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Fast and High Quality Highlight Removal

from A Single Image
Dongsheng An∗, Jinli Suo∗, Xiangyang Ji, Haoqian Wang and Qionghai Dai

Abstract—Specular reflection exists widely in photography and
causes the recorded color deviating from its true value, so fast
and high quality highlight removal from a single nature image is
of great importance. In spite of the progress in the past decades in
highlight removal, achieving wide applicability to the large diver-
sity of nature scenes is quite challenging. To handle this problem,
we propose an analytic solution to highlight removal based on an
L2 chromaticity definition and corresponding dichromatic model.
Specifically, this paper derives a normalized dichromatic model
for the pixels with identical diffuse color: a unit circle equation
of projection coefficients in two subspaces that are orthogonal
to and parallel with the illumination, respectively. In the former
illumination orthogonal subspace, which is specular-free, we can
conduct robust clustering with an explicit criterion to determine
the cluster number adaptively. In the latter illumination parallel
subspace, a property called pure diffuse pixels distribution rule
(PDDR) helps map each specular-influenced pixel to its diffuse
component. In terms of efficiency, the proposed approach involves
few complex calculation, and thus can remove highlight from high
resolution images fast. Experiments show that this method is of
superior performance in various challenging cases.

Index Terms—Specular reflection, highlight removal, specular
and diffuse, L2 normalized dichromatic model, adaptive material
clustering.

I. INTRODUCTION

Color information describes the scene’s reflectance behav-

iors and plays an important role in various computer vision

tasks, such as segmentation, recognition, matching and intrin-

sic image retrieval. The image recording the diffuse reflection

characterizes the color distribution of the scene, but the image

intensities of widely existing non-Lambertian surfaces, such as

the scene displayed in Fig. 1(a), largely deviate from their true

color information in the specular regions. There are also work

directly based on the specular component, such as shape from

specular reflection [1]. Therefore, separating highlight from

diffuse component for the images of non-Lambertian scenes

is of crucial importance.

A. Related Works

Highlight removal has been studied for decades, as reviewed

in [2]. Physically, the degree of light polarization can be

considered as a strong indicator of specular reflection, while

diffuse is considered unpolarized. Therefore, some polarization

based methods with hardware assistance have been proposed,

such as [3], [4], [5] and [6]. Highlight also exhibits varying

behaviours under different illumination directions or from

different views, so some highlight removal approaches from

∗ indicates equal contribution.

(a) (b)

(c) (d)

Fig. 1. An exemplar of non-Lambertian scene and its high light removal
results by our approach. (a) The input image. (b) Specular robust clustering
result. (c)(d) Separated diffuse and specular components, respectively.

multiple images are proposed. Similarly, Feris et al. [7] use

a set of images captured in the same point of view but with

different flash positions to restore the diffuse component. With

a moving light source in [8], Sato and Ikeuchi introduce

a method exploiting the color signature analysis using the

dichromatic model. Similarly, Lin and Shum[9] use linear

basic functions to separate diffuse and specular components

through two images captured with different light directions.

Instead of using multi-illumination inputs, Lin et al.[10] alter-

natively propose a method using multi-baseline stereo based

on the observation that the diffuse component was angle free

while the specular component was angle dependent. Statistic

techniques can also help highlight removal.

From the threshold to the gradient histograms, which is

defined as the difference between the histograms of two dif-

ferent intensities, Chen et al. can [11] reconstruct the specular

field successfully, but their method requires more than 200

input images. Differently, with some statistical properties of

nature scenes, Weiss [12] formulate the recovery of diffuse

component as a maximum likelihood estimation problem

from an image sequence with the same diffuse component

but different specular components. Yang et al.[13] resort to

statistical methods to remove specularity from two images with

non-overlapping specular highlights. Although being able to
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successfully remove the specularity, approaches with hardware

assistance or from multiple images are much less practical

compared to the single image based approaches.

