
Fast and Precise Handling of Positive Weight

Cycles for Field-sensitive Pointer Analysis

Yuxiang Lei and Yulei Sui �

University of Technology Sydney, Australia

Abstract. By distinguishing the fields of an object, Andersen’s field-
sensitive pointer analysis yields better precision than its field-insensitive
counterpart. A typical field-sensitive solution to inclusion-based pointer
analysis for C/C++ is to add positive weights to the edges in Andersen’s
constraint graph to model field access. However, the precise modeling is
at the cost of introducing a new type of constraint cycles, called positive

weight cycles (PWC s). A PWC , which contains at least one positive
weight constraint, can cause infinite and redundant field derivations of
an object unless the number of its fields is bounded by a pre-defined
value. PWC s significantly affect analysis performance when analyzing
large C/C++ programs with heavy use of structs and classes.
This paper presents Dea, a fast and precise approach to handling of
PWC s that significantly accelerates existing field-sensitive pointer anal-
yses by using a new field collapsing technique that captures the derivation
equivalence of fields derived from the same object when resolving a PWC .
Two fields are derivation equivalent in a PWC if they are always pointed
to by the same variables (nodes) in this PWC . A stride-based field repre-
sentation is proposed to identify and collapse derivation equivalent fields
into one, avoiding redundant field derivations with significantly fewer
field objects during points-to propagation. We have conducted exper-
iments using 11 open-source C/C++ programs. The evaluation shows
that Dea is on average 7.1X faster than Pearce et al.’s field-sensitive
analysis (Pkh), obtaining the best speedup of 11.0X while maintaining
the same precision.

Keywords: Pointer analysis · Field-sensitive · Cycle elimination · Pos-
itive weight cycle.

1 Introduction

Pointer analysis, which statically approximates the runtime values of a pointer,
is an important enabling technology that paves the way for many other program
analyses, such as program understanding, bug detection and compiler optimi-
sations. Andersen’s analysis (or inclusion-based analysis) represents one of the
most commonly used pointer analyses for Java and C/C++ programs. Field-
sensitivity is an important precision enhancement that is naturally used in An-
dersen’s analysis for analyzing Java [1–4], but is rarely used in many Andersen’s
analyses for C/C++ [5–9].

2 Y. Lei and Y. Sui

typedef struct A {int idx; /* f0 */ A* next; /* f1 */ } A;

1 A* p, q;

2 for(...){

3 p=malloc(...);//o

4 q=&p->next;

5 p=q;

6 }

{o} ⊆ p

p+ 1 ⊆ q

q ⊆ p

(a) C code (b) Constraints (c) Solving a PWC on the constraint graph

Fig. 1: A positive weight cycle example in Pearce’s field-sensitive analysis.

Developing field-sensitive analysis for C/C++ is much harder than that for
Java. The key difficulty, as also mentioned in [10, 11], is that the address of a field
can be taken in C/C++ (via an address-of-field instruction q=&p→f), whereas
Java does not permit taking the address of a field. Accessing the value of a field in
Java is through the load/store instruction associated with an extra field specifier
in Java’s bytecode given its strongly-typed language feature. However, in the
C/C++ intermediate representation (e.g., LLVM IR), a load/store only accepts
a single pointer operand without a field specifier even for the reading/writing
values of a field. The address taken by the pointer operand needs to be computed
by the analysis itself to identify which field of an object the load/store may
access.

To simplify the complicated field-sensitivity in C/C++, the majority of the
works on Andersen’s analysis are field-insensitive (i.e., accessing a field of an
object is treated as accessing the entire object). One representative field-sensitive
analysis proposed by Pearce et al. [10] offers a field-index-based object modeling,
which distinguishes the fields of an object by their unique indices (with nested
structs expanded), yielding better precision than field-insensitive analysis [10,
11]. The approach extends Andersen’s inclusion constraints [12] to differentiate
an address-of-field instruction q=&p→fi from a simple copy instruction q=p

by adding a positive weight i to the field-insensitive constraint p ⊆ q to obtain
the field-sensitive one p+ i ⊆ q, indicating that q points to i-th field of an object
o that p points to. In contrast, field-insensitive analysis imprecisely assumes that
p and q both point to object o based on the non-weighted constraint p ⊆ q.

The field-sensitive points-to relations are resolved by computing the dynamic
transitive closure on top of the extended Andersen’s constraint graph, where
each node represents a variable and each edge denotes an inclusion constraint
between two variables. One key challenge for field-sensitive analysis is to detect
and resolve a new type of cycles, called positive weight cycles (PWCs) on the
constraint graph. A PWC is a cycle containing at least one positive weighted
constraint edge. A PWC differs from a normal constraint cycle (or non-PWC
containing only copy constraints) in two fundamental ways: (1) the points-to
sets of variables in a non-PWC are identical after constraint resolution, but the
points-to sets of variables in a PWC can be different, and (2) computing the

Fast and Precise Handling of Positive Weight Cycles 3

transitive closure of a non-PWC terminates once a fixed-point is reached, but a
PWC can cause infinite derivations unless a maximum number of fields of each
object is specified.

Figure 1 gives an example from [10, §4.1] to illustrate a PWC that incurs
infinite derivations during constraint resolution. Figure 1(b) gives the constraints
transformed from the code via Pearce et al.’s modeling [10]. Figure 1(c) shows
its corresponding constraint graph with a PWC containing a positive weighted
edge from p to q (p+1 ⊆ q) and a simple copy edge from q back to p (q ⊆ p).
An abstract object o allocated at line 3 is initially added to p’s points-to set.
Note that the object is modeled per allocation site (e.g., malloc) in Andersen’s
analysis. The constraint p+1 ⊆ q derives a new field object given each object
that p points to. The new object is then propagated back to p via q ⊆ p for a
new round of field derivation due to this PWC , resulting in infinitely deriving
fields o.f1, o.f1.f1, ... from the base object o.

To avoid infinite derivations, Pearce et al. [10] set a maximum number of fields
for each object to ensure that field access via an index is always within the scope
of an object. For a stack and global object, its number of fields can be statically
determined based on its declared types. However, a dynamically allocated heap
object may have an unknown number of fields and is thus assumed to have as
many as the largest struct in the program, causing redundant derivations.

To accelerate the constraint resolution, cycle elimination is a commonly used
technique that merges nodes within a cycle into one node if the point-to sets
of the nodes in this cycle are identical. However, the existing cycle elimination
approaches [13, 14, 5, 6] in field-insensitive analysis can not be directly applied to
solve PWC s in field-sensitive analysis. Unlike nodes in a non-PWC , nodes in a
PWC may not have identical points-to sets, thus collapsing all nodes in a PWC
leads to precision loss. Collapsing only non-PWC s following previous algorithms
cannot solve the infinite derivation problem in field-sensitive analysis.

This paper presents Dea, a fast and precise approach to handling of PWC s
in field-sensitive Andersen’s analysis. Rather than cycle elimination, we present
a field collapsing technique to solve PWC s by capturing derivation equivalence.
Two fields derived from the same object are derivation equivalent when solving
a PWC if these fields are always pointed to by the same variables (nodes) in
this PWC . A new stride-based field representation (Sfr) is proposed to identify
and collapse derivation equivalent fields when field-sensitive constraints.

