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Fast and Incremental Method for Loop-Closure
Detection Using Bags of Visual Words

Adrien Angeli, David Filliat, Stéphane Doncieux, and Jean-Arcady Meyer

Abstract—In robotic applications of visual simultaneous local-
ization and mapping techniques, loop-closure detection and global
localization are two issues that require the capacity to recognize a
previously visited place from current camera measurements. We
present an online method that makes it possible to detect when an
image comes from an already perceived scene using local shape
and color information. Our approach extends the bag-of-words
method used in image classification to incremental conditions and
relies on Bayesian filtering to estimate loop-closure probability. We
demonstrate the efficiency of our solution by real-time loop-closure
detection under strong perceptual aliasing conditions in both in-
door and outdoor image sequences taken with a handheld camera.

Index Terms—Localization, loop-closure detection, simultane-
ous localization and mapping (SLAM).

I. INTRODUCTION

O
VER THE last decade, the increase in computing power

has helped to supplement traditional approaches to si-

multaneous localization and mapping (SLAM) [1]–[4] with the

qualitative information provided by vision. As a consequence,

in robotics research, commonly used range and bearing sensors

such as laser scanners, radars, and sonars tend to be associated

with, or replaced by, single cameras or stereo camera rigs. For

example, in previous work [5], we performed vision-based 2-D

SLAM for unmanned aerial vehicles (UAV). Likewise, in [6],

the authors performed a 3-D SLAM in real time at 30 Hz using

a monocular handheld camera, while the authors of [7] present

visual SLAM solutions based on both monocular and stereo

vision.
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However, there are still difficulties to overcome in a robotic vi-

sion, in general, and in SLAM applications, in particular. Among

them, the loop-closure detection issue concerns the difficulty of

recognizing already mapped areas, while the global localization

issue concerns the difficulty of retrieving the robot’s location in

an existing map. These problems can be addressed by detect-

ing when the robot is navigating through a previously visited

place from local measurements. The overall goal of the research

effort reported in this paper is thus to design a vision-based

framework, tackling these issues so as to make it possible for a

robot to reinitialize a visual 3-D-SLAM algorithm like one of

those presented in [6] or [7] in such situations. This comes down

to an online image retrieval task that consists in determining if

current image has been taken from a known location. Such task

bears strong similarities with image classification methods like

those described in [8] and [9], but an important difference is our

commitment to online processing.

In this paper, we present a real-time vision-based method to

detect loop closures in a Bayesian filtering scheme: at each new

image acquisition, we compute the probability that the current

image comes from an already perceived scene. To this end, we

designed a scene recognition framework that relies on an in-

cremental version [10] of the bag-of-words method [9]. Loop-

closure hypotheses whose probability is above some threshold

are confirmed when a coherent structure between the corre-

sponding images is found, i.e., when the epipolar geometry

constraint is satisfied. This ultimate validation step is accom-

plished using a multiple-view geometry algorithm similar to the

one proposed in [11]. We provide experimental results demon-

strating the quality of our approach by performing loop-closure

detection in incremental and real-time conditions in both in-

door and outdoor image sequences using a single-monocular

camera.

In Section II, we present a review of related work on a visual

loop closure and global localization. Section III briefly intro-

duces our implementation of the bag-of-words paradigm. The

filtering scheme is detailed in Section IV and experimental re-

sults are given in Section V. The last two sections are devoted

to discussion and conclusion.

II. RELATED WORK

The Monte Carlo localization (MCL) method was originally

designed [12] to make global localization capitalizing on range

and bearing sensors possible. Although successfully adapted

to vision [13], this method does not match our requirements

since it relies on the existence of a map obtained beforehand.

From the same principle, the Rao–Blackwellised particle filter

(RBpf) enables loop-closure capabilities in SLAM algorithms
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(e.g., the FastSLAM [14] framework). It has also been adapted

to vision [15], but it suffers degeneration when closing a loop

due to inaccurate resampling policies [3]. In addition, RBpfs

are not loop-closure detection methods per se, but rather SLAM

methods robust to loop-closure events.

Loop-closure detection has also been performed using an

extended Kalman filter (EKF) application to visual SLAM [16],

[17]. The overall idea is to detect loop closures from advanced

data association techniques that try to match visual features

found in current images with those stored in the map. This

approach limits the information used to detect loop closure to

the information used for mapping (which is designed for SLAM

and not optimized for loop-closure detection). It is also linked

to a particular SLAM algorithm, whereas our approach may be

adapted to any SLAM method (even not vision based).

In this paper, we wish to design a simple visual system able to

perform loop-closure detection and global localization, within

the framework of an online image retrieval task. Following a

similar approach, but in a nonincremental perspective, voting

methods presented in [18] and [19] call upon maximum likeli-

hood estimation to match the current image with a database of

images acquired beforehand. The likelihood depends upon the

number of feature correspondences between the images, and

leads to a vote assessing the amount of similarity. In [18], the

authors also use multiple-view geometry to validate each match-

ing hypothesis, while in [19], the accuracy of the likelihood is

qualitatively evaluated in order to reject outliers. Even though

they are easy to implement, the aforementioned voting methods

rely on an offline construction of the image database and need

expensive one-to-one image comparisons when searching for

the most likely hypotheses. Moreover, the maximum likelihood

framework is not suitable for managing multiple hypotheses

over time, as it does not ensure the time coherency of the es-

timation (i.e., information from past estimates is not integrated

over time so as to be fused with actual ones). As a consequence,

this framework is prone to transient detection errors, especially

under strong perceptual aliasing conditions.

