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Fast and Precise 3D Fluorophore 

Localization based on Gradient 

Fitting
Hongqiang Ma1, Jianquan Xu1, Jingyi Jin1,2, Ying Gao2,3, Li Lan3 & Yang Liu1

Astigmatism imaging approach has been widely used to encode the fluorophore’s 3D position in single-
particle tracking and super-resolution localization microscopy. Here, we present a new high-speed 
localization algorithm based on gradient fitting to precisely decode the 3D subpixel position of the 
fluorophore. This algebraic algorithm determines the center of the fluorescent emitter by finding 
the position with the best-fit gradient direction distribution to the measured point spread function 
(PSF), and can retrieve the 3D subpixel position of the fluorophore in a single iteration. Through 
numerical simulation and experiments with mammalian cells, we demonstrate that our algorithm yields 
comparable localization precision to the traditional iterative Gaussian function fitting (GF) based method, 
while exhibits over two orders-of-magnitude faster execution speed. Our algorithm is a promising high-
speed analyzing method for 3D particle tracking and super-resolution localization microscopy.

Localization microscopy, known as di�erent names including (�uorescence) photo-activated localization 
microscopy [(f) PALM]1,2 and (direct) stochastic optical reconstruction microscopy [(d) STORM]3,4, has 
become a powerful imaging tool to reveal the ultra-structures and understand the complicated mech-
anisms behind cellular function. �e principle of localization microscopy is straightforward: a small 
subset of densely labeled �uorophores is sequentially switched “on” to obtain the sparsely distributed 
individual �uorescent emitters in a single frame, and the position of each emitter is determined by local-
ization algorithm at a nanometer precision; a�er accumulating the localized positions from thousands of 
imaging frames, the spatial resolution of the �nal reconstructed image can be improved by ~10 times.

By further combining the point spread function (PSF) engineering methods5–7, the capabilities of 
localization microscopy have been extended to resolve biological structures in all three dimensions. 
Various PSF engineering methods share a similar underlying principle that the axial position is encoded 
as the shape of the PSF in the lateral plane, which can be later decoded through image analysis. Among 
them, astigmatism approach has gained popularity because of its simple experimental con�guration. By 
introducing astigmatism to the optical system (using a cylindrical lens5,8,9 or deformable mirror10,11), the 
axial position of the �uorophore is encoded as the ellipticity of the PSF. Generally, by employing a 2D 
elliptical Gaussian function to �t the elliptical PSF, a resolution of ~20 nm in the lateral dimension and 
~50 nm in the axial dimension have been achieved5.

�e spatial resolution of localization microscopy is directly a�ected by the precision of the localiza-
tion algorithm. For the best spatial resolution, iterative Gaussian function �tting (GF) based algorithms 
are usually employed12,13. But the slow execution speed of such algorithm that o�en takes several hours 
to reconstruct a standard super-resolution image is an intrinsic disadvantage of the GF based methods. 
Hence, they do not apply to the cases when fast image reconstruction and online data analysis are 
needed, such as real-time optimization of imaging parameters. For this purpose, several single-iteration 
algorithms have been developed in the past few years to accelerate the execution speed while providing 
comparable precision to the GF based algorithm14–18. Unfortunately, these algorithms are mainly designed 
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for 2D �tting of a circular PSF, and their precision for retrieving the 3D position is signi�cantly compro-
mised when the spatial distribution of �uorescent emission is not isotropic, such as astigmatism-based 
imaging with elliptical PSF. Hence, it is important to develop a highly e�cient 3D localization algorithm 
for astigmatism-based single particle tracking or super-resolution localization microscopy with both sat-
isfactory localization precision and execution speed.

In this paper, we present an algebraic algorithm based on gradient �tting for fast 3D �uorophore local-
ization in astigmatism-based microscopy. We utilize the relationship of the gradient direction distribution 
and the position of the �uorescent emitter to determine the x–y position and ellipticity of the PSF by 
�nding the best-�t gradient direction distribution (Fig. 1a). �en, this algorithm estimates the position of 
PSF in all three dimensions by looking up the z-ellipticity calibration curve (Fig. 1b). �rough numerical 
simulation and experiments with �uorescent nanospheres and mammalian cells, we demonstrate that the 
proposed single-iteration algorithm can achieve localization precision close to multiple iterative GF based 
algorithm in all three dimensions, while yielding over 100 times faster computation speed.