Our handling of PWC s significantly boosts the performance of existing field-
sensitive analysis (e.g., [10] proposed by Pearce et al.), while achieving the
same precision. By capturing derivation equivalence, Dea avoids redundant field
derivations with greatly reduced overhead during points-to propagation, making
constraint solving converge more quickly. Our precision-preserving handling of
PWC s can be easily integrated into existing Andersen’s field-sensitive analy-
ses, and is also complementary to the state-of-the-art cycle elimination methods
for non-PWC s. Our evaluation shows that Dea on average achieves a speed
up of 7.1X over Pkh equipped with a recent cycle elimination technique, wave
propagation [6] for analyzing 11 open-source large-scale C/C++ programs.

4 Y. Lei and Y. Sui

Table 1: Analysis domains, LLVM instructions, and constraint edges
Analysis Domains

i, j, w ∈ Z Integer constants
o ∈ O Abstract objects
o.fi ∈ F Abstract field objects
a, b, c ∈ A=O ∪ F Address-taken variables
p, q, r ∈ P Top-level variables
u, v ∈ V=A ∪ P Variables

Instruction Constraint Type

p = &o p
AddrOf
←−−− o AddrOf

p = q p
Copy
←−− q Copy

p = &q→fi p
Fieldi←−−− q Field

p = ∗q p
Load
←−− q Load

∗p = q p
Store
←−−− q Store

The key contributions of this paper are:

– We present a fast and precise handling of positive weight cycles to signif-
icantly boost the existing field-sensitive Andersen’s analysis by capturing
derivation equivalence when solving PWC s.

– We propose a new stride-based field abstraction to identify and collapse a
sequence of derivation equivalent fields.

– We have implemented Dea in LLVM-7.0.0 and evaluated using 11 real-world
large C/C++ programs. The results show that Dea on average is 7.1X faster
than Pearce et al.’s field-sensitive analysis with the best speedup of 11.0X.

2 Background and Motivating Example

This section introduces the background of field-sensitive Andersen’s analysis,
including program representation, abstract object modeling and inference rules.
We then give a motivating example to explain the key idea of derivation equiv-
alence when resolving PWC s.

2.1 Program Representation and Field-sensitive Analysis

We perform our pointer analysis on top of the LLVM-IR of a program, as in [15–
17, 11, 18]. The domains and the LLVM instructions relevant to field-sensitive
pointer analysis are given in Table 1. The set of all variables V is separated
into two subsets, A = O∪F which contains all possible abstract objects and
their fields, i.e., address-taken variables of a pointer, and P which contains all
top-level variables, including stack virtual registers (symbols starting with “%”)
and global variables (symbols starting with “@”) which are explicit, i.e., directly
accessed. Address-taken variables in A are implicit, i.e., accessed indirectly at
LLVM’s load or store instructions via top-level variables.

After the SSA conversion, a program is represented by five types of instruc-
tions: p = &o (AddrOf), p = q (Copy), p = &q → fi (Field or Address-of-field)
p=∗q (Load) and ∗p= q (Store), where p, q ∈ P and o ∈ O. Top-level variables
are put directly in SSA form, while address-taken variables are only accessed
indirectly via Load or Store. For an AddrOf p=&o, known as an allocation site,
o is a stack or global variable with its address taken or a dynamically created

Fast and Precise Handling of Positive Weight Cycles 5

p = &a;

a = &b;

q = &c;

*p = *q;

p = &a;

t1 = &b;

*p = t1;

q = &c;

t2 = *q;

*p = t2;

C code LLVM IR

Fig. 2: C code fragment and its
LLVM IR.

struct A{

int x;

struct B y;

...

}

struct B{

int v0;

int v1;

int v2;

}

Fig. 3: The flattened fields with their
unique indices (i.e., o.f0, o.f1, o.f2, o.f3,
...) for object o of type struct A

.

abstract heap object (e.g., via malloc()). Parameter passings and returns are
treated as Copys.

Figure 2 shows a code fragment and its corresponding partial SSA form,
where p, q, t1, t2 ∈ P and a, b, c ∈ A. Note that a is indirectly accessed at a
store ∗p = t1 by introducing a top-level pointer t1 in the partial SSA form.
Complex statements such as ∗p=∗q are decomposed into basic instructions by
introducing a top-level pointer t2.

Our handling of field-sensitivity is ANSI-compliant [19]. For each struct al-
location e.g., p = &o, a field-insensitive object o is created to represent the
entire struct object. The fields of a struct are distinguished by their unique in-
dices [10, 11] with the fields of nested structs flattened as illustrated in Figure 3.
A field object denoted by o.fi is derived from o when analyzing Field q=&p→fi
(LLVM’s getelementptr instruction), where fi denotes the i-th field of o and i is
a constant value. Following [10], the address of o is modeled by the address of
its first field with index 0. All other fields are modeled using distinct subobjects.
Two pointer dereferences are aliased if one refers to o and another refers to one
of its fields e.g., o.fi, since it is the sub component of o. However, dereferences
refer to distinct fields of o (e.g., o.f2 and o.f3) which are distinguished and not
aliased.

For a C pointer arithmetic (e.g., q = p+j), if p points to a struct object o, we
conservatively assume that q can point to any field of this struct object, i.e., the
entire object o. This is based on the assumption that the pointer arithmetic is
not across the boundary of the object. Similar to previous practices for analyzing
C/C++, the analysis can be unsound if a pointer arithmetic used to access an
aggregate object is out of the boundary or arbitrary castings between a pointer
and an integer. Arrays are treated monolithically, i.e., accessing any element of
an array is treated as accessing the entire array object.

In Andersen’s analysis [12], resolving the points-to sets pts(v) of a vari-
able v is formalized as a set-constraint problem on top of the constraint graph
G = 〈V,E〉, where each node v ∈ V represents a variable, and an edge e ∈ E

between two nodes represents one of the five types of constraints (Table 1). Fig-
ure 4 gives the inference rules of field-sensitive analysis, which solves a dynamic
transitive closure on G by propagating points-to information following the es-

6 Y. Lei and Y. Sui

[ADDROF]
p

AddrOf
←−−−−o

o ∈ pts(p)
[COPY]

v
Copy
←−−u

pts(u) ⊆ pts(v)

[FIELD-1]
p

Fieldi
←−−−q o ∈ pts(q)
o.fi ∈ pts(p)

[FIELD-2]
p

Fieldi
←−−−q o.fj ∈ pts(q)
o.fi+j ∈ pts(p)

[STORE]
p

Store
←−−−q a ∈ pts(p)

a
Copy
←−−q

[LOAD]
p

Load
←−−q a ∈ pts(q)

p
Copy
←−−a

Fig. 4: Inference rules of Pearce et al.’s field-sensitive Andersen’s analysis

tablished Copy/Field edges and by adding new Copy edges until a fixed-point is
reached [12].

