
Fast and Precise Sanitizer Analysis with BEK

Pieter Hooimeijer

University of Virginia

Benjamin Livshits

Microsoft Research

David Molnar

Microsoft Research

Prateek Saxena

UC Berkeley

Margus Veanes ∗

Microsoft Research

Abstract

Web applications often use special string-manipulating

sanitizers on untrusted user data, but it is difficult to rea-

son manually about the behavior of these functions, lead-

ing to errors. For example, the Internet Explorer cross-

site scripting filter turned out to transform some web

pages without JavaScript into web pages with valid Java-

Script, enabling attacks. In other cases, sanitizers may

fail to commute, rendering one order of application safe

and the other dangerous.

BEK is a language and system for writing sanitiz-

ers that enables precise analysis of sanitizer behavior,

including checking idempotence, commutativity, and

equivalence. For example, BEK can determine if a tar-

get string, such as an entry on the XSS Cheat Sheet, is

a valid output of a sanitizer. If so, our analysis synthe-

sizes an input string that yields that target. Our language

is expressive enough to capture real web sanitizers used

in ASP.NET, the Internet Explorer XSS Filter, and the

Google AutoEscape framework, which we demonstrate

by porting these sanitizers to BEK.

Our analyses use a novel symbolic finite automata

representation to leverage fast satisfiability modulo the-

ories (SMT) solvers and are quick in practice, tak-

ing fewer than two seconds to check the commutativ-

ity of the entire set of Internet Exporer XSS filters,

between 36 and 39 seconds to check implementations

of HTMLEncode against target strings from the XSS

Cheat Sheet, and less than ten seconds to check equiv-

alence between all pairs of a set of implementations of

HTMLEncode. Programs written in BEK can be compiled

to traditional languages such as JavaScript and C#, mak-

ing it possible for web developers to write sanitizers sup-

ported by deep analysis, yet deploy the analyzed code

directly to real applications.

1 Introduction

Cross site scripting (“XSS”) attacks are a plague in to-

day’s web applications. These attacks happen because

the applications take data from untrusted users, and then

echo this data to other users of the application. Because

∗Authors are listed alphabetically. Work done while P. Hooimeijer

and P. Saxena were visiting Microsoft Research.

web pages mix markup and JavaScript, this data may

be interpreted as code by a browser, leading to arbitrary

code execution with the privileges of the victim. The first

line of defense against XSS is the practice of sanitiza-

tion, where untrusted data is passed through a sanitizer,

a function that escapes or removes potentially danger-

ous strings. Multiple widely used Web frameworks offer

sanitizer functions in libraries, and developers often add

additional custom sanitizers due to performance

or functionality constraints.

Unfortunately, implementing sanitizers correctly is

surprisingly difficult. Anecdotally, in dozens of code re-

views performed across various industries, just about any

custom-written sanitizer was flawed with respect to secu-

rity [38]. The recent SANER work, for example, showed

flaws in custom-written sanitizers used by ten web ap-

plications [9]. For another example, several groups of

researchers have found specially crafted pages that do

not initially have cross site scripting attacks, but when

passed through anti-cross-site scripting filters yield web

pages that cause JavaScript execution [10, 22].

The problem becomes even more complicated when

considering that a web application may compose multi-

ple sanitizers in the course of creating a web page. In

a recent empirical analysis, we found that a large web

application often applied the same sanitizers twice, de-

spite these sanitizers not being idempotent. This analysis

also found that the order of applying different sanitizers

could vary, which is safe only if the sanitizers are com-

mutative [32], providing further evidence suggesting that

developers have a difficult time writing correct sanitiza-

tion functions without assistance.

Despite this, much work in the space of detecting and

preventing XSS attacks [19, 23, 25, 27, 39] has optimisti-

cally assumed that sanitizers are in fact both known and

correct. Some recent work has started exploring the is-

sue of specification completeness [24] as well as san-

itizer correctness by explicitly statically modeling sets

of values that strings can take at runtime [13, 26, 36, 37].

These approaches use analysis-specific models of strings

that are based on finite automata or context-free gram-

mars. More recently, there has been significant interest

in constraint solving tools that model strings [11, 17, 18,

20, 31, 34, 35]. String constraint solvers allow any client

analysis to express constraints (e.g., path predicates for a

single code path) that include common

string manipulation functions.

