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 ABSTRACT 
Packet content scanning at high speed has become ex-
tremely important due to its applications in network secu-
rity, network monitoring, HTTP load balancing, etc. In 
content scanning, the packet payload is compared against a 
set of patterns specified as regular expressions.  In this pa-
per, we first show that memory requirements using tradi-
tional methods are prohibitively high for many patterns 
used in packet scanning applications.  We then propose 
regular expression rewrite techniques that can effectively 
reduce memory usage. Further, we develop a grouping 
scheme that can strategically compile a set of regular ex-
pressions into several engines, resulting in remarkable im-
provement of regular expression matching speed without 
much increase in memory usage. We implement a new 
DFA-based packet scanner using the above techniques. Our 
experimental results using real-world traffic and patterns 
show that our implementation achieves a factor of 12 to 42 
performance improvement over a commonly used DFA-
based scanner.  Compared to the state-of-art NFA-based 
implementation, our DFA-based packet scanner achieves 
50 to 700 times speedup.  
 

Categories and Subject Descriptors 
C.2.0 [Computer Communication Networks]: General –
Security and protection (e.g., firewalls) 

General Terms 
Algorithms, Design, Security. 

Keywords 
Regular expressions, DFA, intrusion detection, deep packet in-
spection. 
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1. INTRODUCTION 
Packet content scanning (also known as Layer-7 filtering or pay-
load scanning) is crucial to network security and network moni-
toring applications. In these applications, the payload of packets 
in a traffic stream is matched against a given set of patterns to 
identify specific classes of applications, viruses, protocol defini-
tions, etc.  

Currently, regular expressions are replacing explicit string 
patterns as the pattern matching language of choice in packet 
scanning applications. Their widespread use is due to their ex-
pressive power and flexibility for describing useful patterns. For 
example, in the Linux Application Protocol Classifier (L7-filter) 
[1], all protocol identifiers are expressed as regular expressions. 
Similarly, the Snort [2] intrusion detection system has evolved 
from no regular expressions in its ruleset in April 2003 to 1131 
out of 4867 rules using regular expressions as of February 2006. 
Another intrusion detection system, Bro [3], also uses regular 
expressions as its pattern language.  

As regular expressions gain widespread adoption for packet 
content scanning, it is imperative that regular expression matching 
over the packet payload keep up with the line-speed packet header 
processing. Unfortunately, this requirement cannot be met in 
many existing payload scanning implementations. For example, 
when all 70 protocol filters are enabled in the Linux L7-filter [1], 
we found that the system throughput drops to less than 10Mbps, 
which is well below current LAN speeds. Moreover, over 90% of 
the CPU time is spent in regular expression matching, leaving 
little time for other intrusion detection or monitoring functions. 
On the other hand, although many schemes for fast string match-
ing [4-11] have been developed recently in intrusion detection 
systems, they focus on explicit string patterns only and can not be 
easily extended to fast regular expression matching.  

The inefficiency in regular expression matching is largely due 
to the fact that the current solutions are not optimized for the fol-
lowing three unique complex features of regular expressions used 
in network packet scanning applications. 
• First, many such patterns use multiple wildcard metachar-

acters (e.g., ‘.’, ‘*’). For example, the pattern for identifying 
the Internet radio protocol, “membername.*session.*player”, 
has two wildcard fragments “.*”. Some patterns even contain 
over ten such wildcard fragments. As regular expressions are 
converted into state machines for pattern matching, large 
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numbers of wildcards can cause the corresponding Determi-
nistic Finite Automaton (DFA) to grow exponentially.  

• Second, a majority of the wildcards are used with length 
restrictions (‘?’, ‘+’). As we shall show later in the paper, 
such length restrictions can increase the resource needs for 
expression matching.  

• Third, groups of characters are also commonly used: for 
example, the pattern for matching the ftp protocol, 
“^220[\x09-\x0d -~]*ftp”, contains a class (inside the brack-
ets) that includes all the printing characters and space charac-
ters. The class of characters may intersect with other classes 
or wildcards. Such interaction can result in a highly complex 
state machine.  

To the best of our knowledge, there has not been any detailed 
study of optimizations for these kinds of regular expressions as 
they are so specific to network packet scanning applications. In 
this paper, we address this gap by analyzing these regular expres-
sions and developing memory-efficient DFA-based solutions for 
high speed processing. Specifically, we make the following con-
tributions: 
• We analyze the computational and storage cost of building 

individual DFAs for matching regular expressions, and iden-
tify the structural characteristics of the regular expressions in 
networking applications that lead to exponential growth of 
DFAs, as presented in Section 3.2.  

• Based on the above analysis, we propose two rewrite rules 
for specific regular expressions in Section 3.3. The rewritten 
rules can dramatically reduce the size of resulting DFAs, 
making them small enough to fit in memory. We prove that 
the patterns after rewriting are equivalent to the original ones 
for detecting non-overlapping patterns. While we do not 
claim to handle all possible cases of dramatic DFA growth 
(in fact the worse case cannot be improved), our rewrite rules 
do cover those patterns present in common payload scanning 
rulesets like Snort and Bro, thus making fast DFA-based pat-
tern matching feasible for today’s payload scanning applica-
tions.   

• We further develop techniques to intelligently combine mul-
tiple DFAs into a small number of groups to improve the 
matching speed in Section 4, while avoiding the exponential 
growth in the number of states in memory.   

We demonstrate the effectiveness of our rewriting and group-
ing solutions through a detailed performance analysis using real-
world payload scanning pattern sets. As the results show, our 
DFA-based implementation can increase the regular expression 
matching speed on the order of 50 to 700 times over the NFA-
based implementation used in the Linux L7-filter and Snort sys-
tem. It can also achieve 12-42 times speedup over a commonly 
used DFA-based parser. The pattern matching speed can achieve 
gigabit rates for certain pattern sets.  This is significant for im-
plementing fast regular expression matching of the packet payload 
using network processors or general-purpose processors, as the 
ability to more quickly and efficiently classify enables many new 
technologies like real-time worm detection, content lookup in 
overlay networks, fine-grained load balancing, etc.  

2. PROBLEM STATEMENT 
In this section, we first discuss regular expressions used in packet 
payload scanning applications, then present the possible solutions 
for regular expression matching, and finally define the specific 
problem that we address in this paper.  

2.1 Regular Expression Patterns 
A regular expression describes a set of strings without enumerat-
ing them explicitly. Table 1 lists the common features of regular 
expression patterns used in packet payload scanning. For exam-
ple, consider a regular expression from the Linux L7-filter [1] for 
detecting Yahoo traffic: 
“^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. This pattern 
matches any packet payload that starts with ymsg, ypns, or yhoo, 
followed by seven or fewer arbitrary characters, and then a letter l, 
w or t, and some arbitrary characters, and finally the ASCII letters 
c0 and 80 in the hexadecimal form.  