Results
�e localization precision and execution speed of our gradient �tting based algorithm were compared 
with four commonly used localization methods, including QuickPALM15, nonlinear least squares 
Gaussian function �tting using width-di�erence calibration (NLLS-WD)10, nonlinear least squares 
Gaussian function �tting using width-approximation calibration (NLLS-WA)5, and maximum likelihood 
Gaussian function �tting using width-approximation calibration (MLE-WA)19,20. QuickPALM is a widely 
used single-iterative 3D localization algorithm for online localization imaging when computational sim-
plicity is crucial. NLLS-WD and NLLS-WA are the most commonly used localization methods because 
of their high precision, robustness and relatively faster speed compared to MLE. MLE-WA is considered 
as the most precise method that achieves theoretically minimum uncertainty (Crámer-Rao lower bound, 
CRLB) to date, when the PSF model and noise model are correctly chosen.

Localization precision and speed via numerical simulation. We �rst compared the localization 
precision of all �ve algorithms with numerically simulated images, as shown in Fig.  2. �e simulated 
images were generated using the �uorescent properties of the commonly used �uorophore Alexa-647 
(see “Methods” for details). We found that our gradient �tting based algorithm achieves a localization 
precision similar to the GF based algorithm (NLLS-WD, NLLS-WA, and MLE-WA) in both lateral 
(Fig. 2a–b) and axial dimensions (Fig. 2c), at di�erent axial positions. In particular, the precision of our 
algorithm in x–y dimensions is superior to that of NLLS-WA and NLLS-WD and second only to the 
most precise MLE-WA for a long range of axial positions from − 200 nm to 400 nm. On the other hand, 
our algorithm maintains the fast speed as the single-iterative algorithm such as QuickPALM, but with a 

Figure 1. �e principle of the gradient �tting based algorithm. (a) �e image of a single �uorescent 
emitter, where the red dot indicates the exact x–y position of the molecule, the red and blue arrows show 
the exact gradient directions and the calculated gradient directions of that position, respectively; the green 
dashed lines indicate the corresponding exact gradient lines, and the magenta dashed ellipse indicates the 
shape of the PSF. (b) �e z–e (ellipticity) calibration curve used to look up the axial position according 
to the calculated ellipticity. �ree representative patterns of a single emitter are shown to indicate the 
PSFs at the corresponding axial positions. Note that a 4th-order polynomial function is used to �t the z–e 
calibration curve.
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much better precision, especially in the axial dimension. Overall, our gradient �tting algorithm achieves 
a lateral precision of less than 10 nm and an axial precision of less than 40 nm for super-resolution local-
ization imaging at the presented axial depth range and signal level.

Next, we evaluated the localization speed of these algorithms by counting the average time con-
sumed for one localization, as shown in Table 1. Not surprisingly, we found that the two single-iteration 
algorithms (gradient �tting and QuickPALM) run much faster than the three multiple-iteration algo-
rithms (NLLS-WD, NLLS-WA, and MLE-WA). More speci�cally, our gradient �tting based algorithm 
runs more than 100 times faster than GF based methods (NLLS-WD, NLLS-WA, and MLE-WA). Note 
that, a GPU or multicores CPU were previously used for GF based algorithm to accelerate the execution 
speed by 10 ~ 100 times19–21, but our algorithm shows a superior localization speed even without using 
any high-performance computing hardware.

Localization performance via experiments with fluorescent nanospheres. We evaluated 
the performance of our gradient �tting based algorithm in an experiment using �uorescent nano-
spheres. Using a commercial super-resolution localization microscopy system (N-STORM, Nikon Inc.), 
we captured three image stacks of single �uorescent nanospheres (100 nm diameter, TetraSpeck, Life 
Technologies) at the axial position of 160 nm, 0 nm and − 160 nm, respectively. At each position, we 
captured 1000 images with a frame rate of 100 fps, and an average photon number of ~10,000 per locali-
zation. �e localized positions of the �uorescent nanospheres were projected onto the X, Y and Z dimen-
sions, and the Gaussian function was used to �t the localization pro�le in the three dimensions.