Sanitizers are typically a small amount of code, per-

haps tens of lines. Furthermore, application developers

knowwhen they are writing a new, custom sanitizer or set

of sanitizers. Our key proposition is that if we are will-

ing to spend a little more time on this sanitizer code, we

can obtain fast and precise analyses of sanitizer behavior,

along with actual sanitizer code ready to be integrated

into both server- and client-side applications. Our ap-

proach is BEK, a language for modeling string transfor-

mations. The language is designed to be (a) sufficiently

expressive to model real-world code, and (b) sufficiently

restricted to allow fast, precise analysis, without needing

to approximate the behavior of the code.

Key to our analysis is a compilation from BEK pro-

grams to symbolic finite state transducers, an extension

of standard finite transducers. Recall that a finite trans-

ducer is a generalization of deterministic finite automata

that allows transitions from one state to another to be an-

notated with outputs: if the input character matches the

transition, the automaton outputs a specified sequence of

characters. In a symbolic finite transducer, transitions

are annotated with logical formulas instead of specific

characters, and the transducer takes the transition on any

input character that satisfies the formula. We apply algo-

rithms that determine if two BEK programs are equiva-

lent. We also can check if a BEK program can output a

specific string, and if so, synthesize an input

yielding that string.

Our symbolic finite state transducer representation

enables leveraging satisfiability modulo theories (SMT)

solvers, tools that take a formula and attempt to find in-

puts satisfying the formula. These solvers have become

robust in the last several years and are used to solve com-

plicated formulas in a variety of contexts. At the same

time, our representation allows leveraging automata the-

oretic methods to reason about strings of unbounded

length, which is not possible via direct encoding to SMT

formulas. SMT solvers allow working with formulas

from any theory supported by the solver, while other

previous approaches using binary decision diagrams are

specialized to specific types of inputs.

After analysis, programs written in BEK can be com-

piled back to traditional languages such as JavaScript or

C# . This ensures that the code analyzed and tested is

functionally equivalent to the code which is actually de-

ployed for sanitization, up to bugs in our compilation.

This paper contains a number of experimental case

studies. We conclusively demonstrate that BEK is ex-

pressive enough for a wide variety of real-life code by

converting multiple real world Web sanitization func-

tions fromwidely used frameworks, including those used

in Internet Explorer 8’s cross-site scripting filter, to BEK

programs. We report on which features of the BEK lan-

guage are needed and which features could be added

given our experience. We also examine other code,

such as sanitizers from Google AutoEscape and func-

tions from WebKit, to determine whether or not they can

be expressed as BEK programs. We maintain samples of

BEK programs online1.

We then use BEK to perform security specific analy-

ses of these sanitizers. For example, we use BEK to de-

termine whether there exists an input to a sanitizer that

yields any member of a publicly available database of

strings known to result in cross site scripting attacks. Our

analysis is fast in practice; for example, we take two sec-

onds to check the commutativity of the entire set of In-

ternet Explorer 8 XSS filters, and less than 39 seconds to

check an implementations the HTMLEncode sanitization

function against target strings from the

XSS Cheat Sheet [5].

To experimentally demonstrate the difficulty of writ-

ing correct sanitizers, we hired several freelance devel-

opers to implement HTMLEncode functionality. Using

BEK, we checked the equivalence of the seven differ-

ent implementations of HTMLEncode and used BEK to

find counterexamples: inputs on which these sanitizers

behave differently. Finally, we performed scalability ex-

periments to show that in practice the time to perform

BEK analyses scales near-linearly.

1.1 Contributions

The primary contributions of this paper are:

• Language. We propose a domain-specific lan-

guage, BEK, for string manipulation. We describe a

syntax-driven translation from BEK expressions to

symbolic finite state transducers.

• Algorithms. We provide algorithms for performing

composition computation and equivalence check-

ing, which enables checking commutativity, idem-

potence, and determining if target strings can be

output by a sanitizer. We show how JavaScript and

C# code can be generated out of BEK programs,

streamlining the client- and server-side deployment

of BEK sanitizers.