Table 2 compares the regular expressions used in two net-
working applications, Snort and the Linux L7-filter, against those 
used in emerging Extensible Markup Language (XML) filtering 
applications [12, 13] where regular expressions are matched over 
text documents encoded in XML. We notice three main differ-
ences: (1) While both types of applications use wildcards (‘.’, ‘?’, 
‘+’, ‘*’), the patterns for packet scanning applications contain 
larger numbers of them in each pattern; (2) classes of characters 
(“[]”) are used only in packet scanning applications; (3) a high 
percentage of patterns in packet payload scanning applications 
have length restrictions on some of the classes or wildcards, while 
such length restrictions usually do not occur in XML filtering. 
This shows that compared to the XML filtering applications, net-
work packet scanning applications face additional challenges 
These challenges lead to a significant increase in the complexity 
of regular expression matching, as we shall show later in this 
paper.  

Table 1. Features of Regular Expressions  
Syntax Meaning Example 

^ Pattern to be 
matched at the start 
of the input 

^AB means the input starts 
with AB. A pattern without 
‘^’, e.g., AB, can be matched 
anywhere in the input. 

| OR relationship A|B denotes A or B. 
. A single character 

wildcard 
 

? A quantifier denot-
ing one or less 

A? denotes A or an empty 
string. 

* A quantifier denot-
ing zero or more 

A* means an arbitrary number 
of As. 

{} Repeat A{100} denotes 100 As. 
[ ] A class of characters [lwt] denotes a letter l, w, or t. 
[^] Anything but [^\n] denotes any character 

except \n.  
Table 2. Comparison of regular expressions in networking 

applications against those in XML filtering  
 Snort L7-filter XML 

filter-
ing 

# of regular expressions analyzed 1555 70 1,000-
100,000 

% of patterns starting with “^” 74.4% 72.8% ≥80% 
% of patterns with wildcards “., +, 
?, *” 

74.9% 75.7% 50% - 
100% 

Average # of wildcards per pattern 4.65 7.03 1-2 
% of patterns with class “[ ]” 31.6% 52.8% 0 
Average # of classes per pattern 7.97 4.78 0 
% of patterns with length restric-
tions on classes or wildcards 

56.3% 21.4% ≈0 
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2.2 Solution Space for Regular Expression 
Matching 
Finite automata are a natural formalism for regular expressions. 
There are two main categories: Deterministic Finite Automaton 
(DFA) and Nondeterministic Finite Automaton (NFA). In this 
section, we survey existing solutions using these automata. 

A DFA consists of a finite set of input symbols, denoted as ∑, 
a finite set of states, and a transition function δ [14]. In network-
ing applications, ∑ contains the 28 symbols from the extended 
ASCII code. Among the states, there is a single start state q0 and a 
set of accepting states. The transition function δ takes a state and 
an input symbol as arguments and returns a state. A key feature of 
DFA is that at any time there is only one active state in the DFA. 
An NFA works similarly to a DFA except that the δ function 
maps from a state and a symbol to a set of new states. Therefore, 
multiple states can be active simultaneously in an NFA.  

A theoretical worst case study [14] shows that a single regular 
expression of length n can be expressed as an NFA with O(n) 
states. When the NFA is converted into a DFA, it may generate 
O(∑n) states. The processing complexity for each character in the 
input is O(1) in a DFA, but is O(n2) for an NFA when all n states 
are active at the same time.  

To handle m regular expressions, two choices are possible: 
processing them individually in m automata, or compiling them 
into a single automaton. The former is used in Snort [2] and Linux 
L7-filter [1]. The latter is proposed in recent studies [12, 13] so 
that the single composite NFA can support shared matching of 
common prefixes of those expressions. Despite the demonstrated 
performance gains over using m separate NFAs, in practice this 
approach experiences large numbers of active states. This has the 
same worst case complexity as the sum of m separate NFAs. 
Therefore, this approach on a serial processor can be slow, as 
given any input character, each active state must be serially exam-
ined to obtain new states. 

In DFA-based systems, compiling m regular expressions into 
a composite DFA provides guaranteed performance benefit over 
running m individual DFA. Specifically, a composite DFA re-
duces processing cost from O(m) (O(1) for each automaton) to 
O(1), i.e., a single lookup to obtain the next state for any given 
character. However, the number of states in the composite 
automaton grows to O(∑mn) in the theoretical worst case. In fact, 
we will show in Section 4 that typical patterns in packet payload 
scanning applications indeed interact with each other and can 
cause the creation of an exponential number of states in the com-
posite DFA.  

Table 3. Worst case comparisons of DFA and NFA 
One regular expression 

of length n 
m regular expressions 
compiled together 

 

Processing  
complexity 

Storage 
cost 

Processing  
complexity 

Storage 
cost 

NFA O(n2) O(n) O(n2m) O(nm) 
DFA O(1) O(∑n) O(1) O(∑nm) 
There is a middle ground between DFA and NFA called lazy 

DFA. Lazy DFA are designed to reduce memory consumption of 
conventional DFA [12, 15]: a lazy DFA keeps a subset of the 
DFA that matches the most common strings in memory; for un-
common strings, it extends the subset from the corresponding 
NFA at runtime. As such, a lazy DFA is usually much smaller 
than the corresponding fully-compiled DFA and provides good 
performance for common input strings. Bro intrusion detection 

systems [3] adopt this approach. However, malicious senders can 
easily construct packets that keep the system busy and slow down 
the matching process. 

Field Programmable Gate Arrays (FPGAs) provide a high 
degree of parallelism and thus can be used to speed up the regular 
expression matching process. There are existing FPGA solutions 
that build circuits based on DFA [16] or NFA [17-19]. Recently, 
Bordie et al. presented a new architecture for matching regular 
expressions using FPGA [28]. In this architecture, the finite state 
machine can take multiple bytes at a time to get very high 
throughput. These approaches are promising if the extra FPGA 
hardware can be embedded in the packet processors. FPGAs, 
however, are not available in many applications; in such situa-
tions, a network processor or general-purpose CPU-based imple-
mentation may be more desirable. 

