
 1

Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection

Fang Yu
UC Berkeley

fyu@eecs.berkeley.edu

Zhifeng Chen
Google Inc.

zhifengc@google.com

Yanlei Diao
University of Massachusetts,

Amherst
yanlei@cs.umass.edu

T. V. Lakshman

Bell Laboratories, Lucent Technologies

lakshman@research.bell-labs.com

Randy H. Katz
UC Berkeley

randy@eecs.berkeley.edu

 ABSTRACT
Packet content scanning at high speed has become ex-
tremely important due to its applications in network secu-
rity, network monitoring, HTTP load balancing, etc. In
content scanning, the packet payload is compared against a
set of patterns specified as regular expressions. In this pa-
per, we first show that memory requirements using tradi-
tional methods are prohibitively high for many patterns
used in packet scanning applications. We then propose
regular expression rewrite techniques that can effectively
reduce memory usage. Further, we develop a grouping
scheme that can strategically compile a set of regular ex-
pressions into several engines, resulting in remarkable im-
provement of regular expression matching speed without
much increase in memory usage. We implement a new
DFA-based packet scanner using the above techniques. Our
experimental results using real-world traffic and patterns
show that our implementation achieves a factor of 12 to 42
performance improvement over a commonly used DFA-
based scanner. Compared to the state-of-art NFA-based
implementation, our DFA-based packet scanner achieves
50 to 700 times speedup.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General –
Security and protection (e.g., firewalls)

General Terms
Algorithms, Design, Security.

Keywords
Regular expressions, DFA, intrusion detection, deep packet in-
spection.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ANCS'06, December 3–5, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-580-0/06/0012...$5.00.

1. INTRODUCTION
Packet content scanning (also known as Layer-7 filtering or pay-
load scanning) is crucial to network security and network moni-
toring applications. In these applications, the payload of packets
in a traffic stream is matched against a given set of patterns to
identify specific classes of applications, viruses, protocol defini-
tions, etc.

Currently, regular expressions are replacing explicit string
patterns as the pattern matching language of choice in packet
scanning applications. Their widespread use is due to their ex-
pressive power and flexibility for describing useful patterns. For
example, in the Linux Application Protocol Classifier (L7-filter)
[1], all protocol identifiers are expressed as regular expressions.
Similarly, the Snort [2] intrusion detection system has evolved
from no regular expressions in its ruleset in April 2003 to 1131
out of 4867 rules using regular expressions as of February 2006.
Another intrusion detection system, Bro [3], also uses regular
expressions as its pattern language.

As regular expressions gain widespread adoption for packet
content scanning, it is imperative that regular expression matching
over the packet payload keep up with the line-speed packet header
processing. Unfortunately, this requirement cannot be met in
many existing payload scanning implementations. For example,
when all 70 protocol filters are enabled in the Linux L7-filter [1],
we found that the system throughput drops to less than 10Mbps,
which is well below current LAN speeds. Moreover, over 90% of
the CPU time is spent in regular expression matching, leaving
little time for other intrusion detection or monitoring functions.
On the other hand, although many schemes for fast string match-
ing [4-11] have been developed recently in intrusion detection
systems, they focus on explicit string patterns only and can not be
easily extended to fast regular expression matching.

The inefficiency in regular expression matching is largely due
to the fact that the current solutions are not optimized for the fol-
lowing three unique complex features of regular expressions used
in network packet scanning applications.
• First, many such patterns use multiple wildcard metachar-

acters (e.g., ‘.’, ‘*’). For example, the pattern for identifying
the Internet radio protocol, “membername.*session.*player”,
has two wildcard fragments “.*”. Some patterns even contain
over ten such wildcard fragments. As regular expressions are
converted into state machines for pattern matching, large

 2

numbers of wildcards can cause the corresponding Determi-
nistic Finite Automaton (DFA) to grow exponentially.

• Second, a majority of the wildcards are used with length
restrictions (‘?’, ‘+’). As we shall show later in the paper,
such length restrictions can increase the resource needs for
expression matching.

• Third, groups of characters are also commonly used: for
example, the pattern for matching the ftp protocol,
“^220[\x09-\x0d -~]*ftp”, contains a class (inside the brack-
ets) that includes all the printing characters and space charac-
ters. The class of characters may intersect with other classes
or wildcards. Such interaction can result in a highly complex
state machine.

To the best of our knowledge, there has not been any detailed
study of optimizations for these kinds of regular expressions as
they are so specific to network packet scanning applications. In
this paper, we address this gap by analyzing these regular expres-
sions and developing memory-efficient DFA-based solutions for
high speed processing. Specifically, we make the following con-
tributions:
• We analyze the computational and storage cost of building

individual DFAs for matching regular expressions, and iden-
tify the structural characteristics of the regular expressions in
networking applications that lead to exponential growth of
DFAs, as presented in Section 3.2.

• Based on the above analysis, we propose two rewrite rules
for specific regular expressions in Section 3.3. The rewritten
rules can dramatically reduce the size of resulting DFAs,
making them small enough to fit in memory. We prove that
the patterns after rewriting are equivalent to the original ones
for detecting non-overlapping patterns. While we do not
claim to handle all possible cases of dramatic DFA growth
(in fact the worse case cannot be improved), our rewrite rules
do cover those patterns present in common payload scanning
rulesets like Snort and Bro, thus making fast DFA-based pat-
tern matching feasible for today’s payload scanning applica-
tions.

• We further develop techniques to intelligently combine mul-
tiple DFAs into a small number of groups to improve the
matching speed in Section 4, while avoiding the exponential
growth in the number of states in memory.

We demonstrate the effectiveness of our rewriting and group-
ing solutions through a detailed performance analysis using real-
world payload scanning pattern sets. As the results show, our
DFA-based implementation can increase the regular expression
matching speed on the order of 50 to 700 times over the NFA-
based implementation used in the Linux L7-filter and Snort sys-
tem. It can also achieve 12-42 times speedup over a commonly
used DFA-based parser. The pattern matching speed can achieve
gigabit rates for certain pattern sets. This is significant for im-
plementing fast regular expression matching of the packet payload
using network processors or general-purpose processors, as the
ability to more quickly and efficiently classify enables many new
technologies like real-time worm detection, content lookup in
overlay networks, fine-grained load balancing, etc.

2. PROBLEM STATEMENT
In this section, we first discuss regular expressions used in packet
payload scanning applications, then present the possible solutions
for regular expression matching, and finally define the specific
problem that we address in this paper.

2.1 Regular Expression Patterns
A regular expression describes a set of strings without enumerat-
ing them explicitly. Table 1 lists the common features of regular
expression patterns used in packet payload scanning. For exam-
ple, consider a regular expression from the Linux L7-filter [1] for
detecting Yahoo traffic:
“^(ymsg|ypns|yhoo).?.?.?.?.?.?.?[lwt].*\xc0\x80”. This pattern
matches any packet payload that starts with ymsg, ypns, or yhoo,
followed by seven or fewer arbitrary characters, and then a letter l,
w or t, and some arbitrary characters, and finally the ASCII letters
c0 and 80 in the hexadecimal form.