At three depths (160, 0–160 nm), our algorithm shows a precision of less than 11 nm in X and Y 
dimensions and less than 40 nm in Z dimension, close to that of the GF based algorithm (NLLS-WD, 
NLLS-WA, and MLE-WA), superior to the performance of QuickPALM, as shown in Fig. 3. �is result is 
in good agreement with that of numerical simulation, although the precision of the experimental results 
of all �ve algorithms was a little worse, as system dri� and unavoidable imaging aberration result in a 
non-perfect elliptical Gaussian function of the real PSF in the experiment. Our gradient �tting based 
algorithm, NLLS-WD and NLLS-WA provide the best performance in X and Y dimensions. However, the 

Figure 2. Comparison of localization precision using simulation. Localization precision in x dimension 
(a), y dimension (b), and z dimension (c) at di�erent imaging depths. Note that the localization precision is 
quanti�ed as the standard deviation of the estimated positions. Given the known position of the simulated 
image, we also compared the localization accuracy, or the root mean square error between the actual 
position and the estimated position using these �ve methods, which is shown in Supplementary Figure S1.

Method

Simulation

Time (ms)a Gainb

Gradient �tting 0.089 1

QuickPALM 0.025 0.28

MLE-WA 18.3 206

NLLS-WD 12.4 139

NLLS-WA 12.9 145

Table 1.  Average time consumption per localization for the simulated images. aAveraged from 10,000 
simulated molecules with a sub-region box of 15 ×  15 pixels for all the �ve algorithms. b�e speed gain of 
our gradient �tting based algorithm over other algorithms.
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precision of the theoretically best MLE-WA is compromised due to the non-perfect Gaussian shape of the 
PSF. Note that, the deviation of the central z position between di�erent algorithms comes from the dif-
ferent bias between the true position and the position derived from the corresponding calibration curve.

Localization performance for 3D single-particle tracking. We then evaluated the performance of 
our gradient �tting based localization algorithm in single-particle tracking for nanospheres and telomeres. 
First, we tracked a single �uorescent nanosphere (100 nm diameter, TetraSpeck, Life Technologies) in 
glycerol at a frame rate of 200 fps for one second and a photon number of ~10000 per localization. 
We compared the mean square distance (MSD) of the �uorescent nanosphere for di�erent localization 
algorithms, and found that our gradient �tting based methods exhibit similar results with the GF based 
method (NLLS-WD, NLLS-WA, and MLE-WA), as shown in Fig.  4b. Second, we evaluated their per-
formance in biologically signi�cant telomere tracking22. Telomeres labeled with RFP in live U2OS cells 
were tracked for 6 seconds at a frame rate of 33 fps and a photon number of ~5000 per localization. Our 
algorithm also showed a similar MSD value to those from GF based methods (NLLS-WD, NLLS-WA and 
MLE-WA), as shown in Fig. 4c. As the exact position of the telomere is unknown, we cannot determine 
which algorithm provides the most accurate result. Nevertheless, the single-particle tracking experiment 
demonstrate that our gradient �tting based algorithm gives similar particle-tracking results (MSD) with 
the GF based method (NLLS-WD, NLLS-WA, and MLE-WA) in both ideal physical sample and live 
mammalian cells.