2.3 Problem statement 
In this paper, we seek a fast and memory-efficient solution to 
regular expression matching for packet payload scanning. We 
define the scope of the problem as follows:  
• We consider DFA-based approaches in this paper, as NFA-

based approaches are inefficient on serial processors or proc-
essors with limited parallelism (e.g., multi-core CPUs in 
comparison to FPGAs).  Our goal is to achieve O(1) compu-
tation cost for each incoming character, which cannot be ac-
complished by any existing DFA-based solutions due to their 
excessive memory usage. Thus, the focus of the study is to 
reduce memory overhead of DFA while approaching the op-
timal processing speed of O(1) per character.  

• We focus on general-purpose processor-based architectures 
and explore the limits of regular expression matching in this 
environment. Wherever appropriate, we leverage the trend of 
multi-core processors that are becoming prevalent in those 
architectures. Nevertheless, our results can be used in FPGA-
based and ASIC-based approaches as well [20].  
It is worth noting that there are two sources of memory usage 

in DFAs: states and transitions. The number of transitions is linear 
with respect to the number of states because for each state there 
can be at most 28 (for all ASCII characters) links to next states. 
Therefore, we consider the number of states (in minimized DFA) 
as the primary factor for determining the memory usage in the rest 
of the paper.  Recently, Kumar et al. extended our work and pro-
posed algorithms to do efficient link compression [20].     

3. MATCHING OF INDIVIDUAL 
PATTERNS 
In this section, we present our solution to matching individual 
regular expression patterns. The main technical challenge is to 
create DFAs that can fit in memory, thus making a fast DFA-
based approach feasible. We first define a few concepts key to 
DFA construction in the context of packet payload scanning in 
Section 3.1. We then analyze the size of DFAs for typical payload 
scanning patterns in Section 3.2. Although theoretical analyses 
[12, 14] have shown that DFAs are subject to exponential blow-
up, here, we identify specific structures that can lead to exponen-
tial growth of DFAs. Based on the insights from this analysis, in 
Section 3.3, we propose pattern rewrite techniques that explore 
the possibility of trading off exhaustive pattern matching (which 
real-world applications often allow) for memory efficiency. Fi-
nally, we offer guidelines to pattern writers on how to write pat-
terns amenable to efficient implementation in Section 3.4. 
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3.1 Design Considerations 
Although regular expressions and automata theory can be directly 
applied to packet payload scanning, there is a noticeable differ-
ence in between. Most existing studies on regular expressions 
focus on a specific type of evaluation, that is, checking if a fixed 
length string belongs to the language that a regular expression 
defines. More specifically, a fixed length string is said to be in the 
language of a regular expression, if the string is matched from 
start to end by a DFA corresponding to that regular expression. In 
contrast, in packet payload scanning, a regular expression pattern 
can be matched by the entire input or specific substrings of the 
input. Without a priori knowledge of the starting and ending posi-
tions of those substrings, DFAs created for recognizing all sub-
string matches can be highly complex. 

For a better understanding, we next present a few concepts 
pertaining to the completeness of matching results and the DFA 
execution model for substring matching. 
Completeness of matching results 
Given a regular expression pattern and an input string, a complete 
set of results contains all substrings of the input that the pattern 
can possibly match. For example, given a pattern ab* and an input 
abbb, three possible matches can be reported, ab, abb, and abbb. 
We call this style of matching Exhaustive Matching. It is formally 
defined as below:  
Exhaustive Matching: Consider the matching process M as a 

function from a pattern P and a string S to a power set of S, 
such that, M(P, S) = {substring S' of S| S' is accepted by the 
DFA of P}. 
In practice, it is expensive and often unnecessary to report all 

matching substrings, as most applications can be satisfied by a 
subset of those matches. Therefore, we propose a new concept, 
Non-overlapping Matching, that relaxes the requirements of ex-
haustive matching.  
Non-overlapping Matching: Consider the matching process M as 

a function from a pattern P and a string S to a set of strings, 
specifically, M(P, S) = {substring Si of S| ∀ Si, Sj accepted by 
the DFA of P, Si ∩ Sj =φ }.  

If a pattern appears in multiple locations of the input, this match-
ing process reports all non-overlapping substrings that match the 
pattern. Revisit our example above. For the pattern ab* and the 
input abbb, the three matches overlap by sharing the prefix ab. 
For this example, non-overlapping matching will report one match 
instead of three.  

For most payload scanning applications, we expect that non-
overlapping matching would suffice, as those applications are 
mostly interested in knowing if certain attacks or application layer 
patterns appear in a packet. In fact, most existing scanning tools 
like grep and flex and systems like Snort [2] and Bro [3] imple-
ment special cases of non-overlapping matching such as left-most 
longest matching or left-most shortest matching. As we shall 
show later this section, non-overlapping matching can be ex-
ploited to construct more memory-efficient DFAs.  
DFA execution model for substring matching  
In the following discussion, we focus on patterns without ‘^’ at-
tached at the beginning. Recall that for such patterns, there is no 
prior knowledge of whether/where a matching substring may 
appear. To handle these patterns, two types of DFAs can be cre-
ated with different execution models: 

Repeated searches. A DFA can be created directly from a pat-
tern using standard DFA construction techniques [14]. To find the 

set of matching substrings (using either exhaustive or non-
overlapping matching), the DFA execution needs to be augmented 
with repeated searches of the input: An initial search starts from 
the beginning of the input, reading characters until (1) it has re-
ported all matches (if exhaustive matching is used) or one match 
(if non-overlapping matching is used), or (2) it has reached the 
end of the input. In the former case, the new search will start from 
the next character in input (if exhaustive matching is used) or 
from the character after the reported match (if non-overlapping 
matching is used). In the latter case, a new search is initiated from 
the next character in input. This style of repeated scanning using 
DFA is commonly used in language parsers. However, it is ineffi-
cient for packet payload scanning where the chance of the packet 
payload matching a particular pattern is low (such inefficiency is 
verified in Section 0).  

One-pass search. In the second approach, “.*” is pre-pended 
to each pattern without ‘^’, which explicitly states that the pattern 
can be matched anywhere in the input. Then a DFA is created for 
the extended pattern. As the input is scanned from start to end, the 
DFA can recognize all substring matches that may start at differ-
ent positions of the input. Using one pass search, this approach 
can truly achieve O(1) computation cost per character, thus suit-
able for networking applications. To achieve high scanning rate, 
we adopt this approach in the rest of the study. 