Removing highlights from a single image often needs given

illumination, which can be either calibrated or estimated

computationally[14][15][16]. Some work [17][18][19] require

robust color segmentation for accurate specular detection,

which is quite challenging. Tan and Ikeuchi [20] make use

of the difference between specular and diffuse pixels in

their proposed specular-free image to remove the highlight

effects. They iteratively replace the chromaticity at a specular

position with its neighbor pixel with the maximum diffuse

chromaticity until the algorithm converges. To reduce the high

computation cost of such a greedy searching strategy, Yang et

al.[21] accelerate this method by introducing bilateral filtering.

Similarly, Mallick et al. [22] propose a PDE algorithm, which

iteratively erodes the specular channel in the SUV color space,

as in [23]. But these propagation methods cannot handle large

area highlight. Also using the local properties, Kim et al. [24]

propose an optimization algorithm utilizing the dark channel

prior proposed in [25]. Another optimization based method

is proposed by Akashi and Okatani [26], who formulate the

separation as a non negative matrix decomposition problem.

This method is sensitive to the initial values and one must run

this method several times to get the most reasonable result.

Besides, both the optimization based methods are very slow.

Researchers also spend efforts on highlight removal techniques

based on material clustering. Tan et al.[27], Shen and Zheng

[28] both propose to conduct specular-independent material

clustering and relate the specular intensity to its specular-

free counterpart. The strategy that clusters materials first and

then recovers the intrinsic diffuse colors in each cluster is

promising. In the clustering step, the specular-free image in

[28] is channel-independent and cannot discriminate colors

like [1 2 3], [2 1 3] and [3 2 1]. In the step identifying the

pure diffuse pixels of each cluster, both methods either involve

some approximations or make strong assumptions, and fail in

some cases, such as approaching-white material and strong

specularity.

B. Our Approach

This paper focuses on highlight removal from a single image

and targets for wide applicability to the large variety of nature

scenes. Besides, this approach is also designed to be memory

saving and of low running cost to handle high resolution

images fast.

For a non-Lambertian surface, its reflectance can be rep-

resented by a linear combination of diffuse and specular

components. Then, the highlight removal naturally falls into

a signal separation problem. Adopting a two-step strategy

similar to [27], we decompose the highlight removal procedure

into two subproblems: (i) discriminating intrinsic colors (i.e.,

diffuse reflectance) of the pixels, either affected or unaffected

by specular highlight; (ii) finding the pure diffuse pixels

and then recovering the diffuse component in each cluster.

Accurate identification of pixels with the same material is a

nontrivial problem due to the influence of specularity. Within

each cluster, distinguishing the pure diffuse pixels from those

affected by specularity is also difficult.

To avoid the influences of specularity, material clustering

in the specular-free subspace is favourable. With the known

illumination, we directly project the image intensities into two

subspaces, orthogonal to and parallel with the illumination

direction, respectively. It is noteworthy that all the previous

methods are based on the L1 chromaticity definition, and there

exist some approximations in the succeeding derivation of

the highlight removal methods. In this paper, we propose an

L2 chromaticity definition and obtain an analytical highlight

removal solution. From the newly defined chromaticity defini-

tion and the corresponding L2 normalized dichromatic model,

we derive an explicit analytical expression—a unit circle

equation—between the parallel and orthogonal components

of the pixels with the same chromaticity. Guided by this

expression, an error term is defined to measure the color

uniformity among the pixels and adaptively determine the

number of diffuse colors in the clustering. Fig. 1(b) displays

the clustering results of the scene in Fig. 1(a). We can see

that the clustering preserves the smoothly varying reflectance

on the squash, and inter-reflection between them. To find

the pure diffuse pixels in each cluster, a strictly defined

property under the L2 normalized dichromatic model can be

derived: within each cluster, the pixels with different specular

strengths form a circular arc lying on the plane spanned by the

illumination and the illumination-orthogonal directions. The

pixels with increasing specular strengths move along the arc

monotonously, and the pure diffuse pixels locate at one end.

Here we name this pattern the pure diffuse pixels distribution

rule (PDDR). This rule is similar to the model proposed by

Finlayson and Drew in [29], where the pixels of the same

material lie on a straight line. However, this model needs at

least 4 channels. Besides, we can easily determine the specular

strength for each pixel and recover the diffuse intensity.