2.2 A Motivating Example

Figure 5 gives an example to show the redundant derivations when solving a
PWC on the constraint graph by Pkh [10] (Pearce et al.’s field-sensitive analy-
sis) based on its inference rules (Figure 4). We illustrate how our idea captures
the derivation equivalence by using a stride-based representation to collapse
fields which are always pointed to by all the pointers in this PWC . The example
consists of five types of constant edges corresponding to the five types of instruc-
tions in Table 1 with one PWC involving nodes p1 and p2. Pointer r initially
points to o ([ADDROF]). The points-to set of p2 has the field o.f1 derived from

the object o when resolving p2
Field1
←−−−r ([FIELD-1]). Since p1

Field2
←−−−p2 and p2

Copy
←−−p1

form a PWC with a positive weight +2, a sequence of field objects starting from
o.f3 with a stride 2 are iteratively derived and added into p1’s points-to set
([FIELD-2]) and then propagated back to p2 ([COPY]). These field objects are
derivation equivalent because all the fields are always pointed to by both p1 and

p2 in this PWC , incurring redundant derivations. Even worse, the edgep1
Store
←−−−q1

flowing into and the edge q2
Load
←−−p1 going out of this PWC add redundant Copy

edges (e.g., o.f3
Copy
←−−q1 and q2

Copy
←−−o.f3)) based on [STORE] and [LOAD], causing

redundant points-to propagation, as also illustrated in Figure 5(a).

To avoid redundant field derivations and unnecessary Copy edges when re-
solving Load and Store. Our idea is to merge derivation equivalent fields into
a stride-based polynomial representation o.fi+ks, where i is the starting field,
s is the stride corresponding to the weight of the PWC , and k ∈ N. Figure
5(b) illustrates the new representation o.f3+2k for collapsing equivalent fields
{o.f3, o.f5, ...} in Figure 5(a). The new representation successfully reduces the
number of points-to targets during points-to propagation and the number of
Copy edges added into the constraint graph when solving Store/Load edges,
while maintaining the same precision, i.e., the points-to sets of r, p1, p2 (after
expanding the fields based on the polynomial representation) are identical to
those produced by Pkh.

Fast and Precise Handling of Positive Weight Cycles 7

pts(r) = {o}
pts(p1)={o.f3+2k}={o.f3, o.f5, ...}
pts(p2)={o.f1}∪{o.f3+2k}

(a) PWC resolved by Pearce et al.’s method (b) PWC resolved by our approach

Fig. 5: A motivating example.

3 Our Approach

This section details our approach to handling of PWC s in field-sensitive pointer
analysis, including the stride-based field abstraction to represent derivation equiv-
alent fields and the inference rules based on the new field representation.

3.1 Stride-based Field Representation

Definition 1 (Stride-based Field Representation (SFR)). We use σ =
〈o, i, S〉 to denote a single object or a sequence of fields in Pearce et al.’s modeling
starting from i-th field following the strides in S. The field expansion of 〈o, i, S〉
is as follows:

FX(〈o, i, S〉)=

{o} if S=∅ ∧ i=0

{o.fj

∣

∣

∣
j= i+

|S|
∑

n=1

knsn, j ≤ max, kn∈N, sn∈S} otherwise

where max denotes the maximum number of fields of object o and sn is the
n-th element of the stride set S which models precisely field derivations when
a Field edge resides in one or multiple PWC s. We use 〈o, 0, ∅〉 to represent the
entire object o and its single field o.fi is denoted by 〈o, i, {0}〉. Sfr unifies the
notations of an object and its fields. The expansion of an Sfr fully represents
the objects and fields in Pearce et al.’s modeling, while it reduces the number
of points-to targets during constraint solving. Two Sfrs can be disjointed or
overlapping (Definition 2).

8 Y. Lei and Y. Sui

[E-ADDROF]
p

AddrOf
←−−−−o σ = 〈o, 0, ∅〉

σ ∈ pts(p)
[E-COPY]

v
Copy
←−−u

pts(u) ⊆ pts(v)

[E-FIELD]
p

Fieldi
←−−−q 〈o, j, S〉 ∈ pts(q) S′=Strides(p Fieldi

←−−−q) σ=〈o, i+j, S∪S′〉

6 ∃ σ′ ∈ pts(p) : σ ⊑ σ′ ⇒ σ ∈ pts(p)

[E-STORE]
p

Store
←−−−q σ∈pts(p)

σ
Copy
←−−q

[E-LOAD]
p

Load
←−−q σ∈pts(q)

∀σ′ : σ ⊓ σ′ 6=∅ ⇒ p
Copy
←−−σ′

Strides(e) =

{

{0} if edge e is not in any PWC

{WC | ∀C⊆E : e ∈ C} otherwise (Definition 4)

Fig. 6: Inference rules of our approach

Definition 2 (Overlapping and disjointed SFRs). Two Sfrs are overlap-
ping, denoted as σ⊓σ′ 6= ∅ if σ = σ′ or two different Sfrs derived from the same
object o have at least one common field, i.e., FX(〈o, i, S〉)∩FX(〈o, i′, S′〉) 6= ∅.
A special case is the subset relation between two overlapping Sfrs, denoted as
σ ⊑ σ′, i.e., FX(〈o, i, S〉)⊆FX(〈o, i′, S′〉). We say that two Sfrs are disjointed
if σ ⊓ σ′ = ∅.

Example 1 (Field expansion). The expanded fields of 〈o, 1, {2}〉 are FX(σ) =
{o.f1, o.f3, o.f5...}. Likewise, the fields represented by 〈o, 1, {5, 6}〉 are FX(σ)=
{o.fj | j=1 + 5k1 + 6k2, k1, k2∈N}={o.f1, o.f6, o.f7, o.f11, o.f12, ...}.

3.2 Inference Rules

Figure 6 gives the inference rules of our field-sensitive points-to analysis based on
the stride-based field representation for resolving the five types of constraints.
Object and field nodes on the constraint graph are now represented by the
unified Sfrs. Rule [E-ADDROF] initializes the points-to set of p with object o

represented by 〈o, 0, ∅〉 (Definition 1) for each p
AddrOf
←−−−−o. Similar to [COPY] in

Figure 4, [E-COPY] simply propagates the points-to set of u to that of v when

analyzing v
Copy
←−−u.

Definition 3 (Path and cycle). A path u
∗
⇐= v on the constraint graph G =

〈V,E〉 is a sequence of edges leading from v to u. A path v
∗
⇐=v is called a closed

path. A closed path v
∗
⇐=v is a cycle if all its edges are distinct and the only node

to occur twice in this path is v.