Localization performance for 3D STORM imaging. We also evaluated the performance of our gra-
dient �tting based algorithm in 3D super-resolution localization imaging of microtubules. �e microtu-
bules labeled with Alexa-647 in �xed mouse embryo �broblast (MEF) cells were imaged with N-STORM 
(Nikon) and reconstructed using our gradient �tting algorithm, as shown in Fig. 5a,c. Figure 5d,e show 
the molecule counting distribution pro�le in lateral and axial dimensions, to characterize the locali-
zation performance from �ve di�erent localization algorithms. We found that our algorithm yields a 

Figure 3. Localization performance of our gradient �tting based algorithm, QuickPALM, MLE-WA, 

NLLS-WA and NLLS-WD for experiments with �uorescent nanospheres. Localization precision is 
compared in X, Y and Z dimensions at the depth of 160 nm (a), 0 nm (b) and − 160 nm (c). �e localization 
precision of di�erent algorithms is presented in the �gure legend.
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lateral full width at half maximum (FWHM) of ~35 nm (Fig. 5d) in imaging microtubules of MEF cells, 
which can clearly resolve the hollow structure (~40 nm between the two peaks); and an axial FWHM 
of ~90 nm (Fig. 5e), close to that from GF based algorithm (NLLS-WD, NLLS-WA, and MLE-WA), and 
much better than that from QuickPALM, consistent with our simulation study. Note that, the average 
photon number per localization events is ~1500 in this experiment, which represents non-ideal scenario 
 without a full  optimization of photon e�ciency. To localize all the molecules (~30,000) of this exper-
iment (Fig.  5a), our algorithm consumed ~2.7 seconds. Compared to over 6.5 minutes using GF based 
algorithms, it represents more than 100 times improvement, consistent with our previous simulation 
results.

Discussion
We present an e�cient 3D localization algorithm based on gradient �tting for single-particle track-
ing or super-resolution localization microscopy with both superior localization precision and execution 
speed. Compared to traditional GF based algorithm, this single-iteration algorithm is based on simple 
algebraic operation without signi�cant computational complexity, and thus can be implemented with a 
high computational speed. Unlike the widely used single-iteration localization algorithm—QuickPALM 
that compromises precision for high speed, our gradient �tting based algorithm archives a similar 
precision to those multiple iteration GF localization algorithms, but is still competitive in localization 
speed. �erefore, our gradient �tting based algorithm represents a promising approach for high-speed 
implementation of 3D super-resolution image reconstruction and single-particle tracking in embed-
ded devices23 and low-cost, portable devices such as smart phones24,25. Moreover, considering that the 
high-speed imaging cameras, such as scienti�c Complementary Metal Oxide Semiconductors (sCMOS), 
has been introduced to super-resolution localization microscopy with a large �eld of view26,27, the speed 
advantage of our algorithm will also be more attractive for high-throughput 3D super-resolution imaging 

Figure 4. Localization performance in single-particle tracking experiments. �e tracking trajectory of 
(a) a single �uorescent nanosphere and (c) a single telomere tracked by our gradient �tting based algorithm. 
Comparison of mean square distance (MSD) of (b) the nanosphere and (d) telomere movement for di�erent 
localization algorithms.
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and single-particle tracking. Alternatively, in the case where multiple iteration GF localization algorithm 
is still required, our algorithm can be used for the �rst iteration to get a more accurate estimation of 
the starting point and signi�cantly reduce the iteration times. If a more appropriate gradient operator, 
weighting parameter and initial values can be identi�ed, the performance of this method will be further 
improved. Further, given that no symmetric shape of the PSF is assumed, this method, in principle, is 
capable of retrieving the position for any kind of PSF. Although we only demonstrated the 3D position 
retrieval capability of gradient �tting based method, we believe gradient �tting can also be used in 
other applications, e.g. molecule dipole orientation detection, pattern matching etc. by combining a priori 
information of PSF.

Conclusion
In conclusion, we describe a single-iterative localization algorithm for 3D single particle tracking and 
super-resolution localization microscopy using astigmatism imaging. Our algorithm employs gradient 
distribution �tting to determine the precise 3D position of the �uorescent emitter. We demonstrate 
that our gradient �tting based algorithm is capable of reconstructing 3D super-resolution images with a 
precision similar to the standard interactive Gaussian function �tting algorithm across a wide range of 
depth, while executing at more than 100 times faster. We believe that this algebraic algorithm has a great 
potential for high-speed online data analysis of 3D super-resolution localization microscopic images in 
embedded devices and low-cost and portable microscopy using smart phones.