Bag-of-words methods are used in [20] and [21] to perform

global localization and loop-closure detection in an image clas-

sification scheme (see also [22] for an extended version of [21],

with multirobot map joining addressed as a loop-closure prob-

lem). Bag-of-words methods [8], [9] rely on a representation

of images as a set of unordered elementary features (the visual

words) taken from a dictionary. The dictionary is built by clus-

tering similar visual descriptors extracted from the images into

visual words. Using a given dictionary, image classification is

based on the occurrence of the words in an image to infer its

class. Images are represented as vectors of visual words’ statis-

tics with size equal to the number of words in the dictionary

in [20] and [21]. The dictionary is built beforehand in an offline

process, clustering the visual features extracted from a training

database of images into representative words of the environ-

ment. Matching between current and past images is defined as a

nearest neighbor (NN) search among the cosine distances sepa-

rating the corresponding vectors. In [20], a simple voting scheme

selects the n best candidates from the NN search and multiple-

view geometry is used to discard outliers. In [21], the NN search

results are used to fill a similarity matrix whose off-diagonal el-

ements represent loop-closure events, thus providing a powerful

way to manage multiple hypotheses. In both approaches, the use

of a dictionary enhances the robustness of matches, enabling a

good tolerance to image noise, but the NN search involved,

relying on exhaustive one-to-one vector comparisons, is very

expensive.

More recently, the authors of [23] have proposed a vision-

based probabilistic framework that makes it possible to estimate

the probability that two observations originate from the same

location. This approach, based on the bag-of-words scheme,

is very robust to perceptual aliasing: a generative model of

appearance is learned in an offline process, approximating the

probabilities of cooccurrences of the words contained in the

offline-built dictionary. Using this model, loop-closure detec-

tion can be performed with a complexity linear in the number of

locations. The main asset of this model is its ability to evaluate

the distinctiveness of each word, thus accounting for perceptual

aliasing at the word level, while its principal drawback lies in

the offline process needed for model learning and dictionary

computation.

In the majority of the methods presented before, Scale

Invariant Feature Transform (SIFT) [24] features are the

preferred input information because of their robustness to

reasonable 2-D affine transformations, scale, and viewpoint

changes. However, other visual features could be used for

loop-closure detection and global localization (see [25] for a

comparison of visual local descriptors). For example, as stated

in [19], color histograms are powerful features providing a

compact geometryless image representation that exhibits some

attractive invariance properties to viewpoint changes. Hence,

it may be suitable to merge several complementary visual

information, like shape and color for example, in order to

obtain a reliable solution in different contexts.

III. VISUAL DICTIONARY

The implementation of the bag-of-words method used here is

detailed in [10]: the dictionary construction is performed online

along with the image acquisition in an incremental fashion.

The words are stored using a tree structure (see [26] for more

details), enabling logarithmic-time complexity when searching

for a word and thereby entailing real-time processing. In the

study reported here, we used the following two different feature

spaces to describe the images.

1) SIFT features [24]: Interest points are detected as maxima

over scale and space in differences of Gaussians convolu-

tions. The features are memorized as histograms of gradi-

ent orientations around the detected point at the detected

scale. The corresponding descriptors are of dimension 128

and are compared using L2 distance.

2) Local color histograms: The image is decomposed in a set

of regularly spaced windows of several sizes to improve

scale invariance. The normalized H histograms in the Hue

Saturation Value (HSV) color space for each window are

used as features. The windows used here are of size 20 ×
20 (respectively, 40 × 40) taken every 10 (respectively,
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Fig. 1. Overall processing diagram (see text for details).

20) pixels. The descriptors are of dimension 16 and are

compared using diffusion distance [27].

A dictionary is built for each feature space.

IV. BAYESIAN LOOP-CLOSURE DETECTION

In this paper, we address the problem of loop-closure de-

tection as an image retrieval task. We are seeking for the past

image, if it exists, that looks similar enough to the current one

to consider that they come from close viewpoints. The overall

processing, illustrated in the diagram of Fig. 1, is achieved in

a Bayesian filtering framework estimating the probability that

current and past images pertain to the same scene: we thus

look for the past image that maximizes the probability of loop

closure with the current image. When such an image is found

(i.e., when probability is high for a particular loop-closure hy-

pothesis), the consistency of the structure underlying these two

images is checked by a multiple-view geometry algorithm [11].

When perceptual aliasing is present in the environment (i.e.,

when different places look similar), epipolar geometry provides

a powerful way to reject outliers (i.e., past images that look like

the current image but do not come from the same scene). In or-

der to take advantage of different types of information, several

feature spaces (i.e., SIFT features and H histograms) are used

here for representing the images. Compared to maximum like-

lihood methods, the Bayesian filtering scheme proposed here

takes temporal coherency of image acquisition into account in

order to bring robustness to transient detection errors.

In this section, we first give the mathematical derivation of the

filtering scheme used for the estimation of loop-closure proba-

bility. Then, we focus on issues regarding temporal coherency,

likelihood computation, and hypotheses management.