Table 2 compares the regular expressions used in two net-
working applications, Snort and the Linux L7-filter, against those
used in emerging Extensible Markup Language (XML) filtering
applications [12, 13] where regular expressions are matched over
text documents encoded in XML. We notice three main differ-
ences: (1) While both types of applications use wildcards (‘.’, ‘?’,
‘+’, ‘*’), the patterns for packet scanning applications contain
larger numbers of them in each pattern; (2) classes of characters
(“[]”) are used only in packet scanning applications; (3) a high
percentage of patterns in packet payload scanning applications
have length restrictions on some of the classes or wildcards, while
such length restrictions usually do not occur in XML filtering.
This shows that compared to the XML filtering applications, net-
work packet scanning applications face additional challenges
These challenges lead to a significant increase in the complexity
of regular expression matching, as we shall show later in this
paper.

Table 1. Features of Regular Expressions
Syntax Meaning Example

^ Pattern to be
matched at the start
of the input

^AB means the input starts
with AB. A pattern without
‘^’, e.g., AB, can be matched
anywhere in the input.

| OR relationship A|B denotes A or B.
. A single character

wildcard

? A quantifier denot-
ing one or less

A? denotes A or an empty
string.

* A quantifier denot-
ing zero or more

A* means an arbitrary number
of As.

{} Repeat A{100} denotes 100 As.
[] A class of characters [lwt] denotes a letter l, w, or t.
[^] Anything but [^\n] denotes any character

except \n.
Table 2. Comparison of regular expressions in networking

applications against those in XML filtering
 Snort L7-filter XML

filter-
ing

of regular expressions analyzed 1555 70 1,000-
100,000

% of patterns starting with “^” 74.4% 72.8% ≥80%
% of patterns with wildcards “., +,
?, *”

74.9% 75.7% 50% -
100%

Average # of wildcards per pattern 4.65 7.03 1-2
% of patterns with class “[]” 31.6% 52.8% 0
Average # of classes per pattern 7.97 4.78 0
% of patterns with length restric-
tions on classes or wildcards

56.3% 21.4% ≈0

 3

2.2 Solution Space for Regular Expression
Matching
Finite automata are a natural formalism for regular expressions.
There are two main categories: Deterministic Finite Automaton
(DFA) and Nondeterministic Finite Automaton (NFA). In this
section, we survey existing solutions using these automata.

A DFA consists of a finite set of input symbols, denoted as ∑,
a finite set of states, and a transition function δ [14]. In network-
ing applications, ∑ contains the 28 symbols from the extended
ASCII code. Among the states, there is a single start state q0 and a
set of accepting states. The transition function δ takes a state and
an input symbol as arguments and returns a state. A key feature of
DFA is that at any time there is only one active state in the DFA.
An NFA works similarly to a DFA except that the δ function
maps from a state and a symbol to a set of new states. Therefore,
multiple states can be active simultaneously in an NFA.

A theoretical worst case study [14] shows that a single regular
expression of length n can be expressed as an NFA with O(n)
states. When the NFA is converted into a DFA, it may generate
O(∑n) states. The processing complexity for each character in the
input is O(1) in a DFA, but is O(n2) for an NFA when all n states
are active at the same time.

To handle m regular expressions, two choices are possible:
processing them individually in m automata, or compiling them
into a single automaton. The former is used in Snort [2] and Linux
L7-filter [1]. The latter is proposed in recent studies [12, 13] so
that the single composite NFA can support shared matching of
common prefixes of those expressions. Despite the demonstrated
performance gains over using m separate NFAs, in practice this
approach experiences large numbers of active states. This has the
same worst case complexity as the sum of m separate NFAs.
Therefore, this approach on a serial processor can be slow, as
given any input character, each active state must be serially exam-
ined to obtain new states.

In DFA-based systems, compiling m regular expressions into
a composite DFA provides guaranteed performance benefit over
running m individual DFA. Specifically, a composite DFA re-
duces processing cost from O(m) (O(1) for each automaton) to
O(1), i.e., a single lookup to obtain the next state for any given
character. However, the number of states in the composite
automaton grows to O(∑mn) in the theoretical worst case. In fact,
we will show in Section 4 that typical patterns in packet payload
scanning applications indeed interact with each other and can
cause the creation of an exponential number of states in the com-
posite DFA.

Table 3. Worst case comparisons of DFA and NFA
One regular expression

of length n
m regular expressions
compiled together

Processing
complexity

Storage
cost

Processing
complexity

Storage
cost

NFA O(n2) O(n) O(n2m) O(nm)
DFA O(1) O(∑n) O(1) O(∑nm)
There is a middle ground between DFA and NFA called lazy

DFA. Lazy DFA are designed to reduce memory consumption of
conventional DFA [12, 15]: a lazy DFA keeps a subset of the
DFA that matches the most common strings in memory; for un-
common strings, it extends the subset from the corresponding
NFA at runtime. As such, a lazy DFA is usually much smaller
than the corresponding fully-compiled DFA and provides good
performance for common input strings. Bro intrusion detection

systems [3] adopt this approach. However, malicious senders can
easily construct packets that keep the system busy and slow down
the matching process.

Field Programmable Gate Arrays (FPGAs) provide a high
degree of parallelism and thus can be used to speed up the regular
expression matching process. There are existing FPGA solutions
that build circuits based on DFA [16] or NFA [17-19]. Recently,
Bordie et al. presented a new architecture for matching regular
expressions using FPGA [28]. In this architecture, the finite state
machine can take multiple bytes at a time to get very high
throughput. These approaches are promising if the extra FPGA
hardware can be embedded in the packet processors. FPGAs,
however, are not available in many applications; in such situa-
tions, a network processor or general-purpose CPU-based imple-
mentation may be more desirable.

2.3 Problem statement
In this paper, we seek a fast and memory-efficient solution to
regular expression matching for packet payload scanning. We
define the scope of the problem as follows:
• We consider DFA-based approaches in this paper, as NFA-

based approaches are inefficient on serial processors or proc-
essors with limited parallelism (e.g., multi-core CPUs in
comparison to FPGAs). Our goal is to achieve O(1) compu-
tation cost for each incoming character, which cannot be ac-
complished by any existing DFA-based solutions due to their
excessive memory usage. Thus, the focus of the study is to
reduce memory overhead of DFA while approaching the op-
timal processing speed of O(1) per character.