Definition 4 (Weight of a PWC). A PWC, denoted as C, is a cycle con-
taining only Copy and Field edges and at least one edge is a Field with a positive
weight. The weight of C is WC =

∑

e∈C wte, where e is a Field or Copy and
wte is its weight (wte is 0 if e is a Copy). The set of weights of all the PWCs
containing e is {WC | ∀C⊆E : e ∈ C}

Fast and Precise Handling of Positive Weight Cycles 9

(a) Dea (b) Pkh

Fig. 7: Solving the Field edge p2
Field2
←−−−p1 which involves in multiple PWC s

Unlike rule [FIELD-1] and [FIELD-2] in Figure 4 which generate a single

field object when analyzing p
Fieldi
←−−−q, [E-FIELD] generates an Sfr σ = 〈o, j +

w, S ∪S′〉 representing a sequence of fields starting from (i+j)-th field following

strides S ∪ S′, where S′={0} if p Fieldi
←−−−q is not involved in any PWC , otherwise

S′={WC | ∀C⊆E : (p Fieldi
←−−−q) ∈ C}, a set of the weights of all the positive weight

cycles with each C containing p
Fieldi
←−−−q on the constraint graph (Definitions 3

and 4). If p Fieldi
←−−−q is involved in multiple PWC s, σ is derived to collapse as many

equivalent fields as possible by considering the set of weights S′ of all the PWC s

containing p
Fieldi
←−−−q. The premise of [E-FIELD] ensures that σ represents the

derivation equivalent fields such that the targets added to the points-to sets of
all these fields are always identical when solving each cycle C. The conclusion of
[E-FIELD] ensures early termination and avoids redundant derivations, since an
Sfr σ can only be generated and added to pts(p) if there no Sfr σ′ already exists
in pts(p) such that σ′ can represent σ, i.e., σ ⊑ σ′ (Definition 2). Examples 2
and 3 give two scenarios in which a Field edge resides in single and multiple
PWC s.

Example 2 ([E-FIELD] for a single PWC). Let us revisit our motivating ex-

ample in Figure 5 to explain [E-FIELD]. The Field edge p2
Field1
←−−−r is not in-

volved in any PWC , therefore, [E-FIELD] generates an Sfr σ = 〈o, 1, {0}〉 with
S′= {0}, representing only field o.f1 and it then adds σ into pts(p2). Together

with p2
Copy
←−−p1, the second Field edge p1

Field2
←−−−p2 ∈ C forms a positive weight cycle

C with its weight WC = 2. A new Sfr σ = 〈o, 1 + 2, {0} ∪ {2}〉 = 〈o, 3, {0, 2}〉 is
derived and added into pts(p1) given 〈o, 1, {0}〉 ∈ pts(p2). The Sfr 〈o, 3, {0, 2}〉

is then propagated back to p2. In the second iteration for resolving p1
Field2
←−−−p2,

the newly derived Sfr 〈o, 5, {0, 2}〉 is discarded and not added into pts(p1) since
〈o, 5, {0, 2}〉 can be represented by 〈o, 3, {0, 2}〉, i.e., a subset relation 〈o, 5, {0, 2}〉
⊑ 〈o, 3, {0, 2}〉 (Definition 2) holds.

10 Y. Lei and Y. Sui

Example 3 ([E-FIELD] for multiple PWCs). Figure 7 compares Dea with Pkh

to show that [E-FIELD] requires significantly fewer field derivations to resolve

p2
Field2
←−−−p1 when it is involved in two PWC s, i.e., cycle C1 formed by p1 and p2,

and C2 formed by p1, p2, q2 and q1. The weights of C1 and C2 are 2 and 3 re-
spectively, therefore S′ = {2, 3}. Initially, p1 points to σ1 = 〈o, 1, {0}〉, which is

propagated to p1 along p1
Copy
←−−r. We first take a look at resolving C1. A new Sfr

σ2=〈o, 1+2, {0} ∪ {2, 3}〉=〈o, 3, {0, 2, 3}〉 is derived and added to pts(p2) when

analyzing p2
Field2
←−−−p1, as shown in Figure 7(a). σ2 is then propagated back and

added to pts(p1) along p1
Copy
←−−p2. The second iteration for analyzing p2

Field2
←−−−p1

avoids adding 〈o, 5, {0, 2, 3}〉 because it is a subset of σ2, into pts(p2), result-
ing in early termination. Similarly, when resolving C2 which contains two Field

edges, Dea generates σ3=〈o, 3+1, {0, 2, 3}〉 when analyzing q1
Field1
←−−−q2 and then

propagates σ3 to p1. Given this new σ3 in pts(p1), 〈o, 4+1, {0, 2, 3}〉 is derived

when again analyzing p2
Field2
←−−−p1 in C2. However, 〈o, 4+1, {0, 2, 3}〉, which is a

subset of σ2, is not added to pts(p2). Note that though σ2 and σ3 are overlap-
ping due to the intersecting PWC s, σ2 successfully captures the equivalent fields
that are always pointed by p1, p2, q2 and σ3 captures the equivalent fields that
are always pointed by p1, q1, avoiding redundant derivations. For each PWC ,
Dea generates only one Sfr, requiring at most two iterations to converge the
analysis. In contrast, Pkh performs redundant derivations until it reaches the
maximum number of fields of this object, as also illustrated in Figure 7(b).

Let us move to rules [E-LOAD] and [E-STORE]. Unlike [STORE] and [LOAD]

in Figure 4, our handling of Store and Load is asymmetric for both efficiency

and precision-preserving purposes. Forp Store
←−−−q, [E-STORE] is similar to [STORE]

by propagating pts(q) to pts(σ), where σ is pointed to by p. For an Sfr σ

pointed to by q at p Load
←−−q, [LOAD] propagates the points-to set of any σ′ which

overlaps with σ (Definition 2) to pts(p). This is because a field o.fi in Pkh

may belong to one or multiple Sfrs. For example, in Figure 7, o.f6 belongs
to σ2 and σ3 when resolving a Field edge which is involved in multiple cycles
or in one PWC containing multiple Field edges. We use Mo.fi to denote a set
of all Sfrs containing o.fi, i.e., any two Sfrs in Mo.fi share common fields
including at least o.fi. According to Definition 1, any change to the point-to sets
of σ ∈ Mo.fi also applies to those of o.fi during our constraint resolution. If ∗q at
a Load refers to an Sfr σ, it also refers σ′ ∈ Mo.fi that overlaps with σ for each
field o.fi ∈ FX(σ) (Definition 2). Therefore, [LOAD] maintains the correctness
that pts(o.fi) obtains the union of the points-to sets of all Sfrs in Mo.fi . Since
a points-to target in pts(σ) must be in the points-to set of every field in FX(σ)
(i.e, for any σ ∈ Mo.fi , pts(σ) is always a subset of pts(o.fi)), ensuring that no
spurious points-to targets other than pts(o.fi) will be propagated to p at the
Load. Thus, our handling of PWC s is precision preserving, i.e., the points-to set
of a variable after field expansion resolved by Dea is the same as that of Pkh.