• Evaluation. We show that BEK can encode real-

world string manipulating code used to sanitize un-

trusted inputs in web applications. We demonstrate

the expressiveness of BEK by encoding OWASP

sanitizers, many IE 8 XSS filters, as well as func-

tions written by freelance developers hired through

odesk.com and vworker.com for our experiments

presented in this paper. We show how the analy-

ses supported by our tool can find security-critical

1http://code.google.com/p/bek/

bugs or check that such bugs do not exist. To

improve the end-user experience when a bug is

found, BEK produces a counter-example. We dis-

cover that only 28.6% of our sanitizers commute,

∼79.1% are idempotent, and that only 8% are re-

versible. We also demonstrate that most hand-

written HTMLEncode implementations disagree on

at least some inputs.

• A Scalable Implementation. BEK deals with Uni-

code strings without creating a state explosion. Fur-

thermore, we show that our algorithms for equiv-

alence checking and composition computation are

very fast in practice, scaling near-linearly with the

size of the symbolic finite transducer representation.

The main reason for this is the symbolic representa-

tion of the transition relation.

While the focus of this paper is on XSS attacks2, our

language and analyses are more general and apply to

any string manipulating function. For example Chen et

al. check interactions between firewall rules, finding re-

dundant and order-dependent rules in routers [40]. Cho

and Babić [12] check the equivalence between a specifi-

cation and an implementation for

state machines in SMTP servers.

2 Overview

Figure 1 shows an architectural diagram for the BEK sys-

tem. At the center of the picture is the transducer-based

representation of a BEK program. At the moment, we

support a BEK language front end, although other front

ends that convert Java or C# programs into BEK are also

possible. We provide motivating examples of the BEK

language in Section 2.1 and discuss the applications of

BEK to analyzing sanitizers in Section 2.2.

2.1 Introductory Examples

Example 1. The following BEK program is a basic san-

itizer that backslash-escapes single and double quotes

(but only if they are not escaped already). The iter con-

struct is a block that uses a character variable c and a

single boolean state variable b that is initially f (false).

Each iteration of the block binds the character variable to

a single character of the string t; iteration continues un-

til no more characters remain. The block is broken into

case statements. If a character satisfies the condition of

the case statement, the corresponding code is executed.

2The dual of the issue of code injection is data privacy; BEK is

equally suitable to analyzing the corresponding data cleansing func-

tions.

Figure 1: BEK architecture. We use a representation

based on symbolic finite state transducers (defined in-

text) to model string sanitization code without approxi-

mation.

private static string EncodeHtml(string t)

{

if (t == null) { return null; }

if (t.Length == 0) { return string.Empty; }

StringBuilder builder =

new StringBuilder("", t.Length * 2);

foreach (char c in t)

{

if ((((c > ’‘’) && (c < ’{’)) ||

((c > ’@’) && (c < ’[’))) || (((c == ’ ’) ||

((c > ’/’) && (c < ’:’))) || (((c == ’.’) ||

(c == ’,’)) || ((c == ’-’) || (c == ’_’))))){

builder.Append(c);

} else {

builder.Append("&#" +

((int) c).ToString() + ";");

}

}

return builder.ToString();

}

Figure 2: Code for AntiXSS.EncodeHtml version 2.0.

Here yield(c) outputs the current character c.

iter(c in t) {b := f ; } {

case(¬(b) ∧ (c = ‘’’ ∨ c = ‘"’)) {

b := f ; yield(‘\’); yield(c); }

case(c = ‘\’) {

b := ¬(b); yield(c); }

case(t) {

b := f ; yield(c); }

}

The boolean variable b is used to track whether the previ-
ous character seen was an unescaped slash. For example,

in the input \\" the double quote is not considered es-

caped, and the transformed output is \\\". If we apply the

BEK program to \\\" again, the output is the same. An

interesting question is whether this holds for any output

string. In other words, we may be interested in whether

a given BEK program is idempotent.

If implemented incorrectly, double applications of

such sanitization functions can result in duplicate escap-

ing. This in turn has led to command injection of script-

injection attacks in the past. Therefore, checking idem-

potence of certain functions is practically useful. We

will see in the next section how BEK can perform such

checks. ⊠

Example 2. The code in Figure 2 is from the public

Microsoft AntiXSS library. The sanitizer iterates over

the input character-by-character. Depending on the char-

acter encountered, a different action is taken, such as in-

cluding the character verbatim or encoding it in some

manner, such as numeric HTML escaping.