• We focus on general-purpose processor-based architectures
and explore the limits of regular expression matching in this
environment. Wherever appropriate, we leverage the trend of
multi-core processors that are becoming prevalent in those
architectures. Nevertheless, our results can be used in FPGA-
based and ASIC-based approaches as well [20].
It is worth noting that there are two sources of memory usage

in DFAs: states and transitions. The number of transitions is linear
with respect to the number of states because for each state there
can be at most 28 (for all ASCII characters) links to next states.
Therefore, we consider the number of states (in minimized DFA)
as the primary factor for determining the memory usage in the rest
of the paper. Recently, Kumar et al. extended our work and pro-
posed algorithms to do efficient link compression [20].

3. MATCHING OF INDIVIDUAL
PATTERNS
In this section, we present our solution to matching individual
regular expression patterns. The main technical challenge is to
create DFAs that can fit in memory, thus making a fast DFA-
based approach feasible. We first define a few concepts key to
DFA construction in the context of packet payload scanning in
Section 3.1. We then analyze the size of DFAs for typical payload
scanning patterns in Section 3.2. Although theoretical analyses
[12, 14] have shown that DFAs are subject to exponential blow-
up, here, we identify specific structures that can lead to exponen-
tial growth of DFAs. Based on the insights from this analysis, in
Section 3.3, we propose pattern rewrite techniques that explore
the possibility of trading off exhaustive pattern matching (which
real-world applications often allow) for memory efficiency. Fi-
nally, we offer guidelines to pattern writers on how to write pat-
terns amenable to efficient implementation in Section 3.4.

 4

3.1 Design Considerations
Although regular expressions and automata theory can be directly
applied to packet payload scanning, there is a noticeable differ-
ence in between. Most existing studies on regular expressions
focus on a specific type of evaluation, that is, checking if a fixed
length string belongs to the language that a regular expression
defines. More specifically, a fixed length string is said to be in the
language of a regular expression, if the string is matched from
start to end by a DFA corresponding to that regular expression. In
contrast, in packet payload scanning, a regular expression pattern
can be matched by the entire input or specific substrings of the
input. Without a priori knowledge of the starting and ending posi-
tions of those substrings, DFAs created for recognizing all sub-
string matches can be highly complex.

For a better understanding, we next present a few concepts
pertaining to the completeness of matching results and the DFA
execution model for substring matching.
Completeness of matching results
Given a regular expression pattern and an input string, a complete
set of results contains all substrings of the input that the pattern
can possibly match. For example, given a pattern ab* and an input
abbb, three possible matches can be reported, ab, abb, and abbb.
We call this style of matching Exhaustive Matching. It is formally
defined as below:
Exhaustive Matching: Consider the matching process M as a

function from a pattern P and a string S to a power set of S,
such that, M(P, S) = {substring S' of S| S' is accepted by the
DFA of P}.
In practice, it is expensive and often unnecessary to report all

matching substrings, as most applications can be satisfied by a
subset of those matches. Therefore, we propose a new concept,
Non-overlapping Matching, that relaxes the requirements of ex-
haustive matching.
Non-overlapping Matching: Consider the matching process M as

a function from a pattern P and a string S to a set of strings,
specifically, M(P, S) = {substring Si of S| ∀ Si, Sj accepted by
the DFA of P, Si ∩ Sj =φ }.

If a pattern appears in multiple locations of the input, this match-
ing process reports all non-overlapping substrings that match the
pattern. Revisit our example above. For the pattern ab* and the
input abbb, the three matches overlap by sharing the prefix ab.
For this example, non-overlapping matching will report one match
instead of three.

For most payload scanning applications, we expect that non-
overlapping matching would suffice, as those applications are
mostly interested in knowing if certain attacks or application layer
patterns appear in a packet. In fact, most existing scanning tools
like grep and flex and systems like Snort [2] and Bro [3] imple-
ment special cases of non-overlapping matching such as left-most
longest matching or left-most shortest matching. As we shall
show later this section, non-overlapping matching can be ex-
ploited to construct more memory-efficient DFAs.
DFA execution model for substring matching
In the following discussion, we focus on patterns without ‘^’ at-
tached at the beginning. Recall that for such patterns, there is no
prior knowledge of whether/where a matching substring may
appear. To handle these patterns, two types of DFAs can be cre-
ated with different execution models:

Repeated searches. A DFA can be created directly from a pat-
tern using standard DFA construction techniques [14]. To find the

set of matching substrings (using either exhaustive or non-
overlapping matching), the DFA execution needs to be augmented
with repeated searches of the input: An initial search starts from
the beginning of the input, reading characters until (1) it has re-
ported all matches (if exhaustive matching is used) or one match
(if non-overlapping matching is used), or (2) it has reached the
end of the input. In the former case, the new search will start from
the next character in input (if exhaustive matching is used) or
from the character after the reported match (if non-overlapping
matching is used). In the latter case, a new search is initiated from
the next character in input. This style of repeated scanning using
DFA is commonly used in language parsers. However, it is ineffi-
cient for packet payload scanning where the chance of the packet
payload matching a particular pattern is low (such inefficiency is
verified in Section 0).

One-pass search. In the second approach, “.*” is pre-pended
to each pattern without ‘^’, which explicitly states that the pattern
can be matched anywhere in the input. Then a DFA is created for
the extended pattern. As the input is scanned from start to end, the
DFA can recognize all substring matches that may start at differ-
ent positions of the input. Using one pass search, this approach
can truly achieve O(1) computation cost per character, thus suit-
able for networking applications. To achieve high scanning rate,
we adopt this approach in the rest of the study.

3.2 DFA Analysis for Individual Regular Ex-
pressions

Next, we study the complexity of DFA for typical patterns used in
real-world packet payload scanning applications such as Linux
L7-filter, Snort, and Bro. The study is based on the use of exhaus-
tive matching and one-pass search. Table 4 summarizes the re-
sults.
• Explicit strings generate DFAs of length linear to the number

of characters in the pattern.
• If a pattern starts with ‘^’, it creates a DFA of polynomial

complexity with respect to the pattern length k and the length
restriction j. Our observation from the existing payload scan-
ning rule sets is that the pattern length k is usually limited but
the length restriction j can reach hundreds or even thousands.
Therefore, Case 4 can result in a large DFA because it has a
factor quadratic in j.

• Patterns starting with “.*” and having length restrictions (Case
5) cause the creation of DFA of exponential size.

Table 4. Analysis of patterns with k characters
 Pattern features Example # of states
1. Explicit strings with k charac-
ters

^ABCD
.*ABCD

k+1

2. Wildcards ^AB.*CD
.*AB.*CD

k+1

3. Patterns with ^, a wildcard, and
a length restriction j

^AB.{j+}CD
^AB.{0, j}CD

^AB.{j}CD

O(k*j)

4. Patterns with ^, a class of char-
acters overlaps with the prefix,
and a length restriction j

^A+[A-Z]{j}D O(k+j2)

5. Patterns with a length restric-
tion j, where a wildcard or a class
of characters overlaps with the
prefix

.*AB.{j}CD
.*A[A-Z]{j+}D

O(k+2j)

 Next, we explain the two cases of large DFA sizes, namely,
Case 4 and Case 5 of Table 4, in more detail.