Methods
Gradient fitting based algorithm. Generally, the emitter’s PSF pro�le (I) in the astigmatism-based 
microscopy can be approximated by a 2D elliptical Gaussian function, which can be expressed by the 
following equation:5
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where (xc, yc) is the lateral center position of the emitter, (wx, wy) is the width of the emitter’s PSF in x and 
y dimensions, N is the emitter’s total photon numbers and (m, n) is the coordinate on the lateral plane.

By calculating the partial derivatives of the above elliptical PSF, the emitter’s exact gradient distribu-
tion (G) can be easily derived as follows:

Figure 5. 3D STORM imaging of microtubules in MEF cells. (a) �e 3D STORM image reconstructed by 
our gradient �tting based algorithm. (b,c) �e higher zoom of (b) the conventional wide-�eld image and 
(c) the lateral plane projection of STORM image for the area shown in the green box of (a). Localization 
performance of di�erent algorithms are compared in lateral dimension (d) and axial dimension (e). Scale 
bar: 500 nm.
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For a noise-free, non-pixelated image, the measured gradient distribution of the PSF should be equal 
to its exact value G. But, given the unavoidable shot noise and �nite pixel size, the measured image is 
a noisy and pixelated image, and the exact G cannot be directly obtained. In this case, we �rst use two 
optimized gradient operators to convolve with the raw image (A) to get the measured gradient distribu-
tion (g), which gives a good approximation of the exact value G:
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However, the measured gradient distribution g may still deviate from its exact value G. Hence, we 
utilize the nonlinear least squares method to �nd the best-�t G with the minimal total deviation (D) to 
the measured g. �e deviation is de�ned as the angle (θ) between G and g, which can be approximated 
by the following equation:
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where e is de�ned as the ellipticity (wy/wx)
2. Note that, θ can be approximated by sin θ, given small θ.

�en, the total deviation (D) can be determined as the sum of the θ2:
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where e0 and (x0, y0) are the initial value of e and (xc, yc), which are pre-estimated by the centroid 
method15. W is the weighting parameter18, considering that the gradient direction is more accurately 
determined (i.e., larger W) at positions with higher intensity-gradient or lower intensity variation. In 
other words, at the positions near the center of emitter, a higher intensity variation is o�en seen (due to 
the higher intensity level of the emitter), which results in a smaller weighting parameter. �is weighting 
parameter W can be simply de�ned by the following equation:
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Note that, employing only the gradients in the central area for analysis improves the performance of 
this algorithm. Because the signal of the outer pixels are relative low, they are more easily a�ected by 
the background and the signals from the neighboring emitter, which leads to obvious localization errors.

Mathematically, D achieves the minimal value at the position where the partial derivative is equal 
to zero, and the estimated lateral center position and ellipticity e could be obtained by a closed-form 
solution of the following equation:
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�en, we need to decode the axial position. Two calibration methods are generally used: 
width-di�erence calibration for smaller bias and width-approximation calibration for better precision28. 
Width-di�erence calibration determines the unknown axial position by looking up the width-di�erence 
(wy–wx) calibration curve15, while width-approximation method estimates the unknown axial position 
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by comparing (wx, wy) with two width-calibration curves and �nding the best-�t value5. Here, because 
our algorithm directly calculates the ellipticity e, so we use z–e calibration curve for our algorithm to 
retrieve the unknown z position.

Finally, starting from the raw images, the complete procedures of our gradient �tting based algorithm 
for 3D localization of single �uorophore are summarized as follows.

Step 1: Denoising and �uorophore extraction as described previously15,20.
Step 2: Determine the x–y position and ellipticity e of the emitter’s PSF using eq. (3–7).
Step 3: Estimate the z position according to the z–e calibration curve.

�e source code implemented in Matlab can be found on our website: http://www.pitt.edu/~liuy.

