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Abstract: A fast multichannel Stokes/Mueller polarimeter with no
mechanically moving parts has been designed to have close to optimal
performance from 430− 2000 nm by applying a genetic algorithm. Stokes
(Mueller) polarimeters are characterized by their ability to analyze the full
Stokes (Mueller) vector (matrix) of the incident light (sample). This ability
is characterized by the condition number, κ , which directly influences
the measurement noise in polarimetric measurements. Due to the spectral
dependence of the retardance in birefringent materials, it is not trivial to
design a polarimeter using dispersive components. We present here both a
method to do this optimization using a genetic algorithm, as well as simu-
lation results. Our results include fast, broad-band polarimeter designs for
spectrographic use, based on 2 and 3 Ferroelectric Liquid Crystals, whose
material properties are taken from measured values. The results promise to
reduce the measurement noise significantly over previous designs, up to a
factor of 4.5 for a Mueller polarimeter, in addition to extending the spectral
range.
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1. Introduction

Polarimeters are applied in a wide range of fields, from astronomy [1–3], remote sensing [4] and
medical diagnostics [5, 6] to applications in ellipsometry such as characterizing gratings [7],
nanostructures [8] and rough surfaces [9–11]. As all polarimeters are based on inverting so-
called system matrices, it is well known that the measurement error from independent Gaus-
sian noise is minimized when the condition number (κ) of these system matrices is mini-
mized [12,13]. It has been shown that κ =

√
3 is the best condition number that can be achieved

for such a system, and that this optimal condition number can be achieved by several different
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approaches using various optical components (e.g. rotating retarders [14], division of ampli-
tude [15, 16], and liquid-crystal variable retarders [17]). In many applications it is necessary to
perform fast spectroscopic measurements (e.g. by using a Charge-Coupled Device (CCD) based
spectrograph) [18]. In that case, the wavelength dependence of the optical elements will cause
the polarimeter not to be optimally conditioned over the full range simultaneously. A system
based on two Ferroelectric Liquid Crystals (FLC) has been reported to be fast and reasonably
well conditioned over the visible or near infrared spectral range [18–20]. By introducing a third
FLC a similar system has been proposed to have an acceptable condition number from the visi-
ble to the near infra-red (430−1700 nm) [21]. The design of a system having the best possible
condition number over a broad spectrum is a challenging optimization problem due to the large
number of parameters; many optimization algorithms are prone to return local optimums, and
a direct search is too time consuming. To avoid this time-consuming exhaustive search, we
decided to employ the Genetic Algorithm (GA). A GA simulates evolution on a population of
individuals in order to find an optimal solution to the problem at hand. Genetic Algorithms were
pioneered by Holland [22], and are discussed in detail in e.g. Ref. [23]. GAs have previously
been applied in ellipsometry to solve the inversion problem for the thickness and dielectric
function of multiple thin layers, see e.g. Ref. [24–26].

2. Overdetermined polarimetry

A Stokes polarimeter consists of a polarization state analyzer (PSA) capable of measuring the
Stokes vector of a polarization state, see Fig. 1. The PSA is based on performing at least 4 dif-
ferent measurements along different projection states. A measured Stokes vector S can then be
expressed as S = A−1b, where A is a system matrix describing the PSA and b is a vector con-
taining the intensity measurements. A−1 denotes the matrix inverse of A, which in the case of
overdetermined polarimetry with more than 4 projection states will denote the Moore–Penrose
pseudoinverse. The analyzing matrix A is constructed from the first rows of the Mueller matri-
ces of the PSA for the different states. The noise in the measurements of b will be amplified by
the condition number of A, κA, in the inversion to find S. Therefore κA should be as small as
possible, which correspond to do as independent measurements as possible (i.e. to use projec-
tion states that are as orthogonal as possible).

A Mueller matrix M describes how an interaction changes the polarization state of light, by
transforming an incoming Stokes vector Sin to the outgoing Stokes vector Sout = MSin. To mea-
sure the Mueller matrix of a sample it is necessary to generate at least 4 different polarization
states by a polarization state generator (PSG) and measure the outgoing Stokes vector by at
least 4 measurements for each generated state. The measured intensities can then be arranged
in a matrix B = AMW, where the system matrix W of the PSG contains the generated Stokes
vectors as its columns. These generated Stokes vectors are found simply as the first column
of the Mueller matrix of the PSG in the respective states. M can then be found by inversion
as M = A−1BW−1. The error ΔM in M is then bounded by the condition numbers according
to [27]

‖ΔM‖
‖M‖ � κWκA

‖ΔB‖
‖B‖ +κA

‖ΔA‖
‖A‖ +κW

‖ΔW‖
‖W‖ . (1)