Although bearing some similarity to the two-step strategy in

[27] and [28], our approach largely differentiates from these

two work in finding the pure diffuse pixels and demonstrates

higher performance. Only based on the common assumption

that there exist pure diffuse pixels for each material in the

scene, our PDDR property makes the detection of these pixels

very easy. Besides, without any approximation in the whole

derivation, the detected pure diffuse pixels and the highlight

removal results are of high accuracy. Oppositely, in order to

find the pixels unaffected by specular highlight, both [27] and

[28] make some additional assumptions. Tan et al. [27] assume

that the 1st PCA basis of diffuse reflectance is wavelength free

and result in unpleasant color bias and high sensitivity to noise.

Requiring calibrating the RGB response curves also limits its

practicability. In [28], the criterion for recovering the diffuse

color would fail for materials whose color approaches white.

Besides, in [28] the assumption that the number of specular

affected pixels in each cluster does not exceed a threshold

makes this method fail in handling scenes with widespread

highlight.

In summary, the proposed approach has advantages over

previous approaches in multiple aspects.

1) Due to the new defined L2 chromaticity, L2 normalized
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dichromatic model and the PDDR property, we can

achieve robust scene adaptive material clustering and

accurate recovery of the diffuse colors, even when they

are similar to the illumination.

2) Making use of the global structure instead of the local

information, the proposed method can handle images

with large area or strong specularity.

3) Without complex optimization, our method can remove

highlight fast for high resolution images.

II. THE L2 NORMALIZED DICHROMATIC MODEL

In this paper, we normalize the widely used dichromatic

model [30] by L2 norm and correspondingly derive an or-

thogonal decomposition strategy for the surface appearance.

For a color camera, the imaging process can be formulated

as:

Ic(x) = ωr(x)

∫

Λ

r(x, λ)e(λ)qc(λ)dλ+ωl(x)

∫

Λ

e(λ)qc(λ)dλ.

(1)

Here Ic(x) is the intensity of channel c at pixel x, with c
indexing the camera channel and x = {x, y} representing the

2D location. On the righthand side of the equation, the two

terms are respectively the diffuse and specular components,

with ωr(x) and ωl(x) being the corresponding strengths. In

each term, λ denotes the wavelength with range being Λ, while

r(λ), e(λ) and qc(λ) represent the surface reflectance, the

illumination spectrum and the camera’s spectral response of

channel c, respectively.

Denoting the pure diffuse component and specular high-

light as Id(x) = ωr(x)
∫
Λ
r(x, λ)e(λ)qc(λ)dλ and Is(x) =

ωl(x)
∫
Λ
e(λ)qc(λ)dλ, Eq. 1 can be represented by

I(x) = Id(x) + Is(x). (2)

The diffuse component represents the inherent color of the

surface and the specular highlight implies the color of illu-

mination, as illustrated in Fig. 2. Different from the previous

definition of color chromaticity Ĩ(x) = I(x)∑
c∈{r,g,b} Ic(x)

as used

in [14][24][27][28][31], we propose a L2 definition as

Ĩ(x) = I(x)/‖I(x)‖F . (3)

In this equation, ‖I(x)‖F =
√∑

c∈{r,g,b} Ic(x)
2, with Ic(x)

being the intensity of the cth channel.

Similarly, we denote Λ and Γ as the chromaticity of diffuse

component and specular highlight respectively:

Λ(x) = Id(x)/‖Id(x)‖F (4)

Γ(x) = Is(x)/‖Is(x)‖F .

Based on the above definition and assuming that all the pixels

are illuminated by the identical illumination color (i.e., Γ is

position-independent), the normalized reflectance Ĩ(x) can be

written as

Ĩ(x) = α(x)Λ(x) + β(x)Γ. (5)

Here the coefficients α(x) = ‖Id(x)‖F /‖I(x)‖F and β(x) =
‖Is(x)‖F /‖I(x)‖F .

