fig 7. Plasmid transcription with partitioning. Each plasmid (blue) constitutively
transcribes green RNA molecules. Both plasmids and RNA’s are partitioned between
daughter cells during cell division.

Replication Propensity =
β

1 + [P ]
K

P (7)

A deterministic analysis of this plasmid replication rate can be performed. To do this
analysis, assume that the cell volume is growing at a standard exponential rate with

V̇ = αV. (8)
Then, the dynamics of [P ] can be computed.

d[P ]

dt
=

d

dt

(

P

V

)

=
V Ṗ − PV̇

V 2

=
1

V 2

(

PV
β

1 + [P ]
K

− αPV

)

=
P

V

(

β

1 + [P ]
K

− α

)

(9)

Setting the derivative equal to zero and solving gives the steady state value for the
plasmid concentration.

[P ]eq = K

(

β

α
− 1

)

(10)

If volume is measured in units of cellular volume, then the average plasmid
concentration can be thought as the steady state plasmid copy number. Note that β > α

is required in order to have a non-negative steady state plasmid concentration. This is
because the maximum rate of plasmid production must at least be able to keep up with
the cell growth rate in order for the plasmid to be maintained.

Simulating plasmid replication and gene expression in single cells
Using the model of plasmid replication derived in the previous section, a model of plasmid
replication combined with transcription can be used to compute the variability in mRNA
levels between cells in a lineage simulation. In the model, there is one plasmid species,
which replicates itself and also constitutively transcribes a mRNA. It is possible to look at
the plasmid copy number and mRNA levels in a cell lineage over time as well as the
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plasmid copy number distribution across a population of cells at the end of the simulation.
The full model used for producing the simulation is available in S5 Appendix. However,
the model is tuned to produce a mean plasmid concentration of 10 nM, and the cell
division time is set to 33 minutes, which is a representative division time for E. coli.

The simulation is performed for 500 minutes and the plasmid distribution is empirically
calculated using a final population size of 2048 cells. The run time for this simulation to
compute a total of 4095 cell traces is less than two seconds on a standard desktop
computer without using parallel processing.
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Fig 8. A simulation of plasmid replication and transcription over a cell lineage. The first
three plots show trajectories of RNA and plasmid counts and concentrations over time.
The last plot shows the distribution of plasmid copy number over 2048 cells at the end of
the simulation.

As shown in Figure 8, the copy number at the end of the simulation has a wide
distribution with a mean of about 15 copies per cell. This is expected because the mean
concentration should be about 10 nM for the plasmid and the mean cell volume will be
around 1.5 volume units. There is a slight peak in the distribution at a copy number of
zero. This is because if a cell loses all its plasmids, it will continue dividing but its future
descendants will never be able to recover the plasmid.

The distribution of plasmid and mRNA concentrations can also be plotted. In this case,
the copy number is divided by the cell volume at the end of the simulation before plotting.
The expected plasmid concentration is 10 nM and the expected mRNA concentration is
93.45 nM. The results can be seen in Figure 9.

The right panel of Figure 9 also shows a control where the plasmid concentration is
assumed to be exactly controlled within the cell with no variability. In this case, the noise
in mRNA expression is much smaller than in the case where the mRNA is expressed from
the plasmid. The coefficient of variation in the plasmid based expression case is 0.55, while
the coefficient of variation in the case with controlled copy number is 0.10. The XML code
for the model where the plasmid copy number is exactly controlled is available in S5
Appendix.
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Fig 9. Distributions of plasmid and mRNA concentration across a cell lineage. The
plasmid concentration is distributed around a mean of 10 nM. mRNA concentration is
distributed around a mean of approximately 90 nM. The blue line shows the mRNA
expression distribution if the plasmid concentration was exactly its mean value of 10 nM at
all times.
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S3 Appendix. Details of parameter estimation and model fit.
We performed parameter estimation using an ensemble method [34]. Using either the

simulated model data or the experimental data as input, we used a least squares
log-likelihood function, corresponding to a Gaussian measurement error, in conjunction
with a log-uniform prior over a reasonable space of parameter values. We initialized the
MCMC method with 2000 walkers assigned to random positions within the valid parameter
space, and we ran the algorithm for 3000 iterations.

We used only the 2000 walkers constituting the final ensemble to generate posterior
distributions, commensurate with the recommendation of [34]. This ensemble was used to
generate Figure 5. As an expansion of Figure 5c, we show the full model fit to median
experimental data for CFP and YFP across all experimental conditions in Figure 10 and
Figure 11.

Fig 10. Simulated trajectories using the model with parameters from the posterior
distribution (translucent) overlaid on median experimental data (solid lines) for CFP for
each combination of integrase and reporter plasmid concentrations.

While YFP trajectories are fit very well by the model, as shown in Figure 11, the
experimental CFP trajectories in Figure exhibit some nonlinearity, which cannot be
captured by the model. This is likely due to resource limits in cell free extract.
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Fig 11. Simulated trajectories using the model with parameters from the posterior
distribution (translucent) overlaid on median experimental data (solid lines) for YFP for
each combination of integrase and reporter plasmid concentrations.
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S4 Appendix. Plasmid maps and experimental details for integrase and reporter
plasmids.

Experiments in TX-TL were performed and fluorescence data was calibrated to
concentration as previously described [37].

The integrase plasmid is illustrated in Figure 12. The plasmid contains a Ptet
promoter [38] upstream of a strong ribosome binding site [39], which drives expression of a
fusion protein consisting of Bxb1 integrase [32] linked to a cyan fluorescent protein.
Transcription is terminated by a T500 terminator [40].