Example 4 ([E-LOAD] and [E-STORE]). Figure 8 illustrates the resolving of

p
Store
←−−−q and r

Load
←−−p with the initial points-to sets pts(p) = {σ1}, pts(q) = {σ3}

Fast and Precise Handling of Positive Weight Cycles 11

Fig. 8: Resolving Store p
Store
←−−−q and Load r

Load
←−−p for overlapping Sfrs

and pts(σ2)={σ4}. σ1 and σ2 are both derived from object o with overlapping

fields, e.g., o.f4, as highlighted in orange in Figure 8. When resolving p Store
←−−−q,

[E-STORE] adds a new Copy edge σ1
Copy
←−−q, propagating σ3 ∈ pts(q) to pts(σ1),

but not pts(σ2) though σ1 ⊓ σ2 6= ∅. This avoids, for example, introducing the
spurious target σ3 to the points-to set of o.f2 (in green), which only resides in σ2

but not in σ1. In contrast, [E-LOAD] resolves r Load
←−−p by adding two Copy edges

r
Copy
←−−σ1 and r

Copy
←−−σ2, as also depicted in Figure 8. Since σ1 ⊓ σ2 = {o.f4,}

and σ1 ∈ pts(p), if ∗p at Load r = ∗p refers to an overlapping field e.g., o.f4
shared by σ1 and σ2, the points-to set of r is the union of pts(σ1) and pts(σ2),
i.e., pts(r) = {σ3, σ4}, achieving the precise field-sensitive results.

3.3 An Algorithm

Our precision-preserving handling of PWC s (i.e., the inference rules in Figure 6)
can be integrated into existing constraint solving algorithms for field-insensitive
Andersen’s analysis, e.g., the state-of-the-art cycle elimination approaches [13,
14, 5, 6]. This section gives an overall algorithm of our approach by instantiating
our inference rules on top of wave propagation [6], a constraint solving strategy
with better or comparable performance as HCD/LCD [5] for analyzing large size
programs.

In Algorithm 1, all the AddrOf edges are processed only once to initialize the
worklist W (lines 2-5), followed by a while loop for the main phase of constraint
solving, which has three phases.

(1) SCC (strongly connected component) detection and weight calculation
for PWC s (lines 7-9). We use Nuutilia et al.’s algorithm [20] to detect SCCs,
which is an improvement over the original algorithm developed by Tarjan et
al. [21]. The weight WC of each positive weight cycle C is then calculated given
the detected SCCs.

(2) Points-to propagation along Copy and Field edges (lines 10-24). We prop-
agate points-to information along each Copy edge based on [E-COPY] (lines
12-15). New Sfrs are derived and added to the points-to sets of the destina-
tion node of each Field edge based on [E-FIELD] (lines 16-22). A variable v is
pushed into a new worklist Wind if there exists an incoming Store edge to v or
an outgoing Load edge from v for later handling of Loads/Stores (lines 23-24)

12 Y. Lei and Y. Sui

Algorithm 1: An Algorithm

1 Function Dea (G = 〈V,E〉)
2 W := ∅; Wind := ∅

3 for each e : v AddrOf
←−−−o ∈ E do

4 〈o, 0, ∅〉 ∈ pts(v)
5 W .push(v) ⊲[E-ADDROF]

6 while W 6= ∅ do
7 Compute SCC on G using Nuutilia’s algorithm [20]
8 Collapse nodes in one SCC that contains only Copy edges
9 Calculate WC for each cycle in SCCs

10 while W 6= ∅ do
11 v := W .pop front()

12 for each u
Copy
←−−v ∈ E do

13 pts(v) ⊆ pts(u)
14 if pts(u) changed then
15 W .push(u)

⊲[E-COPY]

16 for each u
Fieldi
←−−−v ∈ E do

17 S′ :=Strides(u
Fieldi
←−−−v)

18 for each 〈o, j, S〉 ∈ pts(v) do
19 σ :=〈o, i+j, S∪S′〉
20 if ∄ σ′ ∈ pts(u) : σ ⊑ σ′ then
21 σ ∈ pts(u)
22 W .push(u)

⊲[E-FIELD]

23 if ∃ v Store
←−−−u ∈ E or ∃ u Load

←−−v ∈ E then
24 push v into Wind

25 while Wind 6= ∅ do
26 q := Wind.pop front()

27 for each v Store
←−−−u ∈ E do

28 for each σ ∈ pts(v) do

29 if σ
Copy
←−−u then

30 E := E ∪ σ
Copy
←−−u

31 W .push(u)

⊲[E-STORE]

32 for eachu Load
←−−v ∈ E do

33 for each σ′ ∈ {σ′ ⊓ σ 6= ∅|σ ∈ pts(v)} do

34 if u
Copy
←−−σ′ then

35 E := E ∪ u
Copy
←−−σ′

36 W .push(σ′)

⊲[E-LOAD]

37 for each u
Copy
←−−v added by UpdateCallgraph do

38 W .push(v)

(3) Processing Store and Load edges (lines 25-36). New Copy edges are added
to G, and the source node of each newly added Copy edge is added to worklist W

Fast and Precise Handling of Positive Weight Cycles 13

Table 2: Basic characteristics of the benchmarks (IR’s lines of code, number of
pointers, number of five types of instructions on the initial constraint graph, and
maximum number of fields of the largest struct in each program).

LOC #Pointers MaxFields #Field #Copy #Store #Load #AddrOf

git-checkout 1253K 624K 302 93201 88406 41620 60723 33380

json-conversions 355K 264K 64 27685 36557 37960 36872 43448

json-ubjson 330K 233K 64 24064 35813 34577 26288 34165

llvm-as-new 729K 597K 121 307167 77944 287634 41960 17435

llvm-dwp 1796K 897K 632 100877 101849 116205 142943 121541

llvm-objdump 728K 353K 121 61117 57743 56493 40314 16767

opencv perf core 1014K 715K 64 122744 192419 59599 79466 24450

opencv test dnn 889K 635K 64 105550 174080 52304 70332 22786

python 539K 420K 171 84779 74524 49215 56434 18340

redis-server 706K 374K 332 52178 60111 24542 39205 13175

Xalan 2192K 807K 133 110184 181804 35940 68812 53926

for points-to propagation in the next iteration. Lines 37-38 update the callgraph

by creating new Copy edges (e.g., u
Copy
←−−v) for parameter/return passings when

a new callee function is discovered at a callsite using the points-to results of
function pointers obtained from this points-to resolution round. The source node
v of the Copy edge is added to W to be processed in the next iteration until a
fixed point is reached, i.e., no changes are made to the points-to set of any node.

Other field-sensitive analyses (e.g., Pkh [10]) can also be implemented under
the same constraint solving algorithm by simply replacing the lines for handling
the five types of constraints with the inference rules in Figure 4.

4 Experimental Evaluation

The objective of our evaluation is to show that our field-sensitive analysis is
significantly faster than Pearce et al.’s analysis (Pkh) yet maintains the same
precision in analyzing large size C/C++ programs.

4.1 Implementation and Experimental Setup

Our approach is implemented on top of LLVM-7.0.0 and its sub-project SVF [22,
18, 23]. A state-of-the-art constraint resolution algorithm, wave propagation [6] is
used for cycle detection and computing dynamic transitive closures on top of the
same constraint graph for both Pkh andDea. Indirect calls via function pointers
are resolved on-the-fly during points-to resolution. A C++ virtual call p→foo()
is translated into four low-level LLVM instructions for our pointer analysis. (1)
a Load vtptr=∗p, obtaining virtual table pointer vtptr by dereferencing pointer
p to the object, (2) a Field vfn=&vtptr→ idx, obtaining the entry in the vtable

14 Y. Lei and Y. Sui

at a designated offset idx for the target function, (3) a Load fp=∗vfn, obtaining
the address of the function, and (4) a function call fp(p). Following [24, 25, 22],
a white list is maintained to summarize all the side-effects of external calls (e.g.,
memcpy, xmalloc and Znwm for C++ new) [26].