The BEK program corresponding to EncodeHtml is

iter (c in t){
case (¬ϕ(c)){
yield [‘&’,‘#’] + dec(c) + [‘;’]; }

case(true){
yield [c]; }}

where dec is a built-in library function that returns the

decimal representation of the character and ϕ(c) is the

formula

(‘a’ ≤ c ∧ c ≤ ‘z’) ∨ (‘A’ ≤ c ∧ c ≤ ‘Z’) ∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’ ∨ c = ‘.’ ∨
c = ‘,’ ∨ c = ‘−’ ∨ c = ‘ ’

The BEK program iterates over each character of the

input. If the character satisfies the formulaϕ(c), then the
program outputs the character. Otherwise the program

escapes the character by outputting its decimal encod-

ing, together with the &# prefix and semicolon. Note

that this sanitizer is not idempotent, because applying the

function twice to the string &# will result in double es-

caping. Our tool can detect this in under a second. ⊠

Multiple implementations may exist of the “same”

sanitizer. For example, Figure 3 shows the result of run-

ning the Red Gate Reflector .NET decompiler on the Sys-

tem.NET implementation of EncodeHTML. We have con-

verted this code to BEK as well, noticing that the goto

structure is the result of a loop after decompilation. Us-

ing our analyses, we can check these implementations for

equivalence. Our implementation can detect in less than

one second that the System.NET implementation does

not escape single quote characters, while the AntiXSS

implementation does, meaning that the two implementa-

tions are not equivalent. Failure to escape single quotes

can lead to XSS attacks, so this

difference is significant [33].

public static string EncodeHtml(string s)

{

if (s == null)

return null;

int num = IndexOfHtmlEncodingChars(s, 0);

if (num == -1)

return s;

StringBuilder builder=new StringBuilder(s.Length+5);

int length = s.Length;

int startIndex = 0;

Label_002A:

if (num > startIndex) {

builder.Append(s, startIndex, num-startIndex);

}

char ch = s[num];

if (ch > ’>’) {

builder.Append("&#");

builder.Append(((int) ch).

ToString(NumberFormatInfo.InvariantInfo));

builder.Append(’;’);

}

else {

char ch2 = ch;

if (ch2 != ’"’) {

switch (ch2)

{

case ’<’:

builder.Append("<");

goto Label_00D5;

case ’=’:

goto Label_00D5;

case ’>’:

builder.Append(">");

goto Label_00D5;

case ’&’:

builder.Append("&");

goto Label_00D5;

}

}

else {

builder.Append(""");

}

}

Label_00D5:

startIndex = num + 1;

if (startIndex < length) {

num = IndexOfHtmlEncodingChars(s, startIndex);

if (num != -1) {

goto Label_002A;

}

builder.Append(s, startIndex, length-startIndex);

}

return builder.ToString();

}

Figure 3: Code for EncodeHtml from version 2.0 of

System.Net. This code is not equivalent to the AntiXSS
library version.

2.2 Security Applications

Web sanitizers are the first line of defense against cross-

site scripting attacks for web applications: they are func-

tions applied to untrusted data provided by a user that

attempt to make the data “safe” for rendering in a web

browser. Reasoning about the security properties of web

sanitizers is crucial to the security of web applications

and browsers. Formal verification of sanitizers is there-

fore crucial in proving the absence of injection attacks

such as cross-site and cross-channel scripting as well as

information leaks.

2.2.1 Security of Sanitizer Composition

Recent work has demonstrated that developers may

accidentally compose sanitizers in ways that are not

safe [32]. BEK can check two key properties of sanitizer

composition: commutativity and idempotence.

Commutativity: Consider two default sanitizers in

the Google CTemplate framework: JavaScriptEscape

and HTMLEscape [4]. The former performs Uni-

code encoding (\u00XX) for safely embedding untrusted

data in JavaScript strings while the latter sanitizer per-

forms HTML entity-encoding (<) for embedded un-

trusted data in HTML content. It turns out that if

JavaScriptEscape is applied to untrusted data before

the application of HTMLEscape, certain XSS attacks are

not prevented [32]. The opposite ordering does prevent

these attacks. BEK can check if a pair of sanitizers are

commutative, which would mean the programmer does

not need to worry about this class of bugs.

Idempotence: BEK can check if applying the sanitizer

twice yields different behavior from a single application.

For example, an extra JavaScript string encoding may

break the intended rendering behavior in the browser.