 5

Case 4: DFA of Quadratic Size
A common misconception is that patterns starting with ‘^’ create
simple DFAs. However, we discover that even with ‘^’, classes of
characters that overlap with the prefix pattern can still yield a
complex DFA. Consider the pattern ^B+[^\n]{3}D, where the
class of character [^\n] denotes any character but the return char-
acter (\n). Its corresponding DFA has a quadratic number of
states, as shown in Figure 1. The quadratic complexity comes
from the fact that the letter B overlaps with the class of character
[^\n] and, hence, there is inherent ambiguity in the pattern: A
second B letter can be matched either as part of B+, or as part of
[^\n]{3}. Therefore, if an input contains multiple Bs, the DFA
needs to remember the number of Bs it has seen and their loca-
tions in order to make a correct decision with the next input char-
acter. If the class of characters has length restriction of j bytes,
DFA needs O(j2) states to remember the combination of distance
to the first B and the distance to the last B.

Figure 1. A DFA for Pattern ^B+[^\n]{3}D

Similar structures in real world pattern sets:
A significant number of patterns in the Snort rule set fall into this
category. For example, the regular expression for the NNTP rule
is “^SEARCH\s+[^\n]{1024}”. Similar to the example in Figure 1,
\s overlaps with ^\n. White space characters cause ambiguity of
whether they should match \s+ or be counted as part of the 1024
non-return characters [^\n]{1024}. Specifically, an input of
SEARCH followed by 1024 white spaces and then 1024 ‘a’s will
have 1024 ways of matching strings, i.e., one white space matches
\s+ and the rest as part of [^\n]{1024}, or two white spaces match
\s+ and the rest as part of [^\n]{1024}, etc. By using 10242 states
to remember all possible consequences of these white spaces, the
DFA accommodates all the ways to match the substrings of dif-
ferent lengths. Note that all these substrings start with SEARCH
and hence are overlapping matches.

This type of quadratic state problem cannot be solved by an
NFA-based approach. Specifically, the corresponding NFA con-
tains 1042 states; among these, one is for the matching of
SEARCH, one for the matching of \s+, and the rest of the 1024
states for the counting of [\^n]{1024} with one state for each
count. An intruder can easily construct an input as “SEARCH”
followed by 1024 white spaces. With this input, both the \s+ state
and all the 1023 non-return states would be active at the same
time. Given the next character, the NFA needs to check these
1024 states sequentially to compute a new set of active states.

This problem cannot be solved by a fixed string pre-filtering
scheme (used by Snort), either. This is because pre-filtering can
only recognize the presence of the fixed string “SEARCH” in the
input. After that, an NFA or DFA-based matching scheme is still
needed in post processing to report whether the input matches the
pattern and what the matches are. Another choice is to count the

subsequent characters in post processing after identifying the
prefix “SEARCH”. This approach does not solve the problem
because every packet (even normal traffic) with the prefix will
incur the counting process. In addition, intruders can easily con-
struct packets with multiple (different) prefixes to invoke many
requests for such post processing.
Case 5: DFA of Exponential Size
Many payload scanning patterns contain an exact distance re-
quirement. Figure 2 shows the DFA for an example pattern
“.*A..CD”. An exponential number of states (22+1) are needed to
represent these two wildcard characters. This is because we need
to remember all possible effects of the preceding As as they may
yield different results when combined with subsequent inputs. For
example, an input AAB is different from ABA because a subse-
quent input BCD forms a valid pattern with AAB (AABBCD), but
not so with ABA (ABABCD). In general, if a pattern matches ex-
actly j arbitrary characters, O(2j) states are needed to handle the
exact j requirement. This result is also reported in [12]. Similar
results apply to the case where the class of characters overlaps
with the prefix, e.g., “.*A[A-Z]{j}D”.

Figure 2. A DFA for pattern .*A.{2}CD

Similar structures in real world pattern sets:
In the intrusion detection system Snort, 53.8% of the patterns
(mostly for detecting buffer overflow attempts) contain a fixed
length restriction. Out of them, around 80% of the rules start with
an anchor (^); hence, they will not cause exponential growth of
DFA. Note that most of the anchors are associated with option /m.
With this option, an anchor means that the pattern can be matched
at the beginning of the packet as well as after any newline (\n). In
these cases, a return character \n will bring the DFA back to the
start state. The remaining 20% of the patterns that do not start
with ^, do suffer from the state explosion problem. For example,
consider the rule for detecting IMAP authentication overflow
attempts, which uses the regular expression
“.*AUTH\s[^\n]{100}”. This rule detects any input that contains
AUTH, then a white space, and no return character in the follow-
ing 100 bytes. If we directly compile this rule into a DFA, the
DFA will contain more than 10,000 states because it needs to
remember all the possible consequences that an AUTH\s subse-
quent to the first AUTH\s can lead to. For example, the second
AUTH\s can either match [^\n]{100} or be counted as a new
match of the prefix of the regular expression.

Figure 3. NFA for the pattern .*AUTH\s[^\n]{100}

 6

Figure 4. DFA for rewriting the pattern .*AUTH\s[^\n]{100}

It is obvious that the exponential blow-up problem cannot be
mitigated by using an NFA-based approach. The NFA for the
pattern “.*AUTH\s[^\n]{100}” is shown in Figure 3. Because the
first state has a self-loop marked with Σ, the input
“AUTH\sAUTH\sAUTH\s…” can cause a large number of states to
be simultaneously active, resulting in significantly degraded sys-
tem performance, as demonstrated by our results reported in Sec-
tion 0. Similar to Case 4, this problem cannot be solved by a fixed
string pre-filtering scheme (used by Snort), either.

Figure 5. Transformed NFA for deriving Rewrite Rule (1)

3.3 Regular Expression Rewrites
We have identified the typical patterns used in packet payload
scanning that can cause the creation of large DFAs. In this sec-
tion, we investigate the possibility of rewriting some of those
patterns to reduce the DFA size. Such rewriting is enabled by
relaxing the requirement of exhaustive matching to that of non-
overlapping matching. In particular, we propose two rewrite rules,
one for rewriting specific patterns belonging to the case of quad-
ratic-sized DFAs (Case 4 in Section 3.2), and the other for rewrit-
ing specific patterns that generate exponential-sized DFAs (Case
5 of Section 3.2). The commonality of the patterns amenable to
rewrite is that their suffixes address length restricted occurrences
of a class of characters that overlap with their prefixes. These
patterns are typical in real-world rulesets such as Snort and Bro.
For these patterns, as shown in Section 3.2, neither the NFA-
based solution nor the fixed string pre-filtering scheme can handle
them efficiently. In contrast, our rewrites rules can convert these
patterns into DFAs with their sizes successfully reduced from
quadratic or exponential to only linear.