To evaluate the effectiveness of our implementation, we chose 11 large-scale
open-source C/C++ projects downloaded from Github, including git-checkout
(a sub project of Git for version control), json-conversions and json-ubjson
(two main Json libraries for modern C++ environment, version 3.6.0), llvm-as-new
and llvm-dwp (tools in LLVM-7.0.0 compiler), opencv perf core and opencv
test dnn (two main libraries in OpenCV-3.4), python (version 3.4.2) and
redis-server (a distributed database server, version 5.0). The source code
of each program is compiled into bit code files Clang-7.0.0 [27] and then linked
together using WLLVM [28] to produce whole program bc files.

Table 2 collects the basic characteristics about the 11 programs before the
main pointer analysis phase. The statistics include the LLVM IR’s lines of code
(LOC) of a program, the number of pointers (#Pointers), the number of fields
of the largest struct in the program, also known as the maximum number of
fields using the upper bound for deriving fields of a heap object, and the num-
ber of each of the five types of constraint edges in the initial constraint graph.
The reason that #Field is not much smaller than #Copy is twofold (1) Field

refers to LLVM’s getelementptr instruction, which is used to get the addresses
of subelements of aggregates, including not only structs but also arrays and
nested aggregates (Figure 3). (2) In low-level LLVM IR, a Copy only refers to an
assignment between two virtual registers, such as casting or parameter passing
(Section 2.1). An assignment ”p = q” in high-level C/C++ is not translated into
a Copy, but a Store/Load manipulated indirectly through registers on LLVM’s
partial SSA form.

All our experiments were conducted on a platform consisting of a 3.50GHz
Intel Xeon Quad Core CPU with 128 GB memory, running Ubuntu Linux (kernel
version 3.11.0).

4.2 Results and Analysis

Table 3 compares Dea with Pkh for each of the 11 programs evaluated in
terms of the following three analysis results after constraint resolution, the total
number of address-taken variables (#AddrTakenVar), the total number of fields
derived when resolving all Field edges (#Field), and the number of fields de-
rived only when resolving Field edges involving PWC s (#FieldByPWC). Both
Dea and Pkh use LLVM Sparse Bitvectors as the points-to set implemen-
tation. The peak memory usage by Dea is 7.33G observed in git-checkout. Dea

produces identical points-to results as those by Pkh, confirming that Dea’s
precision is preserved

From the results produced by Pkh, we can see that the number of fields (Col-
umn 4 in Table 3) occupies a large proportion of the total address-taken variables
(Column 2) in modern large-scale C/C++ programs. On average, 72.5% of the
address-taken variables are field objects. In programs git-checkout (written

Fast and Precise Handling of Positive Weight Cycles 15

Table 3: Comparing the results produced by Dea with those by Pkh, including
the total number of address-taken variables, number of fields and the number of
fields derived when resolving PWC s, and the number of Copy edges connected
to/from the field object nodes derived when resolving PWC s

#AddrTakenVar #Field #FieldByPWC

Pkh Dea Pkh Dea Pkh Dea

git-checkout 135576 73967 121574 59965 68045 6436
json-conversions 62397 40993 40943 19539 22330 926
json-ubjson 60721 34987 49211 23477 27000 1266
llvm-as-new 24427 16124 19304 11001 9770 1467
llvm-dwp 145247 91945 109650 56348 62383 9081
llvm-objdump 16130 12007 11235 7112 5119 996
opencv perf core 60625 44061 40196 23632 18894 2330
opencv test dnn 53064 37957 35177 20070 17366 2259
python 30848 23713 21530 14395 9531 2396
redis-server 13109 9581 8165 4637 4234 706
Xalan 90314 62859 61466 34011 32226 4771

Max reduction 45.4% 52.3% 95.9%
Average reduction 32.4% 44.4% 86.6%

Fig. 9: Percentages of fields derived when solving PWC s out of the total number
of fields, i.e., #FieldByPWC

#Field
* 100

in C) and json-ubjson (written in C++) with heavy use of structs and classes,
the percentages for both are higher than 80%. In 8 of the 11 programs, over 50%
of the fields are derived from PWC s.

Columns 4-5 of Table 3 compare the total number of field objects produced
by Pkh and Dea respectively. Columns 6-7 give more information about the
number of fields derived only when resolving PWC s by Pkh and Dea, we can
see that these fields are significantly reduced by Dea with an average reduc-
tion rate of 86.6%, demonstrating that Dea successfully captured the derivation
equivalence to collapse a majority of fields into Sfrs when resolving PWC s.

Figure 9 further compares Dea with Pkh in terms of percentages of fields
derived from resolving PWC s out of the total number of fields for the 11 pro-

16 Y. Lei and Y. Sui

Table 4: Constraint graph information (#NodeInPWC denotes the number
of nodes involving PWC s by Pkh; #SFR denotes the number of stride-based
field representatives, generated by Dea; #CopyByPWC, denotes the number of
Copy edges flowing into and going out of fields derived when solving PWC s;
#CopyProcessed denotes the number of processing times of Copy edges.)

#NodeInPWC #SFR #CopyByPWC #CopyProcessed

Pkh Dea Pkh Dea Pkh Dea

git-checkout 2840 2172 12372 2046 3868834 1128617

json-conversions 3631 1641 13490 2622 2253266 319960

json-ubjson 4271 1753 4311 1037 5621768 575884

llvm-as-new 1752 2085 9739 2789 2513940 688238

llvm-dwp 7263 1463 15062 2128 2802988 779424

llvm-objdump 1581 1761 7105 2013 2177990 647582

opencv perf core 1373 2030 4948 1973 4800563 655095

opencv test dnn 1007 777 4008 1577 5095795 460127

python 3817 1942 8530 3854 3495769 971376

redis-server 2783 1405 3380 1408 1288753 390783

Xalan 4874 2909 21935 7671 5143418 1554627

Max reduction 85.9% 91.0%

Avg. reduction 70.3% 77.3%

grams. The average percentage of 51.1% in Pkh (blue line) is reduced to only
11.7% (orange line) in Dea with a reduction of 39.4%.

In git-checkout, json-conversions and json-ubjson,Dea achieves
over 90% reduction in solving PWC s because these programs have relatively
large numbers of address-taken variables (Table 3) and relatively more nodes
involving PWC s (Table 4). On average, over 85% of redundant field deriva-
tions involving PWC s are avoided with the maximum reduction rate of 95.9%
in json-conversions, confirming the effectiveness of our field collapsing in
handling PWC s.

Table 4 gives the constraint graph information after points-to resolution.
Column 2 lists the number of nodes involving PWC s by Pkh. For each Sfr

σ generated by Dea, Column 3 gives the numbers of Sfrs generated by Dea.
The average numbers of overlapping Sfrs for the 11 programs evaluated are
all below 1, which means that the majority of the Sfrs either represent a single
object/field or represent a sequence of fields that do not overlap with one another.