2.2.2 Sanitizer Implementation Correctness

Hand-coded sanitizers are notoriously difficult to write

correctly. Analyses provided by BEK help achieve cor-

rectness in three ways.

Comparing multiple sanitizer implementations: Mul-

tiple implementations of the same sanitization function-

ality can differ in subtle ways [9]. BEK can check

whether two different programs written in the BEK lan-

guage are equivalent. If they are not, BEK exhibits inputs

that yield different behaviors.

Comparing sanitizers to browser filters: Internet Ex-

plorer 8 and 9, Google Chrome, Safari, and Firefox em-

ploy built-in XSS filters (or have extensions [3]) that ob-

serve HTTP requests and responses [1, 2] for attacks.

These filters are most commonly specified as regular

expressions, which we can model with BEK. We can

then check for inputs that are disallowed by browser fil-

ters, but which are allowed by sanitizers. For example,

BEK can determine that the AntiXSS implementation of

the EncodeHTML sanitizer in Figure 2 does not block

Bool ConstantsB ∈ {t, f}
Char Constants d ∈ Σ

Bool Variables b, . . .
Char Variables c
String Variables t

Strings sexpr ::= iter(c in sexpr) {init} {case∗}
| fromLast(ccond, sexpr)
| uptoLast(ccond, sexpr) | t

init ::= (b := B)∗

case ::= case(bexpr) {cstmt}| endcase
endcase ::= end(ebexpr){yield(d)∗}
cstmt ::= (b := ebexpr; | yield(cexpr);)∗

Booleans bexpr ::= Boolcomb(bexpr) |B | b | ccond
ebexpr ::= Boolcomb(ebexpr) |B | b
ccond ::= Boolcomb(ccond) |cexpr = cexpr

| cexpr < cexpr | cexpr > cexpr
Char strings cexpr ::= c | d | built-in-fnc(c) | cexpr + cexpr

Figure 4: Concrete syntax for BEK. Well-formed BEK

expressions are functions of type string → string;

the language provides basic constructs to filter and trans-

form the single input string t. Boolcomb(e) stands for
Boolean combination of e using conjunction, disjunc-

tion, and negation.

strings such as javascript: which are prevented by

IE 8 XSS filters. These differences indicate potential

bugs in the sanitizer or the filter.

Checking against public attack sets: Several pub-

lic XSS attack sets are available, such as XSS cheat

sheet [5]. With BEK, for all sanitizers, for all attack vec-

tors in an attack set, we can check if there exists an input

to the sanitizer that yields the attack vector.

3 The BEK Language and Transducers

In this section, we give a high-level description of a

small imperative language, BEK, of low-level string op-

erations. Our goal is two-fold. First, it should be possible

to model BEK expressions in a way that allows for their

analysis using existing constraint solvers. Second, we

want BEK to be sufficiently expressive to closely model

real-world code (such as Example 2). In this section

we first present the BEK language. We then define the

semantics of BEK programs in terms of symbolic finite

transducers (SFTs), an extension of classical finite state

transducers. Finally, we describe several core decision

procedures for SFTs that provide an algorithmic founda-

tion for efficient static analysis

and verification of BEK programs.

3.1 The BEK Language

Figure 4 describes the language syntax. We define a sin-

gle string variable, t, to represent an input string, and

a number of expressions that can take either t or an-

other expression as their input. The uptoLast(ϕ, t) and
fromLast(ϕ, t) are built-in search operations that ex-

tract the prefix (suffix) of t upto (from) and excluding

the last occurrence of a character satisfying ϕ. These

constructs are listed separately because they cannot be

implemented using other language features. Finally, the

iter construct allows for character-by-character iteration

over a string expression.

Example 3. uptoLast(c = ‘.’,"w.abc.org")
= "www.abc", fromLast(c = ‘.’,"w.abc.org")
="org". ⊠

The iter construct is designed to model loops that tra-

verse strings while making imperative updates to boolean

variables. Given a string expression (sexpr), a char-

acter variable c, and an initial boolean state (init), the
statement iterates over characters in sexpr and evaluates
the conditions of the case statements in order. When a

condition evaluates to true, the statements in cstmt may

yield zero or more characters to the output and update the

boolean variables for future iterations. The endcase ap-
plies when the end of the input string has been reached.