Fig 12. Plasmid map for the integrase plasmid.

The reporter plasmid is illustrated in Figure 13. The plasmid contains a single gene
with a strong P7 promoter [39] inbetween Bxb1 recombination sites, so that recombination
activates transcription of the gene. A RiboJ insulator [41] and a strong BCD2 ribosome
binding site [39] drive expression of the reporter gene, a Venus fluorescent protein.

Fig 13. Plasmid map for the reporter plasmid.
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S5 Appendix. XML models used in simulations.
Full XML Model for Simple Gene Expression

<model>
<reac t i on tex t=”−−” a f t e r=”−−mRNA”>

<propens i t y type=”massact ion ” k=”beta” sp e c i e s=”” />
<delay type=” f i x e d ” de lay=” tx_delay ” />

</ reac t i on>

<reac t i on tex t=”mRNA−−” a f t e r=”−−”>
<propens i t y type=”massact ion ” k=”delta_m” spe c i e s=”mRNA” />

<delay type=”none” />
</ reac t i on>

<reac t i on tex t=”−−” a f t e r=”−−p ro t e i n ”>
<propens i t y type=”massact ion ” k=”k_tl ” s p e c i e s=”mRNA” />
<delay type=”gamma” k=” tl_k ” theta=” t l_theta ” />

</ reac t i on>

<reac t i on tex t=” prote in−−”>
<propens i t y type=”massact ion ” k=”delta_p” spe c i e s=” pro t e i n ” />
<delay type=”none” />

</ reac t i on>

<parameter name=”beta” va lue=”2.0 ” />
<parameter name=”delta_m” va lue=”0.2 ” />
<parameter name=”k_tl ” va lue=”5.0 ” />
<parameter name=”delta_p” va lue=”0.05 ” />
<parameter name=” tx_delay ” va lue=”10” />
<parameter name=” tl_k ” va lue=”2” />
<parameter name=” t l_theta ” va lue=”5” />

<spec i e s name=”mRNA” va lue=”0” />
<spec i e s name=” pro te i n ” va lue=”0” />
</model>

Full XML Model for Plasmid Replication and Transcription
<model>

<reac t i on tex t=”−−plasmid ” a f t e r=”−−”>
<propens i t y type=” p r o p o r t i o n a l h i l l n e g a t i v e ” k=”beta_plasmid” n=”n”

K=”K_plasmid” s1=”plasmid ” d=”plasmid ” />
<delay type=”none” />

</ reac t i on>

<reac t i on tex t=”−−mRNA” a f t e r=”−−”>
<propens i t y type=”massact ion ” k=”k” spe c i e s=”plasmid ” />

<delay type=”none” />
</ reac t i on>

<reac t i on tex t=”mRNA−−” a f t e r=”−−”>
<propens i t y type=”massact ion ” k=” de l t a ” sp e c i e s=”mRNA” />

<delay type=”none” />
</ reac t i on>

<parameter name=”beta_plasmid” va lue=”0.04200892003” />
<parameter name=”n” va lue=”1.0 ” />
<parameter name=”K_plasmid” va lue=”10”/>

<parameter name=”k” va lue=”3.0 ” />
<parameter name=” de l t a ” va lue=”0.3 ” />

<spec i e s name=”mRNA” va lue=”0” />
<spec i e s name=”plasmid ” va lue=”12” />

</model>

Full XML Model for Transcription with Exactly Controlled Copy Number
<model>

<reac t i on tex t=”−−mRNA” a f t e r=”−−”>
<propens i t y type=”massact ion ” k=”k” spe c i e s=”” />

<delay type=”none” />
</ reac t i on>

<reac t i on tex t=”mRNA−−” a f t e r=”−−”>
<propens i t y type=”massact ion ” k=” de l t a ” sp e c i e s=”mRNA” />

<delay type=”none” />
</ reac t i on>

<parameter name=”k” va lue=”30.0 ” />
<parameter name=” de l t a ” va lue=”0.3 ” />

<spec i e s name=”mRNA” va lue=”0” />

</model>

XML Model for Hill Function-Based Integrase Dynamics
<model>

<reac t i on tex t=”−−I ” a f t e r=”−−”>
<delay type=”none” />
<propens i t y type=” un imolecu la r ” k=”k_I” s1=” I_pl ” />

</ reac t i on>
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<reac t i on tex t=”R−−A” a f t e r=”−−”>
<delay type=”none” />
<propens i t y type=” p r o p o r t i o n a l h i l l p o s i t i v e ” k=” f ” K=”K_f” n=”n” s1=” I ” d=”R” />

</ reac t i on>

<reac t i on tex t=”−−Y” a f t e r=”−−”>
<delay type=”none” />
<propens i t y type=” un imolecu la r ” k=”k_Y” s1=”A” />

</ reac t i on>

<spec i e s name=”A” va lue=”0” />
<spec i e s name=”R” va lue=”0” />
<spec i e s name=” I_pl ” va lue=”0” />
<spec i e s name=” I ” va lue=”0” />
<spec i e s name=”Y” va lue=”0” />

<parameter name=” f ” va lue=”0.1 ”/>
<parameter name=”K_f” va lue=”200” />
<parameter name=”n” va lue=”1.5 ” />
<parameter name=”k_I” va lue=”0.83 ” />
<parameter name=”k_Y” va lue=”0.357” />

</model>
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