Columns 4-5 give the numbers of Copy edges flowing into and going out of
field nodes derived when resolving PWC s by Pkh and Dea respectively. Dea on
average reduces the Copy edges in Column 4 by 70.3% with a maximum reduction
rate of 85.9% Columns 6-7 give the number of processing times of Copy edges
during points-to propagation by the two approaches. Since the number of Copy

edges is significantly reduced by Dea, the processing times of Copy edges are
reduced accordingly with an average/maximum reduction rate of 77.3%/91.0%.

Fast and Precise Handling of Positive Weight Cycles 17

Table 5: Total analysis times and the times of the three analysis stages, including
CycleDec cycle detection (Lines 7-9 of Algorithm 1), PtsProp, propagating point-
to information via Copy and Field edges (Lines 11-24), ProcessLdSt, adding new
Copy edges when processing Loads/Stores (Lines 25-36)

CycleDec PtsProp ProcessLdSt TotalTime speed

Pkh Dea Pkh Dea Pkh Dea Pkh Dea up

git-checkout 3117.8 4600.0 138233.5 26668.1 3870.2 1472.5 145221.6 32740.6 4.4

json-conversions 4436.2 561.6 12248.2 939.2 17.6 11.5 16702.0 1512.3 11.0

json-ubjson 25.1 6.0 18635.2 1817.3 52.4 23.2 18712.7 1846.6 10.1

llvm-as-new 22.6 11.9 10920.4 1728.9 541.9 221.2 11484.9 1962.0 5.9

llvm-dwp 3134.1 1457.7 120654.4 22177.2 1671.2 747.5 125459.8 24382.4 5.1

llvm-objdump 22.2 22.2 10617.3 2158.4 254.8 109.7 10894.4 2290.2 4.8

opencv perf core 338.5 299.3 30049.9 3018.5 2125.5 991.7 32513.9 4309.5 7.5

opencv test dnn 67.0 64.2 3145.5 248.8 366.1 122.2 3578.6 435.2 8.2

python 51.6 18.8 167556.9 22674.4 939.9 474.8 168548.3 23168.0 7.3

redis-server 525.1 428.6 11088.3 1315.2 99.8 49.8 11713.2 1793.5 6.5

Xalan 412.3 118.1 146617.8 21729.4 352.5 218.1 147382.7 22065.6 6.7

Average speedup 7.1

Fig. 10: Comparing the time distribution of the three analysis phases of Dea

with that of Pkh (normalized with Pkh as the base).

Table 5 compares Dea with Pkh in terms of the overall analysis times and
the times collected for each of the three analysis phases. The total pointer anal-
ysis time consists of three major parts, as also discussed in Algorithm 1, and
comprises (1) cycle detection, (2) propagating point-to sets via Copy and Field

edges, and (3) processing Stores and Loads by adding new Copy edges into
the constraint graph. Overall, Dea has a best speed up of 11.0X (observed in
json-conversions) with an average speed up of 7.1X among the 11 programs.

18 Y. Lei and Y. Sui

Figure 10 gives the analysis time distributions of the three analysis phases
in Table 5 for both Pkh and Dea, where the phases are highlighted in differ-
ent colors. The time cost of PtsProp (Columns 4-5) occupies a large percentage
in resolution time by Pkh. This is because PtsProp in field-sensitive pointer
analysis needs to perform heavy set union operations for handling both Copy

and Field edges. Worse, PWC s which need to be fully resolved by Pkh incur a
large number of redundant field derivations and unnecessary Copy edges until a
pre-defined maximum number is reached, resulting in high analysis overhead in
the PtsProp phase. In contrast, as depicted in Figure 10, the analysis overhead
introduced by PtsProp is greatly reduced by Dea, though it occupies a notice-
able portion of the total analysis time, showing that Dea effectively cuts down
the overhead introduced by PWC s (i.e., redundant points-to propagation, and
unnecessary Copy edges connecting to/from derivation equivalent fields) to help
constraint resolution converge more quickly.

5 Related Work

Andersen’s inclusion-based analysis [12] is one of the most commonly used
pointer analyses. Resolving points-to relations in Andersen’s analysis is formal-
ized as a set-constraint problem by computing a dynamic transitive closure on
top of the constraint graph of a program. The majority of works on Andersen’s
analysis for C/C++ programs are field-insensitive [29, 13, 1, 14, 5, 6]. Faehndrich
et al. [29] introduced a partial online cycle elimination while processing complex
constraints (e.g., Load/Store) and demonstrated that cycle detection is critical
for scaling inclusion-based pointer analysis. Heintze and Tardieu [13] proposed a
new field-based Andersen’s analysis that can analyze large-scale programs with
one million lines of code. Compared to field-sensitive analysis, field-based anal-
ysis imprecisely treats all instances of a field as one. For example, o1.f and o2.f

are treated as one variable f , even if o1 and o2 are two different base objects
allocated from different allocation sites.

To reduce the overhead of repeatedly finding cycles on the constraint graph
during points-to resolution, Lazy Cycle Detection [5] triggers an SCC detection
only when a visited Copy edge whose source and destination node have the
same point-to information during points-to propagation. In addition to the on-
line cycle elimination techniques, a number of preprocessing techniques, such
asOffline Variable Substitution [30] and HVN [7], have also been proposed. The
techniques explore pointer and location equivalence to reduce the size of the
constraint graph for subsequent pointer analysis without losing any precision.
Hybrid Cycle Detection [5] presented a hybrid cycle elimination algorithm by
combing linear-time offline preprocessing with online cycle detection to further
accelerate constraint resolution. Pereira et al. [6] proposed Wave Propagation by
separating the constraint resolution of Andersen’s analysis into three stages, i.e.,
collapsing of cycles, points-to propagation and insertion of new edges. The three
phases are repeated until no more changes are detected in the constraint graph.
The approach differentiates the existing (old) and new points-to information of a

Fast and Precise Handling of Positive Weight Cycles 19

pointer to reduce set union overhead on an acyclic constraint graph in topological
order during points-to propagation.

Field-sensitive analysis distinguishes fields of a struct object improving its
field-insensitive counterpart [31–34, 10, 11]. The challenges of field-sensitivity for
C/C++ is that the address of a field can be taken, stored to some pointer and
later read at an arbitrary load. To tackle this challenge, Pearce et al. [10] pro-
poses Pkh, a representative field-sensitive analysis by employing a field-index-
based abstraction modeling in which the fields of an object are distinguished
using unique indices. The Andersen’s constraint graph is extended by adding
a new Field constraint to model address-of-field instructions for deriving fields
during constraint resolution. Miné [34] presented a field- and array-sensitive
analysis that translates field and array accesses to pointer arithmetic in the
abstract interpretation framework. LPA [35] presented a loop-oriented pointer
analysis for automatic SIMD vectorization. DSA [31] supports field-sensitivity
using byte offsets object modeling, however, the approach is based on Steens-
garrds unification-based analysis, using a coarser abstract object/points-to than
Andersen’s analysis.

cclyzer [11] presents a precision enhancement approach to Pearce’s field-
sensitive analysis (Pkh) by lazily inferring the types of heap objects by leverag-
ing the type casting information to filter out spurious field derivations. cclyzer
improves the precision of Pkh in the presence of factory methods and heap
allocation wrappers in a program, achieving the heap cloning results without
explicit context-sensitivity, but at the expense of more analysis time since an or-
der of magnitude more type-augmented objects are introduced into the analysis.
Rather than sacrificing performance to enhance analysis precision, Dea main-
tains the same precision as Pkh, but significantly reduces its analysis overhead
by fast and precise handling of positive weight cycles, a key challenge in field-
insensitive pointer analysis. Our approach is also complementary to other cycle
elimination resolution algorithms and fits well into existing constraint resolution
frameworks for Andersen’s analysis.