3.2 DFA Analysis for Individual Regular Ex-
pressions 

Next, we study the complexity of DFA for typical patterns used in 
real-world packet payload scanning applications such as Linux 
L7-filter, Snort, and Bro. The study is based on the use of exhaus-
tive matching and one-pass search. Table 4 summarizes the re-
sults.  
• Explicit strings generate DFAs of length linear to the number 

of characters in the pattern.  
• If a pattern starts with ‘^’, it creates a DFA of polynomial 

complexity with respect to the pattern length k and the length 
restriction j. Our observation from the existing payload scan-
ning rule sets is that the pattern length k is usually limited but 
the length restriction j can reach hundreds or even thousands. 
Therefore, Case 4 can result in a large DFA because it has a 
factor quadratic in j.   

• Patterns starting with “.*” and having length restrictions (Case 
5) cause the creation of DFA of exponential size.  

Table 4. Analysis of patterns with k characters 
    Pattern features Example # of states
1. Explicit strings with k charac-
ters 

^ABCD 
.*ABCD 

k+1 

2. Wildcards ^AB.*CD 
.*AB.*CD  

k+1 

3. Patterns with ^, a wildcard, and  
a length restriction j  

^AB.{j+}CD 
^AB.{0, j}CD 

^AB.{j}CD 

O(k*j) 

4. Patterns with ^, a class of char-
acters overlaps with the prefix, 
and a length restriction j  

^A+[A-Z]{j}D O(k+j2) 

5. Patterns with a length restric-
tion j, where a wildcard or a class 
of characters overlaps with the 
prefix 

.*AB.{j}CD 
.*A[A-Z]{j+}D

O(k+2j) 

 Next, we explain the two cases of large DFA sizes, namely, 
Case 4 and Case 5 of Table 4, in more detail.  
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Case 4: DFA of Quadratic Size 
A common misconception is that patterns starting with ‘^’ create 
simple DFAs. However, we discover that even with ‘^’, classes of 
characters that overlap with the prefix pattern can still yield a 
complex DFA. Consider the pattern ^B+[^\n]{3}D, where the 
class of character [^\n] denotes any character but the return char-
acter (\n). Its corresponding DFA has a quadratic number of 
states, as shown in Figure 1. The quadratic complexity comes 
from the fact that the letter B overlaps with the class of character 
[^\n] and, hence, there is inherent ambiguity in the pattern: A 
second B letter can be matched either as part of B+, or as part of 
[^\n]{3}. Therefore, if an input contains multiple Bs, the DFA 
needs to remember the number of Bs it has seen and their loca-
tions in order to make a correct decision with the next input char-
acter. If the class of characters has length restriction of j bytes, 
DFA needs O(j2) states to remember the combination of distance 
to the first B and the distance to the last B. 

 
Figure 1. A DFA for Pattern ^B+[^\n]{3}D 

Similar structures in real world pattern sets: 
A significant number of patterns in the Snort rule set fall into this 
category. For example, the regular expression for the NNTP rule 
is “^SEARCH\s+[^\n]{1024}”. Similar to the example in Figure 1, 
\s overlaps with ^\n.  White space characters cause ambiguity of 
whether they should match \s+ or be counted as part of the 1024 
non-return characters [^\n]{1024}. Specifically, an input of 
SEARCH followed by 1024 white spaces and then 1024 ‘a’s will 
have 1024 ways of matching strings, i.e., one white space matches 
\s+ and the rest as part of [^\n]{1024}, or two white spaces match 
\s+ and the rest as part of [^\n]{1024}, etc. By using 10242 states 
to remember all possible consequences of these white spaces, the 
DFA accommodates all the ways to match the substrings of dif-
ferent lengths. Note that all these substrings start with SEARCH 
and hence are overlapping matches.  

This type of quadratic state problem cannot be solved by an 
NFA-based approach. Specifically, the corresponding NFA con-
tains 1042 states; among these, one is for the matching of 
SEARCH, one for the matching of \s+, and the rest of the 1024 
states for the counting of [\^n]{1024} with one state for each 
count. An intruder can easily construct an input as “SEARCH” 
followed by 1024 white spaces. With this input, both the \s+ state 
and all the 1023 non-return states would be active at the same 
time. Given the next character, the NFA needs to check these 
1024 states sequentially to compute a new set of active states. 

This problem cannot be solved by a fixed string pre-filtering 
scheme (used by Snort), either. This is because pre-filtering can 
only recognize the presence of the fixed string “SEARCH” in the 
input. After that, an NFA or DFA-based matching scheme is still 
needed in post processing to report whether the input matches the 
pattern and what the matches are. Another choice is to count the 

subsequent characters in post processing after identifying the 
prefix “SEARCH”. This approach does not solve the problem 
because every packet (even normal traffic) with the prefix will 
incur the counting process. In addition, intruders can easily con-
struct packets with multiple (different) prefixes to invoke many 
requests for such post processing. 
Case 5: DFA of Exponential Size  
Many payload scanning patterns contain an exact distance re-
quirement. Figure 2 shows the DFA for an example pattern 
“.*A..CD”. An exponential number of states (22+1) are needed to 
represent these two wildcard characters. This is because we need 
to remember all possible effects of the preceding As as they may 
yield different results when combined with subsequent inputs. For 
example, an input AAB is different from ABA because a subse-
quent input BCD forms a valid pattern with AAB (AABBCD), but 
not so with ABA (ABABCD). In general, if a pattern matches ex-
actly j arbitrary characters, O(2j) states are needed to handle the 
exact j requirement. This result is also reported in [12]. Similar 
results apply to the case where the class of characters overlaps 
with the prefix, e.g., “.*A[A-Z]{j}D”.  

 
Figure 2. A DFA for pattern .*A.{2}CD 

Similar structures in real world pattern sets: 
In the intrusion detection system Snort, 53.8% of the patterns 
(mostly for detecting buffer overflow attempts) contain a fixed 
length restriction. Out of them, around 80% of the rules start with 
an anchor (^); hence, they will not cause exponential growth of 
DFA. Note that most of the anchors are associated with option /m. 
With this option, an anchor means that the pattern can be matched 
at the beginning of the packet as well as after any newline (\n). In 
these cases, a return character \n will bring the DFA back to the 
start state. The remaining 20% of the patterns that do not start 
with ^, do suffer from the state explosion problem. For example, 
consider the rule for detecting IMAP authentication overflow 
attempts, which uses the regular expression 
“.*AUTH\s[^\n]{100}”. This rule detects any input that contains 
AUTH, then a white space, and no return character in the follow-
ing 100 bytes. If we directly compile this rule into a DFA, the 
DFA will contain more than 10,000 states because it needs to 
remember all the possible consequences that an AUTH\s subse-
quent to the first AUTH\s can lead to. For example, the second 
AUTH\s can either match [^\n]{100} or be counted as a new 
match of the prefix of the regular expression.  