A. Discrete Bayes Filter

Let St be the random variable representing loop-closure hy-

potheses at time t. The event St = i is the event that current

image It “closes the loop” with past image Ii . This implies that

the corresponding viewpoints xt and xi are close, and that It and

Ii are similar. The event St = −1 is the event that no loop clo-

sure occurred at time t. In a probabilistic Bayesian framework,

the loop-closure detection problem can hence be formulated

as searching for the past image Ij , whose index satisfies the

following equation:

j = argmax
i=−1,...,t−p

p(St = i | I t) (1)

where I t = I0 , . . . , It , with j = −1 if no loop closure has been

detected. This search is not performed over the last p images

because It always looks similar to its neighbors in time (since

they come from close locations), and doing so would result in

loop closure detections between It and recently seen images

(i.e., It−1 , It−2 , . . . , It−(p+1)). This parameter, set to ten in our

experiments, is adjusted depending on the frame rate and the

velocity of camera motion.

We therefore need to estimate the full posterior,

p(St | I
t) for all i = −1, . . . , t − p, in order to find, if a loop-

closure occurred, the corresponding past image.

Following Bayes’ rule and under the Markov assumption, the

posterior can be decomposed into

p
(
St | I

t
)

= ηp
(
It |St

)
p
(
St | I

t−1
)

(2)

where η is the normalization term. Let (Zk )i be the state of the

dictionary associated with the feature space k (SIFT features

or H histograms in this paper) at time index i. The time sub-

script i is inherent to the incremental aspect of the dictionary

construction: (Zk )0 ⊆ (Zk )1 ⊆ · · · ⊆ (Zk )i−1 ⊆ (Zk )i , with

(Zk )0 = ∅ (features from the feature space k extracted in Ii

are used to build (Zk )i+1). Also, let the subset (zk )i of words

taken from (Zk )i and found in image Ii denote one representa-

tion of this image: Ii ⇔ (zk )i , with (zk )i ⊆ (Zk )i . Since several

feature spaces are involved here, several image representations

exist (one per feature space). Thus, let (zn )i be the overall repre-

sentation of image Ii , all feature spaces k = 0, . . . , n combined.

The sequence of images I t acquired up to time t can therefore

be represented by the sequence (zn )t = (zn )0 , . . . , (z
n )t .

So, the full posterior, now rewritten p
(
St | (z

n )t
)
, can be

expressed as follows:

p
(
St | (z

n )t
)

= ηp
(
(zn )t |St

)
p
(
St | (z

n )t−1
)
. (3)

Assuming independence between the feature spaces, we can

derive a more tractable mathematical formulation for (3) so as to

make computation of the full posterior easier. However, captur-

ing the correlations existing between the different dictionaries

could provide additional information about the occurrence of the

words. Under the independence assumption, the full posterior’s

expression can be written as

p
(
St | (z

n )t
)

= η

[
n∏

k=0

p
(
(zk )t |St

)

]

p
(
St | (z

n )t−1
)

(4)

where the conditional probability p
(
(zk )t |St

)
is considered as

a likelihood function L (St | (zk )t) of its second argument (i.e.,

St) with its first argument [i.e., (zk )t] held fixed: we evaluate, for

each entry St = i of the model, the likelihood of the currently

observed words (zk )t (see Section IV-C).
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Recursive estimation of the full posterior is made possible by

decomposing the right-hand side of (4) as follows:

p
(
St | (z

n )t
)

= η

[
n∏

k=0

p
(
(zk )t |St

)

]
t−p
∑

j=−1

p
(
St |St−1 =j

)
p
(
St−1 =j|(zn )t−1

)

︸ ︷︷ ︸

belief

(5)

where p
(
St |St−1

)
is the time evolution model

(see Section IV-B) of the probability density function

(pdf). From (5), we can see that the estimation of the full

posterior at time t is done by first applying the time evolution

model to the previous estimation of the full posterior, leading

to what we can call the belief at time t, which is, in turn,

multiplied successively by the likelihoods obtained from the

different feature spaces in order to get the actual estimation for

the posterior.

Note that in our framework, the sequence of words (zn )t

evolve in time with the acquisition of new images, diverging

from the classical Bayesian framework where such sequences

would be fixed. Moreover, in spite of the incremental evolution

of the dictionary, the representation of each past image is fixed

and does not need to be updated.

B. Transition From t − 1 to t

Between t − 1 and t, the full posterior is updated according

to the time evolution model of the pdf p
(
St |St−1 = j

)
, which

gives the probability of transition from one state j at time t − 1
to every possible state at time t. It therefore plays a key role

in reducing transient detection errors by ensuring the temporal

coherency of the detection. Depending on the respective values

of St and St−1 , this probability takes one of the following values.

1) p
(
St = −1 |St−1 = −1

)
= 0.9, the probability that no

loop-closure event will occur at time t is high given that

none occurred at time t − 1.

2) p
(
St = i |St−1 = −1

)
= 0.1/((t − p) + 1) with i ∈

[0; t − p], the probability of a loop-closure event at time t
is low given that none occurred at time t − 1.

3) p
(
St = −1 |St−1 = j

)
= 0.1 with j ∈ [0; t − p], the

probability of the event “no loop closure at time t” is

low given that a loop closure occurred at time t − 1.

4) p
(
St = i|St−1 = j

)
, with i, j ∈ [0; t − p], is a Gaussian

on the distance in time between i and j whose sigma value

is chosen so that it is nonzero for exactly four neighbors

(i.e., i = j − 2, . . . , j + 2). The size of this neighborhood

is adjusted depending on the frame rate and the velocity of

the camera motion. This corresponds to a diffusion of the

posterior in order to account for the similarities between

neighboring images.