The condition number is given as κA = ‖A‖‖A−1‖, which for the the 2-norm can be calcu-
lated from the ratio of the largest to the smallest singular value [28]. ΔA and ΔW are calibration
errors, which increase with κ when calibration methods using matrix inversion are applied. The
PSG can be constructed from the same optical elements as the PSA, placed in the reverse order,
which would give κA = κW ≡ κ . As the error in Mueller matrix measurements is proportional
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b) Mueller polarimeter

a) Stokes polarimeter

PSA

PSAPSG Sample Sensor

Sensor

Fig. 1. (a) A Stokes polarimeter measures the polarization state of an arbitrary light source
using a Polarization State Analyzer (PSA). (b) A Mueller polarimeter measures how the po-
larization state of light, generated by with a Polarization State Generator (PSG), is changed
by a sample.

PSA

FLC1 WP1 FLC2 WP2 FLC3 WP3 Pol.

Fig. 2. Sketch of a PSA consisting of 3 FLC’s, 3 waveplates (WP), each with a retardance
δ and an orientation θ relative to the transmission axis of a polarizer.

to κ2, it is very important to keep this value as low as possible.
If 4 optimal states can be achieved (giving κ =

√
3), no advantage is found by doing a larger

number of measurements with different states, compared to repeated measurements with the 4
optimal states [14]. If, however, these optimal states can not be produced (κ >

√
3), the con-

dition number, and hence the error, can be reduced by performing more than 4 measurements.
For a FLC based polarimeter this can be done by using 3 FLCs followed by a polarizer as PSA,
with up to 3 waveplates (WP) between the FLCs to increase the condition number (see Fig. 2).
A PSG can be constructed with the same elements in the reverse order. Since each FLC can be
switched between two states (this switching can be described as a rotation of the fast axis of a
retarder by +45◦), 23 = 8 different states can be analyzed (generated) by the PSA (PSG). To ac-
curately measure the Stokes vector, the system matrix A needs to be well known. For a Mueller
polarimeter generating and analyzing 4 states in the PSG and PSA, the eigenvalue calibration
method (ECM) [29] can be applied. The ECM allows the measuring of the actual produced
states by the PSA and PSG (A and W), without relying on exact knowledge or modeling of
the optical components. However, the ECM is based on the inversion of a product of measured
intensity matrices B for measurements on a set of calibration samples. This product becomes
singular for a system analyzing and generating more than four states. A workaround of this
problem is to choose the subset of 4 out of 8 states which gives the lowest κ value, and build a
B matrix of those states to find 4 of the 8 rows (columns) of A (W). More rows (columns) of
A (W) can then be found by calibrating on a different subset of the 8 states, giving the second
lowest κ value, and so on. By repeating the calibration on different subsets of states, all the 8
rows (columns) of A (W) can be found with low relative error ‖ΔA‖/‖A‖ (‖ΔW‖/‖W‖).
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Reproduction Mutation

Mating contest Development

Fig. 3. The four essential processes in a genetic algorithm are shown above. Sexual repro-
duction is performed by multi-point genetic crossover, giving rise to the next generation
of individuals. Mutation can be simulated with simple bit negation (e.g. 0 → 1 and vice
versa). Development is the process where a genotype is interpreted into its phenotype, i.e.
the binary genome is interpreted as a polarimeter design. In the mating contest, one eval-
uates the fitness of each individual’s phenotype, and let the more fit individuals reproduce
with higher probability than the less fit individuals.

3. Genetic optimization

In order to optimize κ(λ ), one can conceivably employ a variety of optimization algo-
rithms, from simple brute-force exhaustive search to more advanced algorithms, such as e.g.
Levenberg–Marquardt, simulated annealing, and particle swarm optimization. Our group has
previously performed optimization of a polarimeter design based on fixed components, namely,
two FLCs and two waveplates. In this case, the optimization problem reduces to searching the
space of 4 orientation angles. With a resolution of 1◦ per angle, this gives a search space con-
sisting of 1804 ≈ 109 states to evaluate; on modern computer hardware, this direct search can be
performed. In order to optimize the retardances of the components as well, the total number of
states increases to about

(
109

)2
= 1018. Obviously, brute force exhaustive search is unfeasible

for such large search spaces.
A GA performs optimization by simulating evolution in a population of individuals (here:

simulated polarimeters). The three pillars of evolution are variation, heritability, and selection.
Our initial population must have some initial genetic variation between the individuals; hence,
we initialize our population by generating random individuals. Heritability means that the chil-
dren have to carry on some of the traits of their parents. We simulate this by either cloning
parents into children (asexual reproduction) or by performing genetic crossover (sexual repro-
duction) in a manner that leave children with some combination of the traits of their parents.
Finally, selection is done by giving more fit individuals a larger probability of survival. For this
purpose, we used the tournament selection protocol, described in Ref. [23]. For a sketch of the
essential processes involved in a GA, see Fig. 3.