For the chromaticity of diffuse component Λ(x), it can be

projected into two subspaces, one is parallel with while the



(x)
(x)

I(x)

I(x)

(x)b I (x)
s

I (x)
d

(x) (x)

(x) 

(x)a

(x)

Fig. 2. The illustration and notations of the proposed L2 normalized
dichromatic model.

other is orthogonal to the illumination direction Γ, as illus-

trated by the two planes in Fig. 2. The projection procedure can

be conducted according to the orthogonal projection algorithm

proposed by Chang [32] as

Λ(x) = a(x)Γ⊥(x) + b(x)Γ, (6)

in which ΓTΓ⊥(x) = 0, ‖Γ⊥(x)‖2F = 1, ‖Γ‖2F = 1 and

the items a(x) and b(x) are the projection coefficients along

two directions, respectively. Since Λ(x) is normalized, we can

easily derive that

a(x)2 + b(x)2 = 1. (7)

Substituting Eq. (6) into Eq. (5), we can obtain

Ĩ(x) = α(x)a(x)Γ⊥(x) + (α(x)b(x) + β(x))Γ, (8)

which can be further simplified into

Ĩ(x) = γ⊥(x)Γ⊥(x) + γ(x)Γ, (9)

by setting γ⊥(x) = α(x)a(x) and γ(x) = (α(x)b(x)+β(x)).
Since Ĩ(x), Γ⊥(x) and Γ are normalized, we have

γ⊥(x)2 + γ(x)2 = 1. (10)

From Fig. 2, adopting the proposed L2 chromatic definition, all

the reflectance with the identical diffuse chromaticity satisfy

this equation, i.e., lie on the dot-slash unit circle.

III. SCENE ADAPTIVE HIGHLIGHT REMOVAL

According to the L2 normalized dichromatic model, the

direction Γ⊥(x) is solely determined by the diffuse chromatic-

ity Λ(x) and can be used to discriminate different materials.

Under the guidance of PDDR property, the coefficient γ(x)
corresponding to the direction Γ can be used to find the pure

diffuse pixels and remove specular highlight in each cluster.

Summing up these properties in both directions, we propose

a highlight removal framework, as illustrated in Fig. 3, using

the image in Fig. 1(a) as a running example.
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Fig. 3. The frame of our highlight removal approach via adaptive material clustering. Left column: The upper block shows the input normalized image and
illumination, and the lower block shows their projection in the specular-free space. Middle column: The procedure of adaptive clustering, with the clustering
results in the specular-free space at bottom, corresponding labeling in the original image in the middle, and the fitting error to the analytical model Eq. (10)
on the top. Right column: The separated diffuse and specular components.

Given the input specular contaminated image and cor-

responding illumination (shown in the top-left block), we

firstly get the normalized specular-free component Γ⊥(x)
corresponding to each pixel, as shown in the bottom-left block.

Afterwards, we iteratively conduct specular-free clustering

using K-Means by increasing the number of clusters until

converge, with the convergence criterion defined from the

fitting error to the analytical model in Eq. (10), as visualized

in the top row, middle column of Fig. 3. The evolution of the

clustering results is displayed in the lower two rows of middle

column in Fig. 3: the upper one in the image space and the

lower one in the parameter space. Thereafter, we separate the

specular and diffuse components at each pixel, with the results

shown on the rightmost column. The following subsections

will detail the two successive steps: material clustering and

diffuse component recovery.

A. Material Clustering

For a specularity-influenced image, such as the one dis-

played in Fig. 4(a), it is difficult to locate the pixels with

the same diffuse reflectance in the original space because the

influences of specularity, as shown in Fig. 4(b). To avoid the

affects from the specularity, we cluster the materials in the

illumination orthogonal subspace Γ⊥(x), in which the pixels

with the same diffuse color but different specular strengths

cluster well, as shown in Fig. 4(c), which corresponds to

the normalized data along Γ⊥(x) in Fig. 2. Without loss of

generalization, the proposed algorithm determines the number

of clusters adaptively.