When no case applies, this correspond to yielding zero

characters and the iteration continues or the loop termi-

nates if the end of the input has been reached.

3.2 Finite Transducers

We start with the classical definition of finite state trans-

ducers. The particular sublass of finite transducers that

we are considering here are also called generalized se-

quential machines or GSMs [29], however, this defini-

tion is not standardized in the literature, and we there-

fore continue to say finite transducers for this restricted

case. The restriction is that, GSMs read one symbol at

each transition, while a more general definition allows

transitions that skip inputs.

Definition 1. A Finite Transducer A is defined as a six-

tuple (Q, q0, F,Σ,Γ,∆), whereQ is a finite set of states,

q0 ∈ Q is the initial state, F ⊆ Q is the set of final states,

Σ is the input alphabet, Γ is the output alphabet, and ∆
is the transition function fromQ× Σ to 2Q×Γ∗

.

We indicate a component of a finite transducer A by

using A as a subscript. For (q, v) ∈ ∆A(p, a) we define

the notation p
a/v
−→A q, where p, q ∈ QA, a ∈ ΣA and

v ∈ Γ∗
A. We write p

a/v
−→ q when A is clear from the

context. Given words v and w we let v · w denote the

concatenation of v and w. Note that v · ǫ = ǫ · v = v.

Given qi
ai/vi
−→A qi+1 for i < n we write q0

u/v
−→A qn

where u = a0 ·a1 ·. . .·an−1 and v = v0 ·v1 ·. . .·vn−1. We

write also q
ǫ/ǫ
−→A q. A induces the finite transduction,

TA : Σ∗
A → 2Γ

∗

A :

TA(u)
def
= {v | ∃q ∈ FA (q0A

u/v
−→ q)}

We lift the definition to sets, TA(U)
def
=

⋃
u∈U T (u).

Given two finite transductions T1 and T2, T1 ◦ T2 de-

notes the finite transduction that maps an input word u to

the set T2(T1(u)). In the following let A and B be finite

transducers. A fundamental composition of A and B is

the join composition of A and B.

Definition 2. The join ofA andB is the finite transducer

A◦B
def
= (QA×QB, (q

0
A, q

0
B), FA×FB,ΣA,ΓB,∆A◦B)

where, for all (p, q) ∈ QA ×QB and a ∈ ΣA:

∆A◦B((p, q), a)
def
= {((p′, q), ǫ) | p

a/ǫ
−→A p

′}

∪ {((p′, q′), v) | (∃u ∈ Γ+
A)

p
a/u
−→A p

′, q
u/v
−→B q′}

The following property is well-known and allows us

to drop the distinction between A and TA
without causing ambiguity.

Proposition 1. TA◦B = TA ◦ TB .

The following classification of finite transducers plays a

central role in the sections discussing translation from

BEK and decision procedures for

symbolic finite transducers.

Definition 3. A is single-valued if for all u ∈ Σ∗
A,

|A(u)| ≤ 1.

3.3 Symbolic Finite Transducers

Symbolic finite transducers, as defined below, provide a

symbolic representation of finite transducers using terms

modulo a given background theory T . The background

universeV of values is assumed to bemulti-sorted, where

each sort σ corresponds to a sub-universe Vσ. The

boolean sort is BOOL and contains the truth values t

(true) and f (false). Definition of terms and formulas

(boolean terms) is standard inductive definition, using

the function symbols and predicate symbols of T , log-

ical connectives, as well as uninterpreted constants with

given sorts. All terms are assumed to be well-sorted. A

term t of sort σ is indicated by t : σ. Given a term t and a
substitution θ from variables (or uninterpreted constants)

to terms or values, Subst(t, θ) denotes the term resulting

from applying the substitution θ to t.
A model is a mapping of uninterpreted constants to

values.3 A model for a term t is a model that provides

an interpretation for all uninterpreted constants that oc-

cur in t. (All free variables are treated as uninterpreted

constants.) The interpretation or value of a term t in a

3The interpretations of background functions of T is fixed and is

assumed to be an implicit part of all models.