6 Conclusion

This paper presents a fast and precise handling of positive weight cycles to signif-
icantly boost the existing field-sensitive Andersen’s analysis by capturing deriva-
tion equivalence. A new stride-based field abstraction is proposed to represent
a sequence of derivation equivalent fields when resolving PWC s. Dea has been
implemented in LLVM-7.0.0 and evaluated using 11 real-world large C/C++
programs. The evaluation results show that Dea on average is 7.1X faster than
Pearce et al.’s field-sensitive analysis with the best speedup of 11.0X.

7 Acknowledge

We would like to thank the anonymous reviewers for their helpful comments.
This research is supported by Australian Research Grant DE170101081.

20 Y. Lei and Y. Sui

References

1. Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie Hendren, and Navindra Umanee.
Points-to analysis using bdds. In PLDI ’03, volume 38, pages 103–114. ACM, 2003.

2. Atanas Rountev, Ana Milanova, and Barbara G Ryder. Points-to analysis for java
using annotated constraints. In OOPSLA ’01, volume 36, pages 43–55. ACM, 2001.

3. Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for Java. TOSEM ’02, 27(4):1–11,
2002.

4. Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In OOPSLA ’09, volume 44, pages 243–262. ACM,
2009.

5. Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate
pointer analysis for millions of lines of code. In PLDI ’07, volume 42, pages 290–
299. ACM, 2007.

6. Fernando Magno Quintao Pereira and Daniel Berlin. Wave propagation and deep
propagation for pointer analysis. In CGO ’09, pages 126–135. IEEE, 2009.

7. Ben Hardekopf and Calvin Lin. Exploiting pointer and location equivalence to
optimize pointer analysis. In SAS ’07, pages 265–280. Springer, 2007.

8. Sam Blackshear, Bor-Yuh Evan Chang, Sriram Sankaranarayanan, and Manu Srid-
haran. The flow-insensitive precision of Andersens analysis in practice. In SAS

’11, pages 60–76. Springer, 2011.
9. Qirun Zhang, Xiao Xiao, Charles Zhang, Hao Yuan, and Zhendong Su. Efficient

subcubic alias analysis for C. In OOPSLA ’14, volume 49, pages 829–845. ACM,
2014.

10. David J Pearce, Paul HJ Kelly, and Chris Hankin. Efficient field-sensitive pointer
analysis of C. TOPLAS, 30(1):4, 2007.

11. George Balatsouras and Yannis Smaragdakis. Structure-sensitive points-to analysis
for C and C++. In SAS ’16, pages 84–104. Springer, 2016.

12. Lars Ole Andersen. Program analysis and specialization for the C programming

language. PhD thesis, University of Cophenhagen, 1994.
13. Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using cla: A million

lines of c code in a second. In PLDI ’01, volume 36, pages 254–263. ACM, 2001.
14. David J Pearce, Paul HJ Kelly, and Chris Hankin. Online cycle detection and dif-

ference propagation for pointer analysis. In Proceedings Third IEEE International

Workshop on Source Code Analysis and Manipulation, pages 3–12. IEEE, 2003.
15. Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with efficient

strong updates. In POPL ’11, pages 3–16, 2011.
16. L. Li, C. Cifuentes, and N. Keynes. Boosting the performance of flow-sensitive

points-to analysis using value flow. In FSE ’11, pages 343–353, 2011.
17. Sen Ye, Yulei Sui, and Jingling Xue. Region-based selective flow-sensitive pointer

analysis. In SAS ’14, pages 319–336. 2014.
18. Yulei Sui and Jingling Xue. On-demand strong update analysis via value-flow

refinement. In FSE ’16, pages 460–473. ACM, 2016.
19. ISO90. ISO/IEC. international standard ISO/IEC 9899, programming languages

- C. 1990.
20. Esko Nuutila and Eljas Soisalon-Soininen. On finding the strongly connected com-

ponents in a directed graph. Information Processing Letters, 49(1):9–14, 1994.
21. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on

computing, 1(2):146–160, 1972.

Fast and Precise Handling of Positive Weight Cycles 21

22. Yulei Sui and Jingling Xue. SVF: Interprocedural static value-flow analysis in
LLVM. In CC ’16, pages 265–266, 2016.

23. Yulei Sui, Ding Ye, and Jingling Xue. Detecting memory leaks statically with
full-sparse value-flow analysis. TSE ’14, 40(2):107–122, 2014.

24. Implementing next generation points-to in open64. www.affinic.com/

documents/open64workshop/2010/slides/8_Ravindran.ppt.
25. Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In

POPL ’09, volume 44, pages 226–238. ACM, 2009.
26. Side-effects of external apis. https://github.com/SVF-tools/SVF/blob/

master/lib/Util/ExtAPI.cpp.
27. Clang-7.0.0. releases.llvm.org/7.0.0/cfe-7.0.0.src.tar.xz.
28. Whole-program llvm. github.com/travitch/whole-program-llvm.
29. Manuel Fähndrich, Jeffrey S Foster, Zhendong Su, and Alexander Aiken. Partial

online cycle elimination in inclusion constraint graphs. In PLDI ’98, volume 33,
pages 85–96. ACM, 1998.

30. Atanas Rountev and Satish Chandra. Off-line variable substitution for scaling
points-to analysis. In PLDI ’00, volume 35, pages 47–56. ACM, 2000.

31. Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In PLDI’07,
volume 42, pages 278–289. ACM, 2007.

32. Dzintars Avots, Michael Dalton, V Benjamin Livshits, and Monica S Lam. Im-
proving software security with a C pointer analysis. In ICSE ’05, pages 332–341.
ACM, 2005.

33. Erik M Nystrom, Hong-Seok Kim, and Wen-mei W Hwu. Importance of heap
specialization in pointer analysis. In PASTE ’04, pages 43–48. ACM, 2004.

34. Antoine Miné. Field-sensitive value analysis of embedded c programs with union
types and pointer arithmetics. In LCTES ’06, volume 41, pages 54–63. ACM, 2006.

35. Yulei Sui, Xiaokang Fan, Hao Zhou, and Jingling Xue. Loop-oriented array-and
field-sensitive pointer analysis for automatic SIMD vectorization. In LCTES ’16,
pages 41–51. ACM, 2016.