We start from a cluster number no larger than the true

material types, and increase it successively until it reaches

the correct number. Usually, we can set the initial cluster

number as 1 for safe. In each iteration, we firstly project

the chromaticity of the input image into the illumination

orthogonal subspace for clustering. Then for each cluster, we

replace Γ⊥(x) with the cluster center C, and re-project the

normalized reflectance Ĩ(x) into C and Γ to get coefficients

γ⊥ and γ. According to Eq. (10), if the sum of squares of

the coefficients is close to 1, i.e., lying on a unit circle, C

represents this cluster well. On the contrary, if the pixels with

coefficients deviating from the unit circle are more than the

given threshold (e.g., 10%), we suppose that the pre-set cluster

number is incorrect. We use the total fitting error to the unit

circle as the clustering precision, and set the threshold to be

0.1 empirically. After checking all the clusters, we increase the

cluster by the number of clusters not meeting the precision

criteria and go into the next iteration. Fig. 4(d) shows the

clustering result and the corresponding error of Fig. 4(a) with

an incorrect cluster number. The result obviously deviates from

the dichromatic model.

We terminate the iteration when the cluster number stops

increasing, and the correct clustering result of Fig. 4(a) is

visualized in the leftmost image in Fig. 4(e). The correspond-

ing fitting error to the proposed unit circle model and its

distribution are also displayed. Experimentally, the algorithm

converges within 5 iterations for most scenes.

B. PDDR based Diffuse Component Recovering

Theoretically, the pure diffuse pixels in each cluster will

be those with the minimum value of β (β = 0), which is

corresponding to the smallest parallel component γ(x) =
α(x)b(x) + β(x). Thus, the leftmost pixels in each circle arc
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Fig. 4. Description of our automatic clustering scheme on a synthetic image. (a) The synthetic input image. (b)(c) The normalized reflectance in RGB space
and that in the specular-free space, respectively. (d) From left to right: the clustering result with incorrect class number (i.e., 2), corresponding deviation
from the unit circle description and statistics of the fitting errors. (e) The clustering results, the distribution of the pixels in the unit circle spaces and the
corresponding fitting errors with the correct cluster number (i.e., 4). (f) The identification of the diffuse component from the histogram of specular coefficients
γs. The line colors correspond to the four clusters in (e) and solid dots denote the results.

in Fig. 4(e) are the pure diffuse pixels, as illustrated in Fig. 2.

However, there is always noise in real cases and we treat the

pixels falling around the first peak of γ(x)′s histogram as

purely diffuse, i.e., Ĩ(x) = Λ(x). The histograms of γ(x)s for

the four regions in Fig. 4(a) are plotted in Fig. 4(f), with the

solid dots denoting the coefficients corresponding to the pure

diffuse reflections.

After finding the pure diffuse pixels in each cluster, it is easy

to remove the specular highlight. From Eq. (6), the problem

of recovering the diffuse component at x is equivalent to

find the coefficients α(x)a(x) along Γ⊥(x) and α(x)b(x)
along Γ. Since γ⊥(x) = α(x)a(x) can be calculated by

directly projecting I(x) onto Γ⊥(x), the problem can be

further simplified into finding the ratio of a(x) to b(x). On

one hand, for the pixels with the same diffuse component, this

ratio is invariant to the specular strength. On the other hand,

the ration of a(x) to b(x) is equivalent to the ratio of γ⊥(x)
to γ(x) for the pure diffuse pixels with β(x) = 0. Thus, the

ratio of a(x) to b(x) in each cluster can be directly calculated

with the known pure diffuse pixels.
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(a)

(b)

(c)

(d)

(e)

Fig. 5. Quantitative comparison between our method and [28] [21] on images with single diffuse color (1st-3rd columns) and color textures (4th-6th columns).
(a) Input images. (b) The ground truths. (c)(d)(e) The results of our method, Shen et al.[28]’s and Yang et al.[21]’s.
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IV. EXPERIMENTS AND ANALYSIS

To validate the proposed method, a series of experiments are

conducted. Firstly, we quantitatively test our method on both

synthetic and real data with ground truths, and demonstrate

its higher performance than previous methods. Then, we run

our algorithm on several images including non-Lambertian

reflection and provide comparison with several state-of-the-art

(STAR) methods. Next, considering that above experiments

both assume known illumination color, and the influence

from improper clustering is not considered either, we perform

two experiments to test the robustness of our approach to

inaccurate illumination color and clustering. Lastly, we discuss

the efficiency of our approach, in comparison with other two

existing methods achieving near realtime processing on VGA

images.