Rewrite Rule (1)
As shown in Section 3.2, patterns that start with ‘^’ and contain
classes of characters with length restrictions, e.g.,
“^SEARCH\s+[^\n]{1024}”, can generate DFAs of quadratic size
with respect to the length restriction. Below, we first explain the
intuition behind Rewrite Rule (1) using the above example and
then state a theorem for more general cases.

Given the fact that such patterns are used in packet scanning
applications for detecting buffer overflow attempts, it seems rea-
sonable to assume that non-overlapping matches are sufficient for
reporting such attacks. Based on this observation, we propose to
rewrite the pattern “^SEARCH\s+[^\n]{1024}” to
“^SEARCH\s[^\n]{1024}”. The new pattern specifies that after

matching a single white space, we start counting for [^\n]{1024}
no matter what the content is. It is not hard to see that for every
matching substring s that the original pattern reports, the new
pattern produces a substring s’ that is either identical to s or is a
prefix of s. In other words, the new pattern essentially implements
non-overlapping left-most shortest match. It is also easy to see
that the new pattern requires a number of states linear in j because
it has removed the ambiguity for matching \s.

We provide a theorem for a more general case where the suf-
fix of a pattern contains a class of characters overlapping with its
prefix and a length restriction, “^A+[A-Z]{j}”. We prove that this
type of pattern can be rewritten to “^A[A-Z]{j}” with equivalence
guaranteed under the condition of non-overlap matching. Due to
space limitation, the interested reader is referred to [27] for details
of the proof. Note that our rewrite rule can also be extended to
patterns with various types of length restriction such as “^A+[A-
Z]{j+}” and “^A+[A-Z]{j,k}”. Details are omitted in the interest
of space.

Using Rewrite Rule (1), we successfully rewrote 17 similar
patterns in the Snort rule set. Detailed results regarding these re-
writes are reported in Section 5.2.

Rewrite Rule (2)
As we discussed in Section 3.2, patterns like
“.*AUTH\s[^\n]{100}” generate exponential numbers of states to
keep track of all the AUTH\s subsequent to the fist AUTH\s. If
non-overlapping matching is used, the intuition of our rewriting is
that after matching the first AUTH\s, we do not need to keep track
of the second AUTH\s. This is because (1) if there is a ‘\n’ charac-
ter within the next 100 bytes, the return character must also be
within 100 bytes to the second AUTH\s, and (2) if there is no ‘\n’
character within the next 100 bytes, the first AUTH\s and the fol-
lowing characters have already matched the pattern. This intuition
implies that we can rewrite the pattern such that it only attempts
to capture one match of the prefix pattern. Following the intuition,
we can simplify the DFA by removing the states that deal with the
successive AUTH\s. As shown in Figure 4, the simplified DFA
first searches for AUTH in the first 4 states, then looks for a white
space, and after that starts to count and check whether the next
100 bytes contain a return character. After rewriting, the DFA
only contains 106 states.

We derive our rewrite pattern from the simplified DFA shown
in Figure 4. Applying a standard technique that maps a DFA/NFA
to a regular expression [14], we transform this DFA to an equiva-
lent NFA in Figure 5. For the link that moves from state 1 back to
the start state in Figure 4(i.e., matching A then not U), the trans-
formed NFA places it at the start state and labels it with A[^U].
Note that, A[^U] actually constitutes two states, but to simplify
the illustration, we draw them onto one link. The transformed
NFA does the same for each link moving from state i (1≤i≤105) to
the start state in Figure 4. The transformed NFA can be directly
described using the following regular expression:

“([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s
[^\n]{0,99}\n)*AUTH\s[^\n]{100}”.
This rule first enumerates all the cases that do not satisfy the pat-
tern and then attaches the original pattern to the end of the new
pattern. In other words, “.*” is replaced with the cases that do not
match the pattern, represented by
([^A]|A[^U]|AU[^T]|AUT[^H]|AUTH[^\s]|AUTH\s[^\n]{0,99}\n)*.
Then, when the DFA comes to the states for AUTH\s[^\n]{100}, it
must be able to match the pattern. Since the rewritten pattern is
directly obtained from a DFA of size j+5, it generates a DFA of a

 7

linear number of states as opposed to an exponential number be-
fore the rewrite.

We also provide a theorem that proves the equivalence of the
new pattern and the original pattern for a more general case
“.*AB[A-Z]{j}” under the condition of non-overlapping matching
[27]. Moreover, we offer rewrite rules for patterns in other forms
of length restriction, e.g., “.*AB[A-Z]{j+}”.

Rewrite Rule (2) is applicable to 54 expressions in the Snort
rule sets and 49 in the Bro rule set. We wrote a script to automati-
cally rewrite these patterns and observed significant reduction in
DFA size. Detailed simulation results are reported in Section 5.2.

3.4 Notes for Pattern Writers
As mentioned above, an important outcome of this work is that
our pattern rewriter can automatically perform both types of re-
writing. An additional benefit is that our analysis provides insight
into how to write regular expression patterns amenable to efficient
DFA implementation. We discuss this in more detail below.

From the analysis in Section 3.2, we can see that patterns with
length restrictions can generate large DFAs. By studying typical
packet payload scanning pattern sets including Linux L7-filter,
Snort, and Bro, we found that 21.4-56.3% of the length restric-
tions are associated with classes of characters. The most common
classes of characters are “[^\n]”, “[^\]]” (i.e., not ‘]’), and “[^\]”,
used for detecting buffer overflow attempts. The length restric-
tions of these patterns are typically large (233 on the average and
reaching up to 1024). For these types of patterns, we highly en-
courage the pattern writer to add “^” so as to avoid the exponen-
tial state growth as we showed in Section 3.3. For patterns that
cannot start with “^”, the pattern writers can use the Rewrite Rule
2 to generate state efficient patterns.

Even for patterns starting with “^”, we need to carefully avoid
the interactions between a class of characters and its preceding
character as shown in Rewrite Rule 1. One may wonder why a
pattern writer uses \s+ in the pattern “^SEARCH\s+[^\n]{1024}”,
when it can be simplified as \s. Our understanding is that, in real-
ity, a server implementation of a search task usually interprets the
input in one of the two ways: either skip a white space after
SEARCH and take the following up to 1024 characters to conduct
a search, or skip all white spaces and take the rest for the search.
The original pattern writer may want to catch intrusion to systems
of either implementation. However, the original pattern will gen-
erate false positives if the server does the first type of implemen-
tation (skipping all the white spaces). This is because if an input is
followed by 1024 white spaces and then some non-whitespace
regular command of less than 1024 bytes, the server can skip
these white spaces and take the follow-up command successfully.
However, this input will be caught by the original pattern as intru-
sion because these white spaces themselves can trigger the alarm.
To catch attacks to this type of server implementation, while not
generating false positives, we need the following pattern.