 
Figure 3. NFA for the pattern .*AUTH\s[^\n]{100} 



 6

 
Figure 4. DFA for rewriting the pattern .*AUTH\s[^\n]{100} 

It is obvious that the exponential blow-up problem cannot be 
mitigated by using an NFA-based approach. The NFA for the 
pattern “.*AUTH\s[^\n]{100}” is shown in Figure 3. Because the 
first state has a self-loop marked with Σ, the input 
“AUTH\sAUTH\sAUTH\s…” can cause a large number of states to 
be simultaneously active, resulting in significantly degraded sys-
tem performance, as demonstrated by our results reported in Sec-
tion 0. Similar to Case 4, this problem cannot be solved by a fixed 
string pre-filtering scheme (used by Snort), either.  

 
Figure 5. Transformed NFA for deriving Rewrite Rule (1) 

3.3 Regular Expression Rewrites 
We have identified the typical patterns used in packet payload 
scanning that can cause the creation of large DFAs. In this sec-
tion, we investigate the possibility of rewriting some of those 
patterns to reduce the DFA size. Such rewriting is enabled by 
relaxing the requirement of exhaustive matching to that of non-
overlapping matching. In particular, we propose two rewrite rules, 
one for rewriting specific patterns belonging to the case of quad-
ratic-sized DFAs (Case 4 in Section 3.2), and the other for rewrit-
ing specific patterns that generate exponential-sized DFAs (Case 
5 of Section 3.2). The commonality of the patterns amenable to 
rewrite is that their suffixes address length restricted occurrences 
of a class of characters that overlap with their prefixes. These 
patterns are typical in real-world rulesets such as Snort and Bro. 
For these patterns, as shown in Section 3.2, neither the NFA-
based solution nor the fixed string pre-filtering scheme can handle 
them efficiently. In contrast, our rewrites rules can convert these 
patterns into DFAs with their sizes successfully reduced from 
quadratic or exponential to only linear.  

Rewrite Rule (1)  
As shown in Section 3.2, patterns that start with ‘^’ and contain 
classes of characters with length restrictions, e.g., 
“^SEARCH\s+[^\n]{1024}”, can generate DFAs of quadratic size 
with respect to the length restriction. Below, we first explain the 
intuition behind Rewrite Rule (1) using the above example and 
then state a theorem for more general cases. 

Given the fact that such patterns are used in packet scanning 
applications for detecting buffer overflow attempts, it seems rea-
sonable to assume that non-overlapping matches are sufficient for 
reporting such attacks. Based on this observation, we propose to 
rewrite the pattern “^SEARCH\s+[^\n]{1024}” to 
“^SEARCH\s[^\n]{1024}”. The new pattern specifies that after 

matching a single white space, we start counting for [^\n]{1024} 
no matter what the content is. It is not hard to see that for every 
matching substring s that the original pattern reports, the new 
pattern produces a substring s’ that is either identical to s or is a 
prefix of s. In other words, the new pattern essentially implements 
non-overlapping left-most shortest match. It is also easy to see 
that the new pattern requires a number of states linear in j because 
it has removed the ambiguity for matching \s. 

We provide a theorem for a more general case where the suf-
fix of a pattern contains a class of characters overlapping with its 
prefix and a length restriction, “^A+[A-Z]{j}”. We prove that this 
type of pattern can be rewritten to “^A[A-Z]{j}” with equivalence 
guaranteed under the condition of non-overlap matching. Due to 
space limitation, the interested reader is referred to [27] for details 
of the proof. Note that our rewrite rule can also be extended to 
patterns with various types of length restriction such as “^A+[A-
Z]{j+}” and “^A+[A-Z]{j,k}”. Details are omitted in the interest 
of space. 

Using Rewrite Rule (1), we successfully rewrote 17 similar 
patterns in the Snort rule set. Detailed results regarding these re-
writes are reported in Section 5.2. 

Rewrite Rule (2) 
As we discussed in Section 3.2, patterns like 
“.*AUTH\s[^\n]{100}” generate exponential numbers of states to 
keep track of all the AUTH\s subsequent to the fist AUTH\s. If 
non-overlapping matching is used, the intuition of our rewriting is 
that after matching the first AUTH\s, we do not need to keep track 
of the second AUTH\s. This is because (1) if there is a ‘\n’ charac-
ter within the next 100 bytes, the return character must also be 
within 100 bytes to the second AUTH\s, and (2) if there is no ‘\n’ 
character within the next 100 bytes, the first AUTH\s and the fol-
lowing characters have already matched the pattern. This intuition 
implies that we can rewrite the pattern such that it only attempts 
to capture one match of the prefix pattern. Following the intuition, 
we can simplify the DFA by removing the states that deal with the 
successive AUTH\s. As shown in Figure 4, the simplified DFA 
first searches for AUTH in the first 4 states, then looks for a white 
space, and after that starts to count and check whether the next 
100 bytes contain a return character. After rewriting, the DFA 
only contains 106 states. 

We derive our rewrite pattern from the simplified DFA shown 
in Figure 4. Applying a standard technique that maps a DFA/NFA 
to a regular expression [14], we transform this DFA to an equiva-
lent NFA in Figure 5. For the link that moves from state 1 back to 
the start state in Figure 4(i.e., matching A then not U), the trans-
formed NFA places it at the start state and labels it with A[^U]. 
Note that, A[^U] actually constitutes two states, but to simplify 
the illustration, we draw them onto one link.  The transformed 
NFA does the same for each link moving from state i (1≤i≤105) to 
the start state in Figure 4.  The transformed NFA can be directly 
described using the following regular expression:  

“([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s 
[^\n]{0,99}\n)*AUTH\s[^\n]{100}”.    
This rule first enumerates all the cases that do not satisfy the pat-
tern and then attaches the original pattern to the end of the new 
pattern. In other words, “.*” is replaced with the cases that do not 
match the pattern, represented by 
([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s[^\n]{0,99}\n)*.  
Then, when the DFA comes to the states for AUTH\s[^\n]{100}, it 
must be able to match the pattern. Since the rewritten pattern is 
directly obtained from a DFA of size j+5, it generates a DFA of a 
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linear number of states as opposed to an exponential number be-
fore the rewrite.  

We also provide a theorem that proves the equivalence of the 
new pattern and the original pattern for a more general case 
“.*AB[A-Z]{j}” under the condition of non-overlapping matching 
[27]. Moreover, we offer rewrite rules for patterns in other forms 
of length restriction, e.g., “.*AB[A-Z]{j+}”. 