For performance comparison with STAR, we compare with

the most cited method [21], the newest one [26], and one

also based on material clustering [28]. Since the authors of

[26] only provide the images on real data, we do not include

their results in synthetic experiments. Neither source code

nor running results of [24] is available, so the comparison

is omitted.

In terms of parameter setting, we only need to set the

threshold for stopping cluster subdivision. In implementation,

we subdivide a cluster when more than 10% pixels within this

cluster deviate more than 0.1 from the unit circle. In order to

be robust to sensor noise, we force the pixel number within

each cluster larger than 300.

A. Quantitative Evaluation

Separating diffuse and specular components of a close-

to-white surface is challenging. To illustrate the advantage

of our method in this situation, we synthesize images with

diffuse chromaticity being [0.7053 0.7053 0.0705], [0.6667

0.6667 0.3333] and [0.5965 0.5965 0.5369] respectively, and

the illumination chromaticity being [0.5774, 0.5774, 0.5774],

as shown in 1-3 columns of Fig. 5. Although behaving well

in first two columns, [28] cannot cope with the scene with

diffuse color approaching white, i.e., the 3rd column, due to

the approximation in the criterion for recovering the diffuse

color. Yang et al.[21] give plausible results, but the separated

specular component tends to be weaker than the ground truth.

In comparison, our approach demonstrates best performance.

This is mainly due to that we strictly follow the dichromatic

reflection model, while the assumptions made by [28] and [21]

are violated in such cases.

To test our performance in textured images, we compare it

with [28] and [21] using images with ground truth diffuse

component, as shown in 4-6 columns of Fig. 5. The 4th

column shows a synthetic image, and the other two are from

[21]. Since noise always exists in data capturing, we also add

Gaussian white noise with standard derivation σ=3 and 6 to the

input images. PSNR is used as evaluation metric, as shown in

Table I. The results on the three textured images consistently

show our superior performance, and the superiority is more

prominent at higher noise levels.

(a)

(b)

Fig. 6. The separated diffuse and specular components of the last two scenes
shown in Fig. 5, with true and estimated illumination color. (a) The ’Fruits’
scene. (b) The ’Masks’ scene. In each subfigure, the left column shows the
results with ground truth illumination, and the right column gives those based
on the estimated illumination by the estimator proposed in [14].

B. Influence of Inaccurate Illumination or Material Clustering

When accurate illumination color is unavailable, one can

also use the estimated illumination by some existing methods,

such as [14] and [15]. To test the robustness to estimation

deviation of the illumination color, we compare the perfor-

mance of our highlight removal algorithm on the last two

scenes in Fig. 5 with the ground truth illumination color and

that estimated by Tan et al.[14]. The ground truth illumination

color in Fig. 5 is pre-calibrated into white (i.e., [r g b] =

[0.577 0.577 0.577]), while the estimated illumination for

these two scenes are [r g b] = [0.600 0.588 0.542] and [r g b]

= [0.633 0.575 0.518], respectively. The results are shown in

Fig. 6. Comparing the results from estimated (left column) and

accurate illumination (right column), we can see that the visual

performance does not drop a lot. Quantitatively, the PSNR of

the recovered diffuse component of the ’Fruit’ scene drops
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TABLE I
THE PSNRS (DB) OF RECOVERED DIFFUSE COMPONENTS ON THE SYNTHETIC DATA DISPLAYED IN 4TH-6TH COLUMNS OF FIG. 5.

Scenes σ The proposed Shen et al.[28] Yang et al.[21]

Synth
0 51.4 29.8 39.0
3 34.4 29.3 34.3
6 32.4 27.5 29.4

Fruits
0 40.4 38.9 37.6
3 37.4 35.5 34.0
6 35.1 31.8 30.1

Masks
0 34.2 34.1 32.2
3 33.0 32.5 29.8
6 32.0 29.9 27.5

(a) (b)

(c) (d)

Fig. 7. The results with inaccurate clustering (more clusters than the true
material types). (a) Input image. (b) Over-segmented clustering result. (c)
Recovered diffuse component. (c) Recovered specular component.

by 2.3 dB (from 40.4 dB to 38.1dB), and that of the ’Mask’

scene drops by 1.2 dB (from 34.2 dB to 33.0dB), respectively.