modelM for t is given by standard Tarski semantics us-

ing induction over the structure of terms, and is denoted

by tM . A formula (predicate) ϕ is true in a model M
for ϕ, denoted by M |= ϕ, if ϕM evaluates to true. A

formula ϕ is satisfiable, denoted by IsSat(ϕ), if there
exists a modelM such that M |= ϕ. Any term t:σ that

includes no uninterpreted constants is called a value term

and denotes a concrete value [[t]] ∈ Vσ .
Let Term

γ
T (x̄) denote the set of all terms in T of sort

γ, where x̄ = x0, . . . , xn−1 may occur as the only un-

interpreted constants (variables). Let PredT (x̄) denote
TermBOOL

T (x̄). In order to avoid ambiguities in notation,

given a set E of elements, we write [e0, . . . , en−1] for
elements of E∗, i.e., sequences of elements from E. We

use both [] and ǫ to denote the empty sequence. As above,

if e1, e2 ∈ E∗, then e1 · e2 ∈ E∗ denotes the con-

catenation of e1 with e2. We lift the interpretation of

terms to apply to sequences: for u = [u0, . . . , un−1] ∈

Term
γ
T (x̄)

∗ let uM
def
= [uM0 , . . . , u

M
n−1] ∈ (Vγ)∗.

In the following let c:σ be a fixed uninterpreted con-

stant of sort σ. We refer to c:σ as the input variable (for

the given sort σ).

Definition 4. A Symbolic Finite Transducer (SFT) for T
is a six-tuple (Q, q0, F, σ, γ, δ), whereQ is a finite set of

states, q0 ∈ Q is the initial state, F ⊆ Q is the set of

final states, σ is the input sort, γ is the output sort, and

δ is the symbolic transition function fromQ×PredT (c)
to 2Q×Term

γ
T
(c)∗ .

We use the notation p
ϕ/u
−→A q for (q,u) ∈ δA(p, ϕ)

and call p
ϕ/u
−→A q a symbolic transition, ϕ/u is called

its label, ϕ is called its input (guard) and u its output.

An SFT A = (Q, q0, F, σ, γ, δ) denotes the finite

transducer [[A]] = (Q, q0, F,Vσ,Vγ ,∆) where p
a/v
−→[[A]]

q if and only if there exists p
ϕ/u
−→A q and a model M

such thatM |= ϕ, cM = a, uM = v.
For an STF A let the underlying transduction TA be

T[[A]]. For a state q ∈ QA let T qA(v) (T q[[A]](v)) denote
the set of outputs when starting from q with input v. In
particular, if q = q0A then TC = T qA and T[[A]] = T q[[A]].

The following proposition follows directly from the def-

inition of [[A]].

Proposition 2. For v ∈ Σ∗
[[A]] and q ∈ QA: T

q
A(v) =

T q[[A]](v).

Example 4. The identity SFT Id (for sort σ) is defined

follows. Id = ({q}, q, {q}, σ, σ, {q
t/[c]
−→ q}). Thus, for

all a ∈ Vσ , q
a/a
−→[[Id]] q, and [[Id]](v) = {v} for all

v ∈ (Vσ)∗. ⊠

Example 5. Assume σ is the sort for characters. The

predicate c = ‘.’ says that the input character is a dot.

// GFED@ABC?>=<89:;q0

(c 6=′.′)/[c]

�� (c=′.′)/[]
,,

(c=′.′)/[c] ++

GFED@ABC?>=<89:;q1

(c 6=′.′)/[]

��

GFED@ABCq2

(t)/[c]

UU

(c=′.′)/[]

==

Figure 5: Symbolic finite state transducer for

uptoLast(c=‘.’, input). This transducer is non-

deterministic; there are two transitions that match ‘.’
from state q0.

The SFT UptoLastDot such that for all strings v,

UptoLastDot(v) = uptoLast(c = ‘.’, v),

where uptoLast is the BEK function introduced above,

is shown in Figure 5. ⊠

Composition works directly with SFTs, and keeps the

resulting SFT clean in the sense that all symbolic transi-

tions are feasible, and eliminates states that are unreach-

able from the initial state as well as non-initial states

that are not backwards reachable from any final state. In

order to preserve feasibility of transitions the algorithm

uses a solver for checking satisfiability of formulas in

PredT (c).