Our GA builds directly on the description given by Holland [22], using a binary genome as
the genetic representation. In this representation, a string of 0s and 1s represent the genome of
the individual. To simulate mutation in our genetic algorithm, we employ logical bit negation;
i.e. 0 → 1 or vice versa. Sexual reproduction is simulated by using multi-point crossover, i.e.
simply cutting and pasting two genomes together, as described by Holland [22].

The interpretation of the genome into a phenotype (development), in this case a polarimeter
design, is done in a straightforward way. For each variable in the polarimeter’s configuration,
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i.e. for each orientation angle and each retardance, we select m bits in the genome (typically,
m = 8) and interpret this number as an integer in the range from 1 to 2m. The integer is subse-
quently interpreted as a real number in a predefined range, e.g., θ ∈ [0◦,180◦]. In order to avoid
excessively large jumps in the search space due to mutations, we chose to implement the inter-
pretation of bits into integers by using the Gray code, also known as the reflected binary code.
The most important parameter values in our GA are shown in Table 2. Making good choices
for each of these parameters is often essential in order to ensure good convergence.

After determining the phenotype, we must assign to each simulated polarimeter individual
a fitness function (also known as the objective function). In order to do this, we first calculate
κ(λ ). As discussed, κ−1(λ ) maximally takes on the value 1/

√
3. Hence, we define an error

function, e, as

e =
1

Nλ

Nλ

∑
n=1

(
κ−1(λn)−1/

√
3
)4

. (2)

In Eq. (2), λn = λmin +(n− 1)Δλ , with n = 1,2, . . . ,Nλ and Δλ = 5 nm. λmin and Nλ are
determined by the wavelength range we are interested in. The choice of taking the difference
between κ−1(λ ) and the optimal value to power 4 is done in order to “punish” peaks in the
condition number more severely. As GAs conventionally seek to maximize the fitness function,
we define an individual’s fitness as

f =
1
e
. (3)

This definition is convenient because f takes on real and positive values where higher values
represents more optimal polarimeter designs.

4. Results

For the case of a polarimeter based on 3 FLCs and 3 WPs, we have minimized κ(λ ) by varying
the orientation angle, θ , and the retardance, δ , of all the elements. This yields a 12-dimensional
search space, i.e., 6 retardances and 6 orientation angles. θ is the angle between the fast axis of
the retarder (WP or FLC) and the transmission axis of the polarizer (see Fig. 2), taken to be in
the range θ ∈ [0◦,180◦]. The retardance, δ , is modeled using a modified Sellmeier equation,

δ ≈ 2πL

[
AUV

(λ 2 −λ 2
UV )

1/2
− AIR

(λ 2
IR −λ 2)1/2

]
, (4)

where AUV , AIR, λUV , and λIR are experimentally determined parameters for an FLC (λ/2@510
nm, Displaytech Inc.) and a Quartz zero order waveplate (λ/4@465 nm) taken directly from
Refs. [19] (for the FLCs, AIR = 0). L is a normalized thickness, with L = 1 corresponding to
a retardance of λ/2@510 nm for the FLCs and λ/4@465 nm for the waveplates. Each L and
θ are represented by 8 bits each in the genome. We use experimental values to ensure that our
design is based on as realistic components as possible.

The 3-FLC polarimeter design scoring the highest fitness function is shown in Table 1. The
wavelength range for which we optimized the polarimeter was from 430 to 2000 nm. To visu-
alize the performance of this design, we show a plot of κ−1(λ ) in Fig. 4. The inverse condition
number, κ−1, is larger than 0.5 over most parts of the spectrum, which is close to the optimal
inverse condition number (κ−1 = 1/

√
3 = 0.577). This is a great improvement compared to

the earlier reported 3-FLC design [21], which oscillates around κ−1 ≈ 0.33. The new design
promise a decrease in noise amplification by up to a factor of 2.1 for a Stokes polarimeter, and
up to factor of 4.5 for a Mueller polarimeter. In addition the upper spectral limit is extended
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Table 1. Orientation angles, θ , and normalized thicknesses L, of the components of the best
3-FLC polarimeter. (WP = (fixed) waveplate)

Component θ [◦] L
FLC1 56.5 2.44
WP1 172.9 1.10
FLC2 143.3 1.20
WP2 127.1 1.66
FLC3 169.4 1.42
WP3 110.1 4.40

from 1700 nm to 2000 nm. Shorter wavelengths than 430 nm were not considered as the FLC
material will be degraded by exposure to UV light. Previous designs often suffer from κ−1(λ )
oscillating as a function of wavelength, whereas our solution is more uniform over the wave-
length range we are interested in. This uniformity in κ(λ ) will, according to Eq. (1), give a
more uniform noise distribution over the spectrum.