The scores arrive at the same conclusion: the deviation of the

illumination estimators would not affect our final highlight

removal performance apparently.

Another factor might degenerate the final performance is the

accuracy of material clustering. Because of the noise, a precise

clustering cannot be guaranteed even with a theoretically strict

reflection model and clustering criterion. It is worth noting

that, the proposed approach is clustering based but does not

require accurate clustering, which is prone to noise. Actually,

we tend to use a strict clustering criterion and over segment

the materials when noise exists. Even with a cluster number

more than the real material types, our approach still works

well if only there exist pure diffuse pixels in each cluster. For

example, the scene in Fig. 7(a) includes 5 kinds of materials

but is clustered into 8 groups (the blue magnets are over

segmented), as visualized in Fig. 7(b), where we label different

clusters with different grey levels. From the separated diffuse

and specular components displayed in Fig. 7(c) and Fig. 7(d),

one can see that we can get promising separation even with

an incorrect clustering.

C. Results on Non-Lambertian Nature Scenes

In this experiment, we run our algorithm on a variety of

nature images affected by specularity. Fig. 8 displays our

results in comparison with Akashi et al. [26]’s, Shen et al.

[28]’s and Yang et al. [21]’s algorithms. All the images are

captured by ourselves using a Nikon D7000 camera with a

50mm f /1.8D lens. Demosaiced 16-bit raw data is used as

input. The color of the illuminations are all normalized into

white illumination by channel-wise division.

Overall, the algorithm produces promising visual results

and this validates its effectiveness in the real non-Lambertian

scenes. The slight difference with STAR algorithms indicates

our superiority in some challenging cases. For images with

slight and small scale specularity, such as the ’Apples’ scene

in the top row, all the four methods can give good separation

results. In the ’Butterfly’ scene, the chromaticity of the pink

wing region (R=0.7715, G=0.3505, B=0.5330) is of high

similarity to the normalized white illumination (R=0.5774,

G=0.5774, B=0.5774) and there is some color bias in [26]’s,

[28]’s and [21]’s results. In contrast, we can still recover the

diffuse component correctly. Besides, our algorithm exhibits

superior performance in handling large area highlights on

the glossy surface, such as the highlights on the ’Peppers’

surface. Akashi and Okatani’s approach[26] also performs well

on this example. In contrast, Shen et al.’s[28] and Yang et

al.[21]’s algorithms cannot handle this situation, because the

assumption in [28] that the number of the specular pixels

below a certain threshold is violated in this case, and the

propagation strategy adopted in [21] only applies to small

local specular regions. Strong specularity when the surface

approaches to mirror is another challenging case for highlight

removal, e.g., the color ’Magnets’ scene in the bottom row.

In this example, the methods in [26], [28] and [21] are all in-

capable of removing the specular component cleanly. Instead,

our algorithm can give decent separation if the specular region

is not caused by pure specular reflection. We can discriminate

the subregions with and without inter-reflection on the same

magnet. Besides, we also test our approach on two outdoor

scenes to demonstrate its wide availability, as shown in Fig. 9.
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(a) (b) (c) (d) (e)

Fig. 8. Comparison between our approach and three state-of-the-arts, both diffuse and specular components are displayed. (a) Inputs. (b) Our results. (c)
Akashi and Okatani’s[26]. (d) Shen et al.’s[28]. (e) Yang et al.’s[21].
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TABLE II
COMPARISON OF RUNNING TIME AMONG OUR ALGORITHM, YANG ET AL.’S [21] AND SHEN ET AL.’S [28]

Scenes
Resolution Ours (s) Shen et al.[28] (s) Yang et al.[21](s)

(pixels) Matlab C++ C++

Apples
650× 450 0.011 0.046 0.097

1950× 1350 0.195 0.855 1.722

Magnets
550× 630 0.022 0.023 0.089

1650× 1890 0.119 0.199 0.625

Butterfly
500× 720 0.020 0.026 0.100

1500× 2160 0.110 0.189 0.809

Peppers
630× 740 0.020 0.031 0.157

1890× 2220 0.084 0.273 0.883

(a) (b)

Fig. 9. Results on two outdoor natural scenes. (a) Car. (b) Plant. From top
to bottom: input image, diffuse and specular component.