 “^SEARCH\s+[^\s][^\n]{1023}”
In this pattern, \s+ matches all white spaces and [^\s] means the
first non white space character. If there are more than 1023 non
return characters following the first non white space character, it
is a buffer overflow attack. By adding [^\s], the ambiguity in the
original pattern is removed; given an input, there is only way of
matching each packet. As a result, this new pattern generates a
DFA of linear size.

4 SELECTIVE GROUPING OF
MULTIPLE PATTERNS
The previous section presented our analysis of the complexity of
the DFA created for individual patterns and two rewrite tech-
niques that simplify these DFA so that they could fit in memory.
In this section, we explore grouping of multiple patterns to further
improve pattern matching speed.

As mentioned in Section 2, it is well known that the computa-
tion complexity for processing m patterns reduces from O(m) to
O(1) per character, when the m patterns are compiled into a single
composite DFA. However, it is usually infeasible to compile a
large set of patterns together due to the complicated interactions
between patterns. In some cases, the composite DFA may experi-
ence exponential growth in size, although none of the individual
DFA has an exponential component.

Figure 6 shows a composite DFA for matching “.*AB.*CD”
and “.*EF.*GH”. This DFA contains many states that did not
exist in the individual DFAs. Among them, state 8 is created to
record the case of matching both prefixes AB and EF. Generally
speaking, if there are l patterns with one wildcard per pattern, we
need O(2l) states to record the matching of the power set of the
prefixes. In such scenarios, adding one more pattern into the DFA
doubles its size. If there are x wildcards per pattern, then (x+1)l
states are required. There are several such patterns in the Linux
L7-filter. For example, the pattern for the remote desktop protocol
is “.*rdpdr.*cliprdr.*rdpsnd”, and the pattern for Internet radio is
“.*membername.*session.*player”. Snort also has similar patterns
and the number of “.*” in a pattern can go up to six.

Figure 6. A DFA for pattern .*AB.*CD and .*EF.*GH

4.1 Regular Expressions Grouping Algorithms
As discussed above, certain patterns interact with each other when
compiled together, which can result in a large composite DFA. In
this section, we propose algorithms to selectively partition m pat-
terns to k groups such that patterns in each group do not adversely
interact with each other. As such, these algorithms reduce the
computation complexity from O(m) to O(k) without causing extra
memory usage.

We first provide a formal definition of interaction: two pat-
terns interact with each other if their composite DFA contains
more states than the sum of two individual ones. To calculate the
number of states in the composite DFA, we first construct an NFA
by adding a new start state, twoε edges leading to the individual
DFA, a new accepting state, and two ε edges from the DFA ac-
cepting states to the new accepting state, as shown in Figure 7.
Then we run the NFA to DFA conversion algorithm and the DFA
minimization algorithm to obtain the composite DFA.

 8

ε

ε

ε

ε

Figure 7. Composite NFA for two DFAs

We use the information on pairwise interaction to group a set
of m regular expressions. The intuition is that, if there is no inter-
action between any pair selected from three regular expressions
R1, R2, and R3, the composite DFA of R1, R2, R3 is not likely to
exceed the sum of individual ones. We validate this point using
empirical results in [27].

We devise grouping algorithms both for multi-core processor
architecture, where groups of patterns can be processed in parallel
among different processing units, and for general processor archi-
tecture, where the DFA for one group corresponds to one process
or thread. Due to space limitations, we present the algorithm for
the former architecture and refer the reader to [27] for the algo-
rithm for the latter.

In multi-core architecture, there are multiple parallel process-
ing units. Their number is usually limited, e.g., 16 in Intel
IXP2800 NPU, which is much smaller than the number of pat-
terns. Hence, one DFA per pattern per processing unit is infeasi-
ble. Our goal is to design an algorithm that divides regular expres-
sions into several groups, so that one processing unit can run one
or several composite DFAs. In addition, the size of local memory
of each processing unit is quite limited. For example, the newly
architected IBM cell processor has 8 synergistic processor ele-
ments, each with 128KB local memory [23]. Hence, we need to
keep grouping patterns until they meet the local memory limit.
The pseudo-code of the algorithm is provided below.

For regular expression Ri in the set

For regular expression Rj in the set
 Compute pairwise interaction of Ri and Rj

Construct a graph G(V, E)
V is the set of regular expressions, with one vertex per regu-

lar expression
E is the set of edges between vertices, with an edge (Vi, Vj) if

Ri and Rj interact with each other.
Repeat

New group (NG) = φ
Pick a regular expression that has the least interaction with

others and add it into new group NG
Repeat

Pick a regular expression R has the least number of
edges connected to the new group

 Compile NG ∪ {R} into a DFA
 if this DFA is larger than the limit
 break;
 else
 Add R into NG
Until every regular expression in G is examined
Delete NG from G

Until no regular expression is left in G

Grouping Algorithm
In this algorithm, we first compute the pairwise interaction of

regular expressions. With this pairwise information, we construct
a graph with each pattern as a vertex and an edge between pat-
terns Ri and Rj if they interact with each other. Using this graph,
we can start with a pattern that has least interaction with others,
and then try to add patterns that have least interactions into the

same group. We keep adding until the composite DFA is larger
than the local memory limit. Then we proceed to create a new
group from the patterns that remain ungrouped.

Discussion: Grouping multiple regular expressions into one
composite DFA is a well known technique to enhance matching
speed. Our algorithms focus on picking the right patterns to be
grouped together. Similar to our approach, systems like Bro group
patterns into one group, instead of several groups. They adopt a
lazy DFA-based approach, where they cache commonly used
DFA states and extend the DFA at run-time if needed. The dis-
tinction between our approach and Bro’s approach is that our
grouping algorithm produces scanners of deterministic complex-
ity. The lazy DFA-based approach, although fast and memory
efficient on most common inputs, may be exploited by intruders
to construct malicious packets that force the lazy DFA to enter
many corner cases [15]. Our fully-developed DFA does not have
performance degradation under such attacks.

5 EVALUTION RESULTS
We implement a DFA scanner with rewriting and grouping func-
tionality for efficient regular expression matching. In this section,
we evaluate the effectiveness of our rewriting techniques for re-
ducing DFA size, and the effectiveness of our grouping algo-
rithms for creating memory-efficient composite DFA. We also
compare the speed of our scanner against a DFA-based repeated
scanner generated by flex [25] and a best-known NFA-based
scanner [26]. Compared to the DFA-based repeated scanning
approach, our DFA-based one pass scanning approach has 12 to
42 times performance improvements. Compared to the NFA-
based implementation, our DFA scanner is 50 to 700 times faster
on traffic dumps obtained form MIT and Berkeley networks.

5.1 Experimental Setup
To focus on regular expressions commonly used in networking
applications, we select the following three complex pattern sets:
The first is from the Linux layer 7 filter [1] which contains 70
regular expressions for detecting different protocols. The second
is from the Snort system [2] which contains 1555 regular expres-
sions for intrusion detection. The last one is from Bro intrusion
detection system [3] with a total of 2781 regular expressions.