To give some idea of how fast the GA converges, a plot of f [see Eq. (3)] as a function of the
generation number is shown in Fig. 5. The mean population fitness (μ) and standard deviation
(σ ) is also shown. As so often happens with genetic algorithms, we see that the maximal and
average fitness increases dramatically in the first few generations. Following this fast initial
progress, evolution slows down considerably, before it finally converges after 600 generations.
The parameters used in our GA to obtain these results are shown in Table 2.

A design using fewer components, in particular 2 FLCs and 2 waveplates, does have advan-
tages. These advantages include increased transmission of light, as well as reduced cost and
complexity with respect to building and maintaining the instrument. In addition some applica-
tions have weight and volume restrictions [3]. For these reasons, we have performed genetic
optimization of the 2-FLC design. In Fig. 6, we show the performance of two polarimeter de-
signs for the wavelength ranges 430−1100 nm (compatible with an Si detector) and 800−1700
nm. Both of these polarimeter designs show condition numbers which are considerably better

Fig. 4. Inverse condition number for the best GA-generated 3-FLC design. For comparison,
we show the inverse condition number of the patented 3-FLC design [21].
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Fig. 5. Convergence of fitness as a function of generation number. μ and σ refer to the
average and standard deviation of the population’s fitness, respectively. The best result
from this simulation is the one shown in Fig. 4.

Table 2. Genetic Algorithm parameters. The “crossover rate” is the probability for two
parents to undergo sexual reproduction (the alternative being asexual reproduction). The
parameter “crossover points” refer to the number of points where we cut the genome during
crossover (sexual reproduction). “Mutation rate” is the probability for any given individual
to undergo one or several bit flip mutations in one generation

Parameter Value
Crossover rate 0.7
Crossover points 2
Mutation rate 0.2
Population size 500

Table 3. Orientation angle, θ , and normalized thickness, L, of the 2-FLC polarimeters
shown in Fig. 6

Visible design NIR design
Component θ [◦] L θ [◦] L
FLC 1 90.4 1.17 177.9 2.60
WP 1 3.5 3.58 112.9 2.94
FLC 2 92.5 1.02 74.8 1.75
WP 2 19.8 3.52 163.1 4.71

than previously reported designs. The numerical parameters of the two designs based on 2 FLCs
are shown in Table 3.

Our optimization algorithm can, with little effort, be applied to a wider range of polarimeter
design. Any optical component can be included into our GA; for example, one can include fixed
waveplates of different materials, prisms, mirrors, and other types of liquid crystal devices. The
material of each component could also be a variable, which could help alleviate the dispersion
problem. The only requirement is that the retardance of the component in question must be
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Fig. 6. Condition number for two designs using 2 FLC retarders and 2 waveplates. By op-
timizing κ(λ ) over a narrower part of the spectrum, we can design good polarimeters with
fewer components. The polarimeter designs labeled “Visible” and “IR” show our two de-
signs, optimized for 430 nm < λ < 1100 nm and 800 nm < λ < 1700 nm, respectively. For
comparison with our “NIR” design, we show the previous simulated design from Ref. [30].
The curve labeled “Commercial” shows the measured condition number of a commercial
instrument (MM16, Horiba, 2006) based on the same (FLC) technology.

possible to either model theoretically or measure experimentally. It is possible to optimize a
polarimeter for a different wavelength range, simply by changing program inputs. Focusing on
a wavelength range which is as narrow as possible typically results in higher condition numbers
than reported here. Evaluating different technologies, materials and components for polarimetry
should thus be relatively straightforward. The task is not computationally formidable: we have
used ordinary desktop computers in all our calculations.

5. Conclusion

In conclusion, we have used genetic algorithms to optimize the design of a fast multichannel
spectroscopic Stokes/Mueller polarimeter, using fast switching ferroelectric liquid crystals. We
have presented three polarimeter designs which promise significant improvement with respect
to previous work in terms of noise reduction and spectral range. Our approach requires rela-
tively little computational effort. One can easily generate new designs if one should wish to
use other components and materials, or if one wishes to focus on a different part of the opti-
cal spectrum. We hope that our designs will make polarimetry in general, and ellipsometry in
particular, a less noisy and more efficient measurement technique.
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