Rewrite Rule (2) is applicable to 54 expressions in the Snort 
rule sets and 49 in the Bro rule set. We wrote a script to automati-
cally rewrite these patterns and observed significant reduction in 
DFA size. Detailed simulation results are reported in Section 5.2. 

3.4 Notes for Pattern Writers 
As mentioned above, an important outcome of this work is that 
our pattern rewriter can automatically perform both types of re-
writing. An additional benefit is that our analysis provides insight 
into how to write regular expression patterns amenable to efficient 
DFA implementation. We discuss this in more detail below. 

From the analysis in Section 3.2, we can see that patterns with 
length restrictions can generate large DFAs. By studying typical 
packet payload scanning pattern sets including Linux L7-filter, 
Snort, and Bro, we found that 21.4-56.3% of the length restric-
tions are associated with classes of characters. The most common 
classes of characters are “[^\n]”, “[^\]]” (i.e., not ‘]’), and “[^\]”, 
used for detecting buffer overflow attempts. The length restric-
tions of these patterns are typically large (233 on the average and 
reaching up to 1024). For these types of patterns, we highly en-
courage the pattern writer to add “^” so as to avoid the exponen-
tial state growth as we showed in Section 3.3. For patterns that 
cannot start with “^”, the pattern writers can use the Rewrite Rule 
2 to generate state efficient patterns.  

Even for patterns starting with “^”, we need to carefully avoid 
the interactions between a class of characters and its preceding 
character as shown in Rewrite Rule 1. One may wonder why a 
pattern writer uses \s+ in the pattern “^SEARCH\s+[^\n]{1024}”, 
when it can be simplified as \s. Our understanding is that, in real-
ity, a server implementation of a search task usually interprets the 
input in one of the two ways: either skip a white space after 
SEARCH and take the following up to 1024 characters to conduct 
a search, or skip all white spaces and take the rest for the search. 
The original pattern writer may want to catch intrusion to systems 
of either implementation. However, the original pattern will gen-
erate false positives if the server does the first type of implemen-
tation (skipping all the white spaces). This is because if an input is 
followed by 1024 white spaces and then some non-whitespace 
regular command of less than 1024 bytes, the server can skip 
these white spaces and take the follow-up command successfully. 
However, this input will be caught by the original pattern as intru-
sion because these white spaces themselves can trigger the alarm. 
To catch attacks to this type of server implementation, while not 
generating false positives, we need the following pattern.  

 “^SEARCH\s+[^\s][^\n]{1023}”  
In this pattern, \s+ matches all white spaces and [^\s] means the 
first non white space character. If there are more than 1023 non 
return characters following the first non white space character, it 
is a buffer overflow attack. By adding [^\s], the ambiguity in the 
original pattern is removed; given an input, there is only way of 
matching each packet. As a result, this new pattern generates a 
DFA of linear size. 

4 SELECTIVE GROUPING OF 
MULTIPLE PATTERNS 
The previous section presented our analysis of the complexity of 
the DFA created for individual patterns and two rewrite tech-
niques that simplify these DFA so that they could fit in memory. 
In this section, we explore grouping of multiple patterns to further 
improve pattern matching speed.  

As mentioned in Section 2, it is well known that the computa-
tion complexity for processing m patterns reduces from O(m) to 
O(1) per character, when the m patterns are compiled into a single 
composite DFA. However, it is usually infeasible to compile a 
large set of patterns together due to the complicated interactions 
between patterns. In some cases, the composite DFA may experi-
ence exponential growth in size, although none of the individual 
DFA has an exponential component.  

Figure 6 shows a composite DFA for matching “.*AB.*CD” 
and “.*EF.*GH”. This DFA contains many states that did not 
exist in the individual DFAs. Among them, state 8 is created to 
record the case of matching both prefixes AB and EF. Generally 
speaking, if there are l patterns with one wildcard per pattern, we 
need O(2l) states to record the matching of the power set of the 
prefixes. In such scenarios, adding one more pattern into the DFA 
doubles its size. If there are x wildcards per pattern, then (x+1)l 
states are required. There are several such patterns in the Linux 
L7-filter. For example, the pattern for the remote desktop protocol 
is “.*rdpdr.*cliprdr.*rdpsnd”, and the pattern for Internet radio is 
“.*membername.*session.*player”. Snort also has similar patterns 
and the number of “.*” in a pattern can go up to six.    

 
Figure 6. A DFA for pattern .*AB.*CD and .*EF.*GH 

4.1 Regular Expressions Grouping Algorithms 
As discussed above, certain patterns interact with each other when 
compiled together, which can result in a large composite DFA. In 
this section, we propose algorithms to selectively partition m pat-
terns to k groups such that patterns in each group do not adversely 
interact with each other. As such, these algorithms reduce the 
computation complexity from O(m) to O(k) without causing extra 
memory usage.   

We first provide a formal definition of interaction: two pat-
terns interact with each other if their composite DFA contains 
more states than the sum of two individual ones. To calculate the 
number of states in the composite DFA, we first construct an NFA 
by adding a new start state, twoε edges leading to the individual 
DFA, a new accepting state, and two ε edges from the DFA ac-
cepting states to the new accepting state, as shown in Figure 7. 
Then we run the NFA to DFA conversion algorithm and the DFA 
minimization algorithm to obtain the composite DFA.  
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ε
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ε

 
Figure 7. Composite NFA for two DFAs 

We use the information on pairwise interaction to group a set 
of m regular expressions. The intuition is that, if there is no inter-
action between any pair selected from  three regular expressions 
R1, R2, and R3, the composite DFA of R1, R2, R3 is not likely to 
exceed the sum of individual ones. We validate this point using 
empirical results in [27]. 

We devise grouping algorithms both for multi-core processor 
architecture, where groups of patterns can be processed in parallel 
among different processing units, and for general processor archi-
tecture, where the DFA for one group corresponds to one process 
or thread. Due to space limitations, we present the algorithm for 
the former architecture and refer the reader to [27] for the algo-
rithm for the latter.  