We use two sets of real-world packet traces. The first set is
the intrusion detection evaluation data set from the MIT DARPA
project [24]. It contains more than a million packets. The second
data set is from a local LAN with 20 machines at the UC Berkeley
networking group, which contains more than six million packets.
The characteristics of MIT dump are very different from Berkeley
dump. MIT dump mostly contains intrusion packets that are long,
with the average packet payload length being 507.386 bytes. In
the Berkeley dump, however, most packets are normal traffic,
with 67.65 bytes on average in the packet payload. A high per-
centage of the packets are ICMP and ARP packets that are very
short.

We use Flex [25] to convert regular expressions into DFAs.
Our implementation of the DFA scanner eliminates backtracking
operations [25]. It only performs one-pass search over the input
and is able to report matching results at the position of the end of
each matching substring.

All the experimental results reported were obtained on PCs
with 3.4 Ghz CPU and 3.7 GB memory.

 9

5.2 Effect of Rule Rewriting
We apply our rewriting scheme presented in Section 3.3 to the
Linux L7-filter, Snort and Bro pattern sets. For the Linux L7-filter
pattern set, we do not identify any pattern that needs to be rewrit-
ten. For the Snort pattern set, however, 71 rules need to be rewrit-
ten. For Bro, 49 patterns (mostly imported from Snort) need to be
rewritten using Rewrite Rule 2. For these patterns, we gain sig-
nificant memory savings as shown in Table 5. For both types of
rewrite, the DFA size reduction rate is over 98%.

17 patterns belong to the category for which Rewrite Rule 1
can be applied. These patterns (e.g., “^SEARCH\s+[^\n] {1024}”)
all contain a character (e.g., \s) that is allowed to appear multiple
times before a class of characters (e.g., [^\n]) with a fixed length
restriction (e.g., 1024). As discussed in Section 3.2, this type of
pattern generates DFAs that expand quadratically in the length
restriction. After rewriting, the DFA sizes come down to linear in
the length restriction. A total of 103 patterns need to be rewritten
using Rewrite Rule 2. Before rewriting, most of them generate
exponential sized DFAs that cannot even be compiled success-
fully. With our rewriting techniques, the collection of DFAs cre-
ated for all the patterns in the Snort system can fit into 95MB
memory, which can be satisfied in most PC-based systems.

Table 5. Rewriting effects
Type of Re-
write

Rule
Set

Number
of Pat-
terns

Average
length
restriction

DFA
Reduc-
tion Rate

Snort 17 370 >98% Rewrite Rule
1: (Quadratic

case) Bro 0 0 0

Snort 54 344 >99%1 Rewrite Rule
2:

(Exponential
Case)

Bro 49 214.4 >99%1

5.3 Effect of Grouping Multiple Patterns
In this section, we apply the grouping techniques to regular ex-
pression sets. We show that our grouping techniques can intelli-
gently group patterns to boost system throughput, while avoiding
extensive memory usages. We test on three pattern sets: the Linux
L7-filter, the Bro http-related pattern set and the Bro payload
related pattern set. The patterns of L7-filter can be grouped be-
cause the payload of an incoming packet is compared against all
the patterns, regardless of the packet header information. For the
Bro pattern set, as most rules are related to packets with specific
header information, we pick the http related patterns (a total of
648) that share the same header information, as well as 222 pay-
load scanning patterns that share the same header information.
Note that we do not report the results of using the Snort rule set
because its patterns overlap significantly with those of the Bro
rule set.

5.3.1 Grouping Results
We apply our grouping algorithms to all three pattern sets and
successfully group all of them into small (<5) numbers of groups.
For the Bro’s http pattern set, since patterns do not interact with
each other, it is possible to compile all 648 patterns into one com-

1 Note, we use over 99% because some of the patterns create too many
states to be compiled successfully without rewriting. 99% is obtained by
calculating those successful ones.

posite DFA of 6218 states. The other two sets, however, cannot be
grouped into one group due to interactions. Below, we report
results obtained using our grouping algorithm for the multi-core
architecture, where local memory is limited. The results for the
general processor architecture are in [27].

Table 6(a) shows the results for Linux L7-filter pattern set.
We start by limiting the number of states in each composite DFA
to 617, the size of the largest DFA created for a single pattern in
the Linux L7-filter set. The actual memory cost is 617 times 256
next state pointers times log(617) bits for each pointer, which
amounts to 192 KB. Considering that most modern processors
have large data caches (>0.5MB), this memory cost for a single
composite DFA is comparatively small. Our algorithm generates
10 groups when the limit on the DFA size is set to 617. It creates
fewer groups when the limit is increased to larger numbers. As
today’s multi-core network processors have 8-16 engines, it is
feasible to allocate each composite DFA to one processor and take
advantage of parallelism.

With our grouping algorithms, we can decrease the number of
pattern groups from 70 (originally ungrouped) to 3 groups. This
means that, given a character, the generated packet content scan-
ner needs to perform only three state transitions instead of the 70
state transitions that were necessary with the original ungrouped
case. This results in a significant performance enhancement (show
in Section 0).

For Bro’s payload pattern set, we can group more patterns
into one group. As Table 6(b) shows, starting from 540, the larg-
est individual DFA size, the grouping algorithm can group 222
patterns into 11 groups. As the DFA state limit increases, the
number of groups decreases down to 4.

Beyond the effectiveness, Table 6 present the running time of
our grouping algorithms. This overhead is a one-time cost. In
networking environments, the packet content scanner operates
continuously until there are new patterns to be inserted to the
system. As patterns in the Linux L7-filter or Bro system do not
change frequently, the occasional overhead of several minutes is
affordable. In addition, we do not need to regroup all patterns
given any new pattern. We can just compute its pairwise interac-
tions with existing patterns and pick a group that yields least total
interactions. This type of incremental update computation time is
in average less than 1 second on the Bro payload pattern set.

Table 6. Results of grouping algorithms for the multi-core
architecture

6(a) Linux L7-filter (70 Patterns)
Composite
DFA state

limit
Groups

Total Num-
ber of States Compilation

Time (s)

617 10 4267 3.3
2000 5 6181 12.6
4000 4 9307 29.1

16000 3 29986 54.5

6(b) Payload patterns from Bro (222 Patterns)
Composite
DFA state

limit
Groups

Total Num-
ber of States Compilation

Time (s)

540 11 4868 20
1000 7 4656 118
2000 5 5430 780
6000 4 9197 1038

 10

5.3.2 Speed Comparison
We compare our DFA-based algorithms with the starte-of-the-art
NFA-based regular expression matching algorithm. Both L7-filter
and Snort systems use this NFA-based library. We also compare it
with the DFA-based repeated scan approach generated by flex
[25]. The results are summarized in Table 7. Our DFA-based one
pass scanner is 47.9 to 704 times faster than the NFA-based scan-
ner. Compared to DFA-based repeated scan engine, our scanner
yields a performance improvement of 1244% to 4238%. Also note
that although these dumps have dramatically different characteris-
tics, our scanner provides similar throughputs over these dumps
because it scans each character only once. The other two ap-
proaches are subject to dramatic change in throughput (1.8 to 3.4
times) over these traces, because they need to do backtracking or
repeated scans. Of course, we admit that the memory usage of our
scanner is 2.6 to 8.4 times the NFA-based approach. However, the
largest scanner we created (Linux L7-filter, 3 groups) uses
13.3MB memory, which is well under the memory limit of most
modern systems.