Note that in order to have p
(
St >= −1|St−1 = j

)
= 1 when

j ∈ [0; t − p], the coefficients of the Gaussian used in the last

case have to sum to 0.9.

Fig. 2. Voting scheme. The list of the past images in which current words
(zk )t have been seen is obtained from the inverted index and used to update the
hypotheses’ scores.

C. Likelihood in a Voting Scheme

In Section IV-A, we saw how using multiple feature spaces

gave the opportunity to represent an image in different ways.

From a perceptual point of view, each representation brings its

own piece of information about the state of the world, inde-

pendently from other feature spaces. This entails computing

a likelihood measure for the loop-closure hypotheses St for

each of the feature spaces considered. From the computational

point of view, all the representations rely on the bag-of-words

paradigm, providing a generic interface to compute and manage

image representations. Therefore, the details given here about

the estimation of the likelihood associated to a specific feature

space k apply identically to each other feature space.

During the computation of the likelihood associated to the

feature space k, we wish to avoid an exhaustive image-to-image

comparison of the visual features, as implemented in most of the

voting and bag-of-words methods cited in Section II. In order

to efficiently find the most likely past image Ii that closes the

loop with the current one, we take advantage of the inverted

index associated with the dictionary. The inverted index lists the

images from which each word has been seen in the past. Then,

during the quantization of the current image It with the words

(zk )t it contains, each time a word is found, we retrieve from

the inverted index the list of the past images in which it has been

previously seen. This list is used to update the score (originally

set to 0) that is assigned to every loop-closure hypothesis St = i
in a simple voting scheme: when we find a word that has been

seen in image Ii , statistics about the word are added to the score

(see Fig. 2). The chosen statistics are inspired from the term

frequency–inverted document frequency (tf–idf) weighting [28]:

tf − idf =
nwi

ni
log

N

nw
(6)

where nwi is the number of occurrences of word w in Ii , ni is

the total number of words in Ii , nw is the number of images

containing word w, and N is the total number of images seen so

far. From (6), we can see that the tf–idf coefficient is the product

of the term frequency (i.e., the frequency of a word in an image)

by the inverted document frequency (i.e., the inverse frequency
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of the images containing this word). It is calculated each time

a likelihood score is computed, giving increased emphasis to

words seen frequently in a small number of images, and pe-

nalizing common words (i.e., words that are seen everywhere)

according to the most recent statistics.

To summarize, when a word is found in the current image,

the images where this word has been previously seen have their

scores updated with the tf–idf coefficient associated with the

pair {word–image}. The score associated with each loop-closure

hypothesis St = i will be used to compute the corresponding

likelihood, as we shall see later on. But before, we must give

some details about the computation of the score associated to

the event “no loop-closure occurred at time t.” Indeed, it is

evaluated here as the event “a loop closure is found with I−1 .”

I−1 is a virtual image built at each likelihood computation step

with the m most frequently seen words of (Zk )t (m being the

average number of words found per image): it is the “most

likely” image.

The idea is that the score associated with I−1 will change

depending on the location of the current image so as to behave

as the score of the “no loop-closure” event. When no loop-

closure occurs, It will be statistically more similar to I−1 than

to any other Ii because It will have more words in common

with I−1 than with any other Ii . On the other hand, in a real

unambiguous loop-closure situation, the score of I−1 will be

low as compared to the score of the loop-closing image Ii : as

the words responsible for this detection are only present in two

images (i.e., It and Ii), they are not frequently seen words and

they are in consequence unlikely to be found in I−1 . The design

of the virtual image proposed here is also relevant in case of

perceptual aliasing (i.e., when It comes from a location that is

similar to several previously visited places). In such situation, as

multiple past images have equivalent likelihoods, it is important

to ensure that I−1 receives a score that is in the same order

of magnitude as the score of these images, so as to prevent

an erroneous loop-closure detection. Here, as part of the most

common words, composing I−1 , will originate from the images

that are responsible for perceptual aliasing, it is guaranteed that

I−1 will be granted with an important score (but not necessarily

the highest one).

The construction of a virtual image with existing words is

similar to the addition of new locations from words sampling

used in [23]. In our filtering scheme, the existence of the vir-

tual image can be simulated simply by adding a I−1 entry to

the inverted index for each of the most frequently seen words.

Therefore, if one of them is found in It , it will vote for I−1 , as

shown in Fig. 2, and the corresponding score will be computed

as for the “true” images.

Once all the words found in the current image have been

processed and the computation of the scores is complete, we

select the subset (Hk )t ⊆ I t−p of images for which the par-

ticular coefficient of variation (c.o.v.) (i.e., particular deviation

from the mean of the scores normalized by the mean) is higher

than the standard c.o.v. (i.e., standard deviation normalized by

the mean). (Hk )t ⊆ I t−p is the subset of the most likely images

according to the feature space k. Then, if Ii appears in (Hk )t ,

the belief at time t [see (5)] is multiplied by the difference be-

Fig. 3. Belief at time t (frame “1,” see [Section IV-A, (5)] is updated according
to the likelihood model (frame “2”): when the score of a hypothesis is above the
mean + standard deviation threshold, the corresponding probability is updated.

tween the particular c.o.v. of Ii and the standard c.o.v. plus 1

(which can be simplified into the difference between the score

si of the hypothesis and the standard deviation σ, normalized

by the mean µ):

L(St = i | (zk )t)

=







si − µ

µ
−

σ

µ
+ 1 =

si − σ

µ
, if si ≥ µ + σ

1, otherwise.