Axial position calibration. We acquired z-stack images of a single �uorescent nanosphere 
(100nm diameter, TetraSpeck, Life Technologies) at a series of di�erent axial positions controlled by a 
nano-positioning stage and MLE-WA algorithm was used to retrieve the Gaussian kernel (wx, wy) for 
each z position, to build the calibration curve (as shown in Supplementary Figure S2). �e position with 
the minimal width di�erence (|wx–wy|) is de�ned as the zero position. Please note that four images were 
acquired at each axial position and the average value of wx, and wy were used at each position to reduce 
the deviation. A 4th-order polynomial is used to �t each calibration curve.

Numerical simulation. To evaluate the performance of our gradient �tting based method, a series of 
image sets with a single molecule were numerically generated. �e molecule was randomly distributed 
in the central pixel of a 33 ×  33 pixels image. �e PSF was modeled with integrated elliptical Gaussian 
function, and the width of Gaussian kernel (wx, wy) was set according to the value retrieved from the 
calibration curve using �uorescent nanospheres (Supplementary Figure S2), with a defocus depth from 
− 0.4 µ m to 0.4 µ m. �e pixel size was set to be 160 nm to match the experimental setup. �e total photon 
number of the molecules were kept to be 5000 photons to mimic the photon number of a commonly 
used �uorophore (Alexa 647) in the experiment29. �e background was set to be 100 photons per pixel 
to be consistent with the experimental dataset. �e noise was modeled with a Poisson model, consider-
ing a low-light detector with negligible camera noise typically used to capture the image. For each axial 
position, 1000 images were generated and analyzed. Subregion of 15 ×  15 pixels were extracted for all 
algorithms.

Optical system. Commercial microscopy from Nikon Instruments (N-STORM) was employed for 
all imaging and tracking experiments in this paper. Under the oblique angle illumination, the �uores-
cent emission was collected by the objective (100× , NA 1.49, oil immersion, Nikon), together with the 
EMCCD camera (iXon 897, Andor), and a cylindrical lens is inserted in the optical path for 3D astigma-
tism imaging. A Perfect Focus System (PFS) was used in all the experiment for dynamic dri� correction. 
All analysis were performed using MATLAB R2014a (MathWorks) on the same desktop computer (Intel 
Core i7-4790, 3.60 GHz). �e 3D image in Fig. 5 is reconstructed using Volview 3.4.

3D telomere tracking. U2OS cells were cultured in Dulbecco’s Modi�ed Eagle’s Medium (DMEM, 
Lonza) with 10% fetal bovine serum (Atlanta Biologicals) at 37 °C and 5% CO2. Before imaging, cells 
were transfected with RFP-TRF1 for 24 hours. RFP-TRF1 was bound to telomeric DNA, serving as a 
surrogate marker for telomeres. A 561 nm excitation laser was used and the telomeres were tracked for 
6 seconds with an exposure time of 30 ms and EM gain of 10.

3D Super resolution localization imaging. MEF cells were used for 3D super resolution localiza-
tion imaging. MEF cells were planted on a glass bottomed petri dish and cultured in Dulbecco’s Modi�ed 
Eagle’s Medium (DMEM, Lonza) with 10% fetal bovine serum (Atlanta Biologicals) at 37 °C and 5% 
CO2 for 24 hours before immunostaining. �en, the cells were �xed with 1:1 acetone/methanol solution 
for 10 minutes at room temperature, followed by standard immuno�uorescence staining procedure. In 
brief, the cells were incubated with Anti-alpha tubulin rabbit primary antibody (abcam) overnight at 4 °C 
and 2 h with Alexa 647 F(ab′ )2-goat anti-mouse/rabbit IgG (H +  L) secondary antibody (Invitrogen). 
Immediately before imaging, the bu�er was switched to the STORM imaging bu�er according to Nikon 
N-STORM protocol (50 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.1 M cysteamine (MEA), 10% w/v glucose, 
0.56 mg/mL glucose oxidase, 0.17 mg/mL catalase). In this experiment, 647 nm laser was used for excita-
tion, and we acquired 20,000 frames with exposure time of 60 ms and EM gain of 100. Note that, addi-
tional dri� correction algorithm based on cross-correlation was used for accurate system dri� correction.
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