Table 7. Comparison of the Different Scanners

Throughputs
(Mb/s)

MIT
dump

Berkeley
dump

Memory
Consump-
tion (KB)

NFA 0.98 3.4 1636
DFA RP 16.3 34.6 7632

Linux
L-7

DFA OP 3 groups 690.8 728.3 13596
NFA 30.4 56.1 1632

DFA RP 117.2 83.2 1624
Bro

Http
DFA OP 1 group 1458 1612.8 4264

NFA 5.8 14.8 1632
DFA RP 17.1 25.6 7628

Bro

Payload
DFA OP 3 groups 566.1 568.3 4312

NFA—NFA-based implementation
DFA RP – Flex generated DFA-based repeated scan engine
DFA OP – Our DFA one pass scanning engine

6 CONCLUSION AND FUTURE WORK
We considered the implementation of fast regular expression
matching for packet payload scanning applications. While NFA-
based approaches are usually adopted for implementation because
naïve DFA implementations can have exponentially growing
memory costs, we showed that with our rewriting techniques,
memory-efficient DFA-based approaches are possible. While we
do not claim to handle all possible cases of dramatic DFA growth
(in fact the worse case cannot be improved), rewrite rules do over
those patterns present in common payload scanning rulesets like
SNORT and Bro, thus making fast DFA-based pattern matching
feasible for today’s payload scanning applications. It is possible
that a new type of attack also generates signatures of large DFAs.
For those cases, unfortunately, we need to study the signature
structures before we can rewrite them.

In addition, we presented a scheme that selectively groups
patterns together to further speed up the matching process. Our
DFA-based implementation is 2 to 3 orders of magnitude faster
than the widely used NFA implementation and 1 to 2 orders of
magnitude faster than a commonly used DFA-based parser. Our
grouping scheme can be applied to general processor architecture
where the DFA for one group corresponds to one process or

thread, as well as to multi-core architecture where groups of pat-
terns can be processed in parallel among different processing units.
In the future, it would be an interesting study to apply different
DFA compression techniques and explore tradeoffs between the
overhead of compression and the savings in memory usage.

7 REFEENCES
[1] J. Levandoski, E. Sommer, and M. Strait, "Application Layer Packet
Classifier for Linux." http://l7-filter.sourceforge.net/.
[2] "SNORT Network Intrusion Detection System." http://www.snort.org.
[3] "Bro Intrusion Detection System." http://bro-ids.org/Overview.html.
[4] L. Tan and T. Sherwood, "A High Throughput String Matching Archi-
tecture for Intrusion Detection and Prevention," Proc. LISA, 2005.
[5] Y. Cho and W. Mangione-Smith, "Deep packet filter with dedicated
logic and read only memories," Proc. FCCM, 2004.
[6] Z. K. Baker and V. K. Prasanna, "Time and area efficient pattern
matching on FPGAs," Proc. FPGAs, 2004.
[7] Z. K. Baker and V. K. Prasanna, "A methodology for synthesis of
efficient intrusion detection systems on FPGAs.," Proc. FCCM, 2004.
[8] M. Aldwairi, T. Conte, and P. Franzon, "Configurable string matching
hardware for speedup up intrusion detection," Proc. WASSA, 2004.
[9] S. Dharmapurikar, M. Attig, and J. Lockwood, "Deep packet inspec-
tion using parallel bloom filters," IEEE Micro, 2004.
[10] F. Yu, R. H. Katz, and T. V. Lakshman, "Gigabit Rate Packet Pattern
Matching with TCAM," Proc. ICNP, 2004.
[11] Y. H. Cho and W. H. MangioneSmith, "A Pattern Matching Coproc-
essor for Network Security," Proc. DAC, 2005.
[12] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu, "Proc-
essing XML Streams with Deterministic Automata and Stream Indexes,"
ACM TODS, vol. 29, 2004.
[13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer, "Path
Sharing and Predicate Evaluation for High-Performance XML Filtering,"
ACM TODS, 2003.
[14] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Auto-
mata Theory, Languages, and Computation, Addison Wesley, 2001.
[15] R. Sommer and V. Paxson, "Enhancing Byte-Level Network Intru-
sion Detection Signatures with Context," Proc. CCS, 2003.
[16] J. Moscola, J. Lockwood, R. P. Loui, and Michael Pachos, "Imple-
mentation of a Content-Scanning Module for an Internet Firewall," Proc.
FCCM, 2003.
[17] R. Sidhu and V. K. Prasanna, "Fast regular expression matching
using FPGAs," Proc. FCCM, 2001.
[18] R. Franklin, D. Carver, and B. Hutchings, "Assisting network intru-
sion detection with reconfigurable hardware," Proc. FCCM, 2002.
[19] C. R. Clark and D. E. Schimmel, "Scalable pattern matching for high
speed networks," Proc FCCM, 2004.
[20] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, J. Turner., "Algo-
rithms to accelerate Multiple Regular Expression Matching for Deep
Packet Inspection," ACM Sigcomm 2006.
[21] "Standard for Information Technology, Portable Operating System
Interface (POSIX)," Portable Applications Standards Committee of IEEE
Computer Society and the Open Group.
[22] C. L. A. Clarke and G. V. Cormack, "On the use of regular expres-
sions for searching text," Technical Report CS-95-07, Department of
Computer Science, University of Waterloo, 1995.
[23] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, "Introduction to the Cell multiprocessor," IBM J. RES. &
DEV., vol. 49, JULY/SEPTEMBER 2005.
[24] "MIT DARPA Intrusion Detection Data Sets."
http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html.
[25] V. Paxson et al., "Flex: A fast scanner generator."
http://www.gnu.org/software/flex/.
[26] Perl compatible Regular Expression, http://www.pcre.org/
[27] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman and R. H. Katz,, " Fast and
Memory-Efficient Regular Expression Matching for Deep Packet Inspec-
tion," UC Berkeley technical report, May 2006.
[28] B. C. Brodie, R. K. Cytron, and D. E. Taylor, “A Scalable Architec-
ture for High-Throughput Regular-Expression Pattern Matching,” ISCA
2006.