3.4 BEK to SFT translation

The basic sort needed in this section, besides BOOL, is

a sort CHAR for characters. We also assume the back-

ground relation < : CHAR × CHAR → BOOL as a strict

total order corresponding to the standard lexicographic

order over ASCII (or Unicode) characters and assume>,
≤ and ≥ to be defined accordingly. We also assume that

each individual character has a built-in constant such as

‘a’:CHAR. For example,

(‘A’ ≤ c ∧ c ≤ ‘Z’) ∨ (‘a’ ≤ c ∧ c ≤ ‘z’)∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’

descibes the regex character class \w of all word char-

acters in ASCII. (Direct use of regex character classes

in BEK, such as case(\w) {. . .}, is supported in the en-

hanced syntax supported in the BEK analyzer tool.)

Each sexpr e is translated into an SFT SFT (e).
For the string variable t, SFT (e) = Id , with Id

as in Example 4. The translation of uptoLast(ϕ, e)
is the symbolic composition STF (e) ◦ B where B
is an SFT similar to the one in Example 5, except

that the condition c = ‘.’ is replaced by ϕ. The

translation of fromLast(ϕ, e) is analogous. Finally,

SFT (iter(c in e) {init} {case∗}) = SFT (e) ◦ B
where B = (Q, q0, Q, CHAR, CHAR, δ) is
constructed as follows:

Step 1: Normalize. Transform case∗ so that case con-

ditions are mutually exclusive by adding the nega-

tions of previous case conditions as conjuncts to all

the subsequent case conditions, and ensure that each

boolean variable has exactly one assignment in each

cstmt (add the trivial assignment b := b
if b is not assigned).

Step 2: Compute states. Compute the set of states Q.

Let q0 be an initial state as the truth assignment to

boolean variables declared in init.4 Compute the

set Q of all reachable states, by using DFS, such

that, given a reached state q, if there exists a case

case(ϕ) {cstmt} such that Subst(ϕ, q) is satisfi-

able then add the state

{b 7→ [[Subst(ψ, q)]] | b := ψ ∈ cstmt} (1)

to Q. (Note that Subst(ψ, q) is a value term.)

Step 3: Compute transitions. Compute the symbolic

transition function δ. For each state q ∈ Q and

for each case case(ϕ) {cstmt} such that φ =
Subst(ϕ, q) is satisfiable. Let p be the state com-

puted in (1). Let yield(u0), . . . ,yield(un−1) be

the sequence of yields in cstmt and let u =
[u0, . . . , un−1]. Add the symbolic

transition q
φ/u
−→ p to δ.

The translation of end-cases is similar, resulting in sym-

bolic transitions with guard c = ⊥, where ⊥ is a spe-

cial character used to indicate end-of-string. We assume

⊥ to be least with respect to <. For example, assum-

ing that the BEK programs use concrete ASCII charac-

ters,⊥:CHAR is either an additional character, or the null

character ‘\0’ if only null-terminated strings are consid-

ered as valid input strings. Although practically impor-

tant, end-cases do not cause algorithmic complications,

and for the sake of clarity we avoid them

in further discussion.

The algorithm uses a solver to check satisfiability of

guard formulas. If checking satisfiability of a formula for

example times out, then it is safe to assume satisfiabil-

ity and to include the corresponding symbolic transition.

This will potentially add infeasible guards but retains the

correctness of the resulting SFT, meaning that the under-

lying finite transduction is unchanged. While in most

cases checking satisfiability of guards seems straight-

forward, but when considering Unicode, this perception

is deceptive. As an example, the regex character class

4Note that q0 is the empty assignment if init is empty, which trivi-

alizes this step.

// GFED@ABC?>=<89:;q0

(c/∈{′′′,′”′,′\′})/[c]

��

(c∈{′′′,′”′})/[′\′, c]

UU

(c=′\′)/[c]
++ GFED@ABC?>=<89:;q1

(t)/[c]

kk

Figure 6: SFT for BEK program in Example 1. This

SFT escapes single and double quotes with a backslash,

except if the current symbol is already escaped. The ap-

plication of this SFT is idempotent.

[\W-[\D]] denotes an empty set since \d is a subset of

\w and \W (\D) is the complement of \w (\d), and thus,

[\W-[\D]] is the intersection of \W and \d. Just the charac-

ter class \w alone contains 323 non-overlapping ranges in

Unicode, totaling 47,057 characters. A naı̈ve algorithm

for checking satisfiability (non-emptiness) of [\W-[\D]]

may easily time out.

Consider the BEK program in Example 1. The cor-

responding SFT constructed by the above translation is

shown in Figure 6. There are