In multi-core architecture, there are multiple parallel process-
ing units.  Their number is usually limited, e.g., 16 in Intel 
IXP2800 NPU, which is much smaller than the number of pat-
terns. Hence, one DFA per pattern per processing unit is infeasi-
ble. Our goal is to design an algorithm that divides regular expres-
sions into several groups, so that one processing unit can run one 
or several composite DFAs. In addition, the size of local memory 
of each processing unit is quite limited. For example, the newly 
architected IBM cell processor has 8 synergistic processor ele-
ments, each with 128KB local memory [23]. Hence, we need to 
keep grouping patterns until they meet the local memory limit. 
The pseudo-code of the algorithm is provided below.   
_____________________________________________________ 
For regular expression Ri in the set 

For regular expression Rj in the set 
 Compute pairwise interaction of Ri and Rj 

Construct a graph G(V, E) 
V is the set of regular expressions, with one vertex per regu-

lar expression 
E is the set of edges between vertices, with an edge (Vi, Vj) if 

Ri and Rj interact with each other.  
Repeat 

New group (NG) = φ  
Pick a regular expression that has the least interaction with 

others and add it into new group NG 
Repeat 

Pick a regular expression R has the least number of 
edges connected to the new group 

 Compile NG ∪ {R} into a DFA 
 if this DFA is larger than the limit  
  break; 
 else 
  Add R into NG 
Until every regular expression in G is examined 
Delete NG from G 

Until no regular expression is left in G 
_____________________________________________________ 

Grouping Algorithm 
In this algorithm, we first compute the pairwise interaction of 

regular expressions. With this pairwise information, we construct 
a graph with each pattern as a vertex and an edge between pat-
terns Ri and Rj if they interact with each other. Using this graph, 
we can start with a pattern that has least interaction with others, 
and then try to add patterns that have least interactions into the 

same group. We keep adding until the composite DFA is larger 
than the local memory limit. Then we proceed to create a new 
group from the patterns that remain ungrouped. 

Discussion: Grouping multiple regular expressions into one 
composite DFA is a well known technique to enhance matching 
speed. Our algorithms focus on picking the right patterns to be 
grouped together. Similar to our approach, systems like Bro group 
patterns into one group, instead of several groups. They adopt a 
lazy DFA-based approach, where they cache commonly used 
DFA states and extend the DFA at run-time if needed. The dis-
tinction between our approach and Bro’s approach is that our 
grouping algorithm produces scanners of deterministic complex-
ity. The lazy DFA-based approach, although fast and memory 
efficient on most common inputs, may be exploited by intruders 
to construct malicious packets that force the lazy DFA to enter 
many corner cases [15]. Our fully-developed DFA does not have 
performance degradation under such attacks. 

5 EVALUTION RESULTS 
We implement a DFA scanner with rewriting and grouping func-
tionality for efficient regular expression matching. In this section, 
we evaluate the effectiveness of our rewriting techniques for re-
ducing DFA size, and the effectiveness of our grouping algo-
rithms for creating memory-efficient composite DFA. We also 
compare the speed of our scanner against a DFA-based repeated 
scanner generated by flex [25] and a best-known NFA-based 
scanner [26]. Compared to the DFA-based repeated scanning 
approach, our DFA-based one pass scanning approach has 12 to 
42 times performance improvements. Compared to the NFA-
based implementation, our DFA scanner is 50 to 700 times faster 
on traffic dumps obtained form MIT and Berkeley networks. 

5.1 Experimental Setup 
To focus on regular expressions commonly used in networking 
applications, we select the following three complex pattern sets: 
The first is from the Linux layer 7 filter [1] which contains 70 
regular expressions for detecting different protocols. The second 
is from the Snort system [2] which contains 1555 regular expres-
sions for intrusion detection. The last one is from Bro intrusion 
detection system [3] with a total of 2781 regular expressions.   

We use two sets of real-world packet traces. The first set is 
the intrusion detection evaluation data set from the MIT DARPA 
project [24]. It contains more than a million packets. The second 
data set is from a local LAN with 20 machines at the UC Berkeley 
networking group, which contains more than six million packets. 
The characteristics of MIT dump are very different from Berkeley 
dump. MIT dump mostly contains intrusion packets that are long, 
with the average packet payload length being 507.386 bytes. In 
the Berkeley dump, however, most packets are normal traffic, 
with 67.65 bytes on average in the packet payload. A high per-
centage of the packets are ICMP and ARP packets that are very 
short. 

We use Flex [25] to convert regular expressions into DFAs. 
Our implementation of the DFA scanner eliminates backtracking 
operations [25]. It only performs one-pass search over the input 
and is able to report matching results at the position of the end of 
each matching substring.  

All the experimental results reported were obtained on PCs 
with 3.4 Ghz CPU and 3.7 GB memory. 
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5.2 Effect of Rule Rewriting 
We apply our rewriting scheme presented in Section 3.3 to the 
Linux L7-filter, Snort and Bro pattern sets. For the Linux L7-filter 
pattern set, we do not identify any pattern that needs to be rewrit-
ten. For the Snort pattern set, however, 71 rules need to be rewrit-
ten. For Bro, 49 patterns (mostly imported from Snort) need to be 
rewritten using Rewrite Rule 2. For these patterns, we gain sig-
nificant memory savings as shown in Table 5. For both types of 
rewrite, the DFA size reduction rate is over 98%.  

17 patterns belong to the category for which Rewrite Rule 1 
can be applied. These patterns (e.g., “^SEARCH\s+[^\n] {1024}”)  
all contain a character (e.g., \s) that is allowed to appear multiple 
times before a class of characters (e.g., [^\n]) with a fixed length 
restriction (e.g., 1024). As discussed in Section 3.2, this type of 
pattern generates DFAs that expand quadratically in the length 
restriction. After rewriting, the DFA sizes come down to linear in 
the length restriction. A total of 103 patterns need to be rewritten 
using Rewrite Rule 2. Before rewriting, most of them generate 
exponential sized DFAs that cannot even be compiled success-
fully. With our rewriting techniques, the collection of DFAs cre-
ated for all the patterns in the Snort system can fit into 95MB 
memory, which can be satisfied in most PC-based systems.  

Table 5. Rewriting effects  
Type of Re-
write 

Rule 
Set 

Number 
of Pat-
terns  

Average 
length 
restriction 

DFA 
Reduc-
tion Rate 

Snort 17 370 >98% Rewrite Rule 
1: (Quadratic 

case) Bro 0 0 0 

Snort 54 344 >99%1 Rewrite Rule 
2: 

(Exponential 
Case) 

Bro 49 214.4 >99%1 

5.3 Effect of Grouping Multiple Patterns  
In this section, we apply the grouping techniques to regular ex-
pression sets. We show that our grouping techniques can intelli-
gently group patterns to boost system throughput, while avoiding 
extensive memory usages. We test on three pattern sets: the Linux 
L7-filter, the Bro http-related pattern set and the Bro payload 
related pattern set. The patterns of L7-filter can be grouped be-
cause the payload of an incoming packet is compared against all 
the patterns, regardless of the packet header information. For the 
Bro pattern set, as most rules are related to packets with specific 
header information, we pick the http related patterns (a total of 
648) that share the same header information, as well as 222 pay-
load scanning patterns that share the same header information. 
Note that we do not report the results of using the Snort rule set 
because its patterns overlap significantly with those of the Bro 
rule set.     