D. Running Time Analysis and Comparison

Our highlight removal algorithm does not involve complex

calculations, and thus of high efficiency in terms of both

storage and computation. We test the efficiency on an Intel

Xeon 2.27 GHz CPU workstation with 64 bit Windows 7

system. Roughly, processing a 500×600 pixel image generally

takes 0.02s, and there exists slight variation due to the diverse

number of materials in different images. The most time

consuming module is clustering in our approach. Although the

adopted K-Means clustering will slow down at extremely high

resolution, we can easily handle such cases via down sampling

strategy. Specifically, we first down-sample the original image

to a lower version (e.g., 200 × 200 pixels), which contains

all the materials in the original one. Then we apply the

proposed method to the low resolution image to conduct

material clustering, and recover the diffuse chromaticity of

each cluster. Finally, for each pixel in the high resolution input

image, the cluster label and corresponding diffuse chromaticity

is assigned as those of the cluster with the highest correlation

in the specular-free space.

In Table II, we compare our running time with the fast

highlight removal approach proposed by Shen et al.[28] and

Yang et al.[21]. Since optimization based methods are usually

of much higher computation cost, we omit comparison with

these methods here. From the data we can see that, even

implemented with Matlab, our algorithm is still slightly faster

than the other two methods implemented with C++. Benefiting

from the down sampling strategy, our efficiency superiority is

more prominent at higher resolution.

V. CONCLUSIONS AND DISCUSSIONS

This paper proposes a new highlight removal approach by

defining an L2 normalized dichromatic model and deriving

a strict formulation to separate the diffuse and specular

components. Without mathematical approximations and strong

assumptions on the scene, the approach can handle a large

diversity of cases that fail the previous methods. Besides, the

proposed approach involves few complex calculations and thus

can achieve fast processing.

Limitations. Although being widely applicable, our approach

may produce artifacts in some extreme cases. Firstly, the

diffuse component of gray (including white) objects or pure

specular regions may lose energy because the coefficients are

zero, such as the mirror reflection on the rubber balls and

the gray scale tiles in the color checker in Fig. 10(a). Such

cases are beyond the scope of the dichromatic model and

addressing these cases needs user interaction or inpainting

processing. Our method cannot distinguish pixels with the

same hue but different saturations either. Secondly, we assume

that for each kind of material, there exist pure diffuse pixels.

For a scene totally covered by highlights, such as the example

in the first column of Fig. 10(b), the specularity can be largely

reduced but the recovery results is still slightly affected by the

illumination. As demonstrated in the comparison between the

recovery in the middle column and the benchmark obtained

by applying a polarizer in the right column. Highlight removal

in such cases is intrinsically illposed for all the methods on

dichromatic model, and beyond the scope of this paper.

Future extensions. We plan to extend current approach to re-

move specularity in videos. Utilizing the temporal redundancy

will further raise the performance and efficiency. For one thing,

the sparse abrupt temporal changes will raise robustness to
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(a) (b)

Fig. 10. Results in some extreme cases. (a) Gray colors and pure specular
reflection. (b) Image wholly covered by highlights. Top: input image. Middle:
highlight removal result. Bottom: benchmark diffuse component captured by
applying a polarizer.

noise. For the other, the slight variation of material types be-

tween adjacent frames would accelerate processing, since we

do not need to start from 1 cluster. By taking some priors into

consideration, such as the sparsity of materials in the scene, the

separation of diffuse and specular component under unknown

illumination is also possible. Besides, highlight removal under

multiple illuminations with different colors is also interesting

and worth studying.
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