(7)

The update of the belief for the restricted set of the most likely

hypotheses is illustrated in Fig. 3. The selection done on the

hypotheses at this stage makes it possible to simplify the update

of the posterior (as only a restricted set of hypotheses is updated),

considering that nonselected hypotheses have a likelihood of 1,

and therefore, multiply the posterior by 1. When all the images

of (Hk )t have been processed for all the feature spaces, the full

posterior is normalized.

D. A Posteriori Hypotheses Management

When the full posterior has been updated and normalized, we

search for the hypothesis St = i whose a posteriori probability

is above some threshold (0.8 in our experiments). However, the

posterior does not necessarily exhibit a strong single peak for a

unique hypothesis even if a loop closure occurred. It may rather

be diffused over a set of neighboring hypotheses (except for

St = −1). This is mainly imputable to the similarities among

neighboring images in time: some of the words commonly found

in It and Ii are also probably in Ii−1 or Ii+1 for example. Thus,

instead of searching for single peaks among the full posterior,

we look for a hypothesis for which the sum of the probabilities

over neighboring hypotheses is above the threshold (the neigh-

borhood chosen here is the same as the neighborhood selected

for the diffusion in Section IV-B).

When a hypothesis fulfills the earlier condition, a multiple-

view geometry algorithm [11] helps discarding outliers by ver-

ifying that the two images of the loop closure (i.e., It and Ii)

satisfy the epipolar geometry constraint, which would imply

that they share some common structure and that they could

hence come from the same 3-D scene. To this end, a ran-

dom sample consensus (RANSAC) procedure entails rapidly
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computing several camera transformations by matching SIFT

features between the two frames, discarding inconsistent ones

using a threshold on the average reprojection error. If successful,

the algorithm returns the 3-D transformation between xt and xi

(i.e., the viewpoints associated with It and Ii) and the hypothesis

is accepted. Otherwise, the hypothesis is discarded. However,

even if a hypothesis has been discarded by the multiple-view

geometry algorithm, its a posteriori probability will not fall

to 0 immediately: it will diffuse over neighboring images dur-

ing the propagation of the full posterior from t to t + 1. Thus,

correct hypotheses erroneously discarded by epipolar geome-

try will be reinforced by the likelihoods of further time in-

stants until a valid 3-D transformation is found. Note that since

SIFT features are extracted from the images and stored during

the online dictionary construction, we do not need to process

the images again when applying the multiple-view geometry

algorithm.

V. EXPERIMENTAL RESULTS

We obtained results1 from several indoor and outdoor image

sequences grabbed with a single-monocular handheld camera

(i.e., a simple camcorder with a 60◦ field of view and automatic

exposure). In this paper, we present the results obtained from two

experiments: an indoor image sequence with strong perceptual

aliasing and a long outdoor image sequence. In both experi-

ments, illumination conditions remained constant: the indoor

sequence has been captured under artificial lighting conditions,

while the length of the outdoor one (i.e., nearly 20 min) was too

short to experience changes in lighting conditions.

A. Indoor Experiment

The overall camera trajectory followed during this experi-

ment is shown in Fig. 4 using three different styles. When the

posterior is below the threshold, the trajectory is shown with

a blue (dotted) line. When it is above the threshold and the

epipolar constraint is satisfied, a loop closure is detected and

the trajectory is shown with a green (dashed) line. But, when

the posterior is above the threshold and the epipolar constraint

is not satisfied, the loop-closure hypothesis is rejected and the

trajectory is shown with a red (circled) line.

As we can see in Fig. 4, the trajectory is shown with a blue

(dotted) line every time the camera is discovering unexplored

areas, in spite of the strong perceptual aliasing present in the

corridors to and from the “London” elevators (see Fig. 5 for

examples of the images composing the sequence). During the

run, no false positive detections were made (i.e., when a loop

closure is detected whereas none occurred), thus demonstrating

the robustness of our solution to perceptual aliasing.

From Fig. 4, we can also see that the trajectory is shown

with a green (dashed) line most of the time spent in previously

visited places, indicating that true positive detections were made

(i.e., when a loop closure occurs, it is correctly detected). Fig. 6

gives an example of a true positive detection.

1Videos available at http://animatlab.lip6.fr/AngeliVideosEn, but also at
http://ieeexplore.ieee.org as supplemental material to this paper.

Fig. 4. Overall camera trajectory for the indoor image sequence. A first short
loop is done around the “New York” elevators on the left before going to the
“London” elevators on the right. The short loop is traveled again when the
camera is back from the “London” elevators following the top-most corridor on
the plan. Then, the camera repeats the long loop (i.e., to the “London” elevators
and back) before ending in front of the “New York” elevators. The numbers in
the circles indicate the positions from which the images shown in Fig. 5 were
taken. See text for details about the trajectory.

Fig. 5. Top-most corridor (top row) and bottom-most corridor (bottom row)
image examples, showing the high level of perceptual aliasing in the environ-
ment. The numbers in the circles help associating the images with the positions
labeled in Fig. 4.

During passings in already explored places, it may be no-

ticed that the line representing the trajectory switches from

green (dashed) to red (circled) each time the camera was turn-

ing around corners. In these particular cases, the loop-closure

detection fails only because the epipolar constraint is not sat-

isfied: the a posteriori probability of loop closure is above the

threshold but, due to the large and fast rotations made by the

camera, precise keypoints associations are difficult. Indeed, in

this narrow indoor environment, when the camera is turning

around corners, the viewpoint variation between current and

loop-closing images may be large, resulting in small overlap

between these images and preventing SIFT features from match-

ing correctly. This corresponds to false negative detections (i.e.,

when a loop-closure occurs but it is not detected).

When considering the trajectory of the camera with more at-

tention, it may be observed that the first loop-closure detection
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Fig. 6. First loop-closure detection for the indoor image sequence. The full
posterior and the likelihood computed from the SIFT and H histograms feature
spaces are shown, along with the current image It (top left) and the loop-closing
image Ii (bottom left). Likelihoods are obtained from the scores (tf–idf) of the
different hypotheses. Also shown with the likelihoods are the score mean (solid
green) and the score mean + standard deviation threshold (blue crosses). As
it can be seen, the likelihood is very strong around images corresponding to
hypotheses 10–13, causing the sum of the corresponding probabilities in the
posterior to reach the 0.8 threshold. Also, it clearly appears here that It and Ii

come from very close viewpoints.

that should be done (i.e., when the camera reaches again its

starting position for the first time, during its first travel behind

the “New York” elevators) is missed and the trajectory remains

shown with a blue (dotted) line. This is imputable to the low

responsiveness of the probabilistic framework: the likelihood as-

sociated with a particular hypothesis has to be very high relative

to the other likelihoods to trigger a fast loop-closure detection.

Usually, the likelihood associated with a hypothesis must have

a good support during two or three consecutive images in order

to trigger a loop-closure detection. The responsiveness of our

system is governed by the transition model of the probabilistic

framework: we assume that the probability of remaining in a “no

loop-closure” event is high (i.e., 0.9, see Section IV-B). Decreas-

ing this probability to lower values makes it possible to detect

loop-closures faster (i.e., with fewer images required), but this

also produces false positive detections, which is not acceptable.

The delay involved here therefore enhances the robustness to

transient detection errors, considering only hypotheses with re-

peated support over time as possible candidates for loop closure.

During the run, there was only one case where the probability

was above the threshold but the selected hypothesis was wrong,

and it has been conveniently rejected by the multiple-view ge-

ometry algorithm. This event, which can be considered as a false

alarm, can be identified in Fig. 4 as the red (circled) portion of

the trajectory that occurs when the camera is coming back for

the first time from the “London” elevators (just near the 6th

circle on the figure). This false alarm can be explained by the

strong perceptual aliasing that makes the corridors to and from

the “London” elevators look the same (see Fig. 7): since our

bag-of-words algorithm relies on the occurrence of the words

Fig. 7. Only false alarm due to perceptual aliasing. As we can see, the likeli-
hoods are confused (we can note two similar high peaks on the SIFT’s likelihood,
while the H histograms’ likelihood does not give helpful information) and the
images look very similar. This hypothesis has been rejected by the multiple-view
geometry algorithm.

Fig. 8. Another loop-closure detection for the indoor image sequence. Al-
though there is a significant camera viewpoint difference between current and
past images, the loop closure is correctly detected.

rather than on their position, the current image may look like a

past image but the structures of the scenes may not be consistent,

thus preventing the epipolar constraint from being satisfied.

In order to test the robustness of the detection to camera

viewpoint changes, we rotated the camera around its optical

axis when passing behind the “New York” elevators for the sec-

ond and third times. As shown by the green (dashed) line rep-

resenting the trajectory during these periods, the loop-closure

detection results were not affected. The Fig. 8 gives an exam-

ple of loop-closure detection with different camera orientations

between current and loop-closing images. The loop-closure de-

tection shown in this figure corresponds to the third passing of

the camera behind the “New York” elevators. This is why we

observe two distinct peaks on the likelihoods: two hypotheses
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Fig. 9. Examples of the images composing the outdoor sequence. The numbers
in the circles help associating the images with the positions labeled in Fig. 10.

Fig. 10. Overall camera trajectory for the outdoor image sequence. Two loops
are done around the “Lip6” laboratory, starting near the top-right end of the
building on the image (indicated by the square) and ending at its bottom-left
end. The path in front of the building (i.e., running parallel to the river) is
thus traveled three times. The style conventions for the trajectory are the same
as in Fig. 4, with the introduction of red–green (circled-dashed) lines here to
denote fast alternations of true positive and false negative detections. Red–
green (circled-dashed) lines are painted over white rectangles to distinguish
them easily. See text for details about the trajectory.

are valid in this case because It closes the loop with images

from the first and the second visits. But due to the temporal

coherency of the pdf, the hypotheses that have high a posteriori

probabilities are those from the second passing.

B. Outdoor Experiment

During this second experiment, images were taken outdoor

with a handheld camera while turning around the laboratory’s

building (Fig. 9 gives examples of images from this sequence).

The overall camera trajectory followed during this experi-

ment is shown in Fig. 10 using the same style conventions as

before. Here, we introduced red–green (circled-dashed) lines to

denote fast alternations of true positive and false negative detec-

tions that occur when people or cars are passing in front of the

camera, causing correct hypotheses to be rejected because not

enough point correspondences can be found to satisfy the epipo-

lar geometry constraint. These events (of which one example is

Fig. 11. Robustness of the probabilistic framework to transient detection er-
rors: although current image is partially occluded by pedestrians, a correct loop-
closure hypothesis is selected, but it is rejected by the multiple view geometry
algorithm.

Fig. 12. Example of a true positive loop-closure detection for the outdoor
image sequence. Again, we can observe that the likelihood from the SIFT
feature space is very high and discriminative.

given in Fig. 11) demonstrate the robustness of the probabilis-

tic framework to transient detection errors: even though images

are occluded by people or cars, correct loop-closure hypotheses

are selected (i.e., they have a high a posteriori probability), but

since the epipolar constraint cannot be satisfied, they cannot

be fully validated to be accepted as true positive loop-closure

detections.

As in the indoor experiment, no false positive detections were

made, whereas multiple true positives were found (see Fig. 12).

Also, we can see from Fig. 10 that the first loop-closure de-

tections occur tardily when the camera is coming back to its

starting position, revealing again the low responsiveness of the

probabilistic framework.
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Fig. 13. Loop-closure detection enhancement using color and shape infor-
mation in the indoor image sequence: when H histograms are combined to
SIFT features (left), the a posteriori probability is higher than when using SIFT
features alone (right).

C. Influence of the Visual Dictionaries

In this section, we will study the influence of the different

visual dictionaries used here (i.e., SIFT features and H his-

tograms) for loop-closure detection. To this end, we tried to

perform loop-closure detection using only either SIFT features

or H histograms. Although these tests have been done using

both image sequences, the indoor one produces more valuable

results since more loop closures are done during the travel of

the camera and because the indoor environment is much more

diversified.

H histograms only carry colorimetric information, without

any shape nor structure information. Therefore, the correspond-

ing likelihood is always confused, and it will never be very

peaked over one particular hypothesis unless the corresponding

image contains specific colors that are seen nowhere else. How-

ever, H histograms can help distinguishing similarly structured

environments that only differ in their colors (e.g., two corri-

dors having the same dimensions but whose walls are painted

with different colors). When used alone, H histograms cannot

trigger a loop-closure detection. But when used in combination

with SIFT features, they enhance loop-closure detection, im-

proving notably the overall responsiveness of the probabilistic

framework. Indeed, as shown in Fig. 13, we can see that the

posterior obtained when using both SIFT features and H his-

tograms is higher than when using SIFT features only. This is

because H histograms’ likelihood, although not discriminative

enough to trigger a loop-closure detection, is higher around the

loop-closing hypothesis, and so it reinforces the votes from the

SIFT feature space when updating the posterior.

Using SIFT features in conjunction with H histograms there-

fore enhances the responsiveness of the algorithm, making it

able to detect loop closures sooner, especially when the camera

is back to its starting position for the first time: loop closures are

detected two or three images before when both feature spaces

are involved. Table I gives additional clues for this improvement,

TABLE I
COLOR INFORMATION IMPROVEMENTS

TABLE II
PERFORMANCES

with information about the loop-closure detection performances

for the indoor and outdoor image sequences when using SIFT

features alone or in conjunction with H histograms. Given are

the number of images composing each sequence (“#img”), the

corresponding number of loop closures (“#LC,” determined

at hand from the camera trajectory), the rate of true positive

detections (“%TP,” the percentage of loop closures correctly

detected), and the number of false alarms (“#FA,” erroneous

hypotheses that receive a high probability but that are rejected

by the multiple-view geometry algorithm).

From Table I, we can see that when adding color information,

the true positive rate is improved: this is notably remarkable in

the indoor sequence where the increase in recognition perfor-

mances is 12%. On the outdoor sequence, on the other hand,

improvements are less significant. This is due to the impres-

sive reliability of the SIFT features in this sequence. Indeed,

as SIFT features are robust to scale variations in the images,

the important depth of the outdoor scenes enables long-term

recognition of these features along the trajectory of the camera.

Hence, adding color information in this case does not dramat-

ically improve the number of correct loop-closure detections.

We can also see in Table I that adding color information has the

unwanted effect of producing more false alarms: when using

SIFT features only, no false alarms were raised for the indoor

image sequence, whereas one was when combining them with

H histograms (see Section V-A).

D. Performances

During the experiments, the dictionaries were built online in

an incremental fashion from images of size 240 × 192 pixels,

enabling real-time performances with a Pentium Core2 Duo

2.33 GHz laptop in both indoor and outdoor experiments.

Table II gives the length of the different sequences tested

(with corresponding number of images), the CPU time needed

to process them, and the sizes of the different dictionaries at

the end of the run (expressed in number of words). For both

sequences (i.e., indoor and outdoor), we give the performances

obtained when SIFT features are used alone or in combination

with H histograms.

For the indoor experiment, images were grabbed at 1 Hz: the

camera was moved along medium sized corridors, with curved

shape and suddenly appearing corners, motivating the choice for
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a reasonable frame rate in order for consecutive images to share

some similarities. For the outdoor experiment, however, images

were grabbed with a lower frame rate (i.e., 0.5 Hz): outdoor

images grabbed at distant time instants share some similarities

because of the high depth of outdoor scenes.

From Table II, we logically observe that when using SIFT

features only, the CPU time needed to process a sequence is

significantly lower than when H histograms are involved too:

the overall processing is about 40% faster in the first case.

However, with both feature spaces enabled, real-time processing

is still achieved and, as mentioned before, the responsiveness of

the probabilistic framework is enhanced, without causing false

positive detections to appear. When processing an image, the

most time-consuming step is feature extraction and matching

with the words of the corresponding dictionary. When trying

to match a feature with the visual words of the dictionary, the

search is done with logarithmic-time complexity in the number

of words due to the tree structure of the dictionary [26]: real-time

performances could not have been obtained with linear-time

complexity in the number of words in view of the dictionary

sizes involved here.

For the outdoor experiment, the overall camera trajectory was

about 1.3 km and a bit less than 40 000 words were created (when

considering the SIFT case only) from 531 images. In the results

obtained by the authors of [23], the data collection for dictionary

construction has been done over 30 km, using 3000 images and

generating approximately 35 000 words. It is obvious that our

model needs far more words than the solution proposed in [23],

and the intuitive explanation of this is twofold. First, in our on-

line dictionary construction, we cannot afford data rearranging,

which would make it possible to obtain a more compact repre-

sentation. Second, in order for the tf–idf weighting used here to

perform efficiently, discriminative words are preferable in order

to select unambiguous hypotheses. As shown in [10], the size

of the cluster representing the words has a direct influence on

the word’s distinctiveness: a higher distinctiveness is obtained

with a smaller cluster size, i.e., a larger dictionary size. The

parameters used here are found experimentally to perform well

on all the encountered environments.

VI. DISCUSSION AND FUTURE WORK

The solution proposed in this paper is a completely incre-

mental and online vision-based method allowing loop-closure

detection in real-time. The bag-of-words framework introduced

in [10] and used here provides a simple way to manage multiple

image representations, taking advantage of information gathered

from distinct heterogeneous feature spaces. Moreover, building

the dictionaries in an incremental fashion entails “learning” only

that part of the environment in which the robot is operating,

while bag-of-words methods applied to robotics usually use a

static dictionary (e.g., [20], [21], and [23]) learned beforehand

from a training dataset supposed to be a good representation of

the environment. The consequence is that our system is able to

work indoor and outdoor without hand tuning the dictionary,

and without prior information on the environment type.

The results presented here show the robustness of our solution

to perceptual aliasing. However, the more complex probabilistic

framework described in [23] handles it more properly, taking it

into account at the word level (i.e., the input information level)

while, in our case, it is managed at the detection level (i.e.,

the output level) when hypotheses are checked by the epipolar

geometry algorithm. Still, the evaluation of the distinctiveness

of every word proposed in [23] cannot be done incrementally

because, to evaluate the co-occurrences of the words, represen-

tative images of the entire environment have to be processed

beforehand. In our method, the distinctiveness of the words is

taken into account using the online calculated tf–idf coefficient:

the words seen multiple times in the same image will vote with

a high score for this image (i.e., high tf), while the words seen

in every images will have a small contribution (i.e., low idf).

The probabilistic framework presented here poorly handles

the management of loop-closure hypotheses. Indeed, a new entry

is added to the posterior each time a new image is acquired, while

the evaluation of the corresponding hypotheses (i.e., checking

if whether or not the newly acquired image closes the loop with

one of the past images) is done afterwards: in other words, a

new image is added to the model irrespectively of the loop-

closure detection results. In future work, a topological map of

the environment could be directly created by adding only images

that do not close a loop with already memorized ones. These

events would therefore represent positions in the environment,

linked by their proximity in time and space, and not only images

linked sequentially in time. This would avoid the presence of

multiple high peaks due to the coexistence of multiple images

taken from the same position (see Fig. 8).

In future work, we will adapt our approach to a purely vision-

based SLAM system like [6] so as to reinitialize the SLAM

algorithm when the camera position is lost or when there is a

need to self-localize in a map acquired beforehand. The metrical

information about the camera’s pose coming from SLAM could

help improving the definition of a location’s neighborhood, us-

ing spatial transitions between adjacent locations instead of time

indexes. As mentioned before, this would make it possible to

fuse images taken from close metric locations to build a topo-

logical map of the environment.

Finally, other feature spaces could be explored, implementing

for instance one of the visual descriptors tested in [25], whereas

relative spatial positions between the visual words could be

used to improve matching. Loop-closure detection at different

moments of the day should also be experienced, so as to test the

robustness of our solution to varying lighting conditions.

VII. CONCLUSION

In this paper, we have presented a fast and incremental bag-

of-words method for performing loop-closure detection in real

time, with no false positive detections on the obtained experi-

mental results even under strong perceptual aliasing conditions.

We demonstrated the quality of our approach with results ob-

tained in indoor and outdoor environments, reaching real-time

performances even in long image sequences. Our approach calls

upon a Bayesian filtering framework with likelihood computa-

tion in a simple voting scheme and should be extended to SLAM

reinitialization in a near future.
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Université Pierre et Marie Curie—Paris 6 University,
Paris, France, where he is engaged with the Inte-
grated Mobile and Autonomous Systems (SIMA) re-
search team of the Institute of Intelligent Systems and
Robotics (ISIR). He has been also trained as an Engi-
neer. He is also the Head of the Robur project of ISIR,
which aims at building an autonomous flapping-wing

robot. His current research interests include autonomous design of control ar-
chitectures due to evolutionary algorithms and on adding decisional autonomy
to flying robots.

Jean-Arcady Meyer received the Graduate degree in
human and animal psychology from the Faculté des
Sciences de Strasbourg, Strasbourg, France, in 1969,
and the Ph.D. degree in biology from the Faculté de
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