5.3.1 Grouping Results 
We apply our grouping algorithms to all three pattern sets and 
successfully group all of them into small (<5) numbers of groups. 
For the Bro’s http pattern set, since patterns do not interact with 
each other, it is possible to compile all 648 patterns into one com-

                                                           
1 Note, we use over 99% because some of the patterns create too many 
states to be compiled successfully without rewriting. 99% is obtained by 
calculating those successful ones. 

posite DFA of 6218 states. The other two sets, however, cannot be 
grouped into one group due to interactions. Below, we report 
results obtained using our grouping algorithm for the multi-core 
architecture, where local memory is limited. The results for the 
general processor architecture are in [27].  

Table 6(a) shows the results for Linux L7-filter pattern set. 
We start by limiting the number of states in each composite DFA 
to 617, the size of the largest DFA created for a single pattern in 
the Linux L7-filter set. The actual memory cost is 617 times 256 
next state pointers times log(617) bits for each pointer, which 
amounts to 192 KB. Considering that most modern processors 
have large data caches (>0.5MB), this memory cost for a single 
composite DFA is comparatively small.  Our algorithm generates 
10 groups when the limit on the DFA size is set to 617. It creates 
fewer groups when the limit is increased to larger numbers. As 
today’s multi-core network processors have 8-16 engines, it is 
feasible to allocate each composite DFA to one processor and take 
advantage of parallelism.  

With our grouping algorithms, we can decrease the number of 
pattern groups from 70 (originally ungrouped) to 3 groups. This 
means that, given a character, the generated packet content scan-
ner needs to perform only three state transitions instead of the 70 
state transitions that were necessary with the original ungrouped 
case. This results in a significant performance enhancement (show 
in Section 0). 

For Bro’s payload pattern set, we can group more patterns 
into one group. As Table 6(b) shows, starting from 540, the larg-
est individual DFA size, the grouping algorithm can group 222 
patterns into 11 groups. As the DFA state limit increases, the 
number of groups decreases down to 4. 

Beyond the effectiveness, Table 6 present the running time of 
our grouping algorithms. This overhead is a one-time cost. In 
networking environments, the packet content scanner operates 
continuously until there are new patterns to be inserted to the 
system. As patterns in the Linux L7-filter or Bro system do not 
change frequently, the occasional overhead of several minutes is 
affordable. In addition, we do not need to regroup all patterns 
given any new pattern. We can just compute its pairwise interac-
tions with existing patterns and pick a group that yields least total 
interactions. This type of incremental update computation time is 
in average less than 1 second on the Bro payload pattern set.  

Table 6. Results of grouping algorithms for the multi-core 
architecture 

6(a) Linux L7-filter (70 Patterns) 
Composite 
DFA state 

limit  
Groups 

Total Num-
ber of States Compilation 

Time (s) 

617 10 4267 3.3 
2000 5 6181 12.6 
4000 4 9307 29.1 

16000 3 29986 54.5 

6(b) Payload patterns from Bro (222 Patterns) 
Composite 
DFA state 

limit  
Groups 

Total Num-
ber of States Compilation 

Time (s) 

540 11 4868 20 
1000 7 4656 118 
2000 5 5430 780 
6000 4 9197 1038 
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5.3.2 Speed Comparison 
We compare our DFA-based algorithms with the starte-of-the-art 
NFA-based regular expression matching algorithm. Both L7-filter 
and Snort systems use this NFA-based library. We also compare it 
with the DFA-based repeated scan approach generated by flex 
[25]. The results are summarized in Table 7. Our DFA-based one 
pass scanner is 47.9 to 704 times faster than the NFA-based scan-
ner. Compared to DFA-based repeated scan engine, our scanner 
yields a performance improvement of 1244% to 4238%. Also note 
that although these dumps have dramatically different characteris-
tics, our scanner provides similar throughputs over these dumps 
because it scans each character only once. The other two ap-
proaches are subject to dramatic change in throughput (1.8 to 3.4 
times) over these traces, because they need to do backtracking or 
repeated scans. Of course, we admit that the memory usage of our 
scanner is 2.6 to 8.4 times the NFA-based approach. However, the 
largest scanner we created (Linux L7-filter, 3 groups) uses 
13.3MB memory, which is well under the memory limit of most 
modern systems.  
 

Table 7. Comparison of the Different Scanners 

Throughputs 
(Mb/s) 

 
MIT 
dump 

Berkeley 
dump 

Memory 
Consump-
tion (KB)

NFA 0.98 3.4 1636 
DFA RP 16.3 34.6 7632 

Linux 
L-7 

DFA OP 3 groups 690.8 728.3 13596 
NFA 30.4 56.1 1632 

DFA RP 117.2 83.2 1624 
Bro 

Http 
DFA OP 1 group 1458 1612.8 4264 

NFA 5.8 14.8 1632 
DFA RP 17.1 25.6 7628 

Bro 

Payload 
DFA OP 3 groups 566.1 568.3 4312 

NFA—NFA-based implementation  
DFA RP – Flex generated DFA-based repeated scan engine 
DFA OP – Our DFA one pass scanning engine 

6 CONCLUSION AND FUTURE WORK 
We considered the implementation of fast regular expression 
matching for packet payload scanning applications. While NFA-
based approaches are usually adopted for implementation because 
naïve DFA implementations can have exponentially growing 
memory costs, we showed that with our rewriting techniques, 
memory-efficient DFA-based approaches are possible. While we 
do not claim to handle all possible cases of dramatic DFA growth 
(in fact the worse case cannot be improved), rewrite rules do over 
those patterns present in common payload scanning rulesets like 
SNORT and Bro, thus making fast DFA-based pattern matching 
feasible for today’s payload scanning applications. It is possible 
that a new type of attack also generates signatures of large DFAs. 
For those cases, unfortunately, we need to study the signature 
structures before we can rewrite them. 

In addition, we presented a scheme that selectively groups 
patterns together to further speed up the matching process. Our 
DFA-based implementation is 2 to 3 orders of magnitude faster 
than the widely used NFA implementation and 1 to 2 orders of 
magnitude faster than a commonly used DFA-based parser. Our 
grouping scheme can be applied to general processor architecture 
where the DFA for one group corresponds to one process or 

thread, as well as to multi-core architecture where groups of pat-
terns can be processed in parallel among different processing units. 
In the future, it would be an interesting study to apply different 
DFA compression techniques and explore tradeoffs between the 
overhead of compression and the savings in memory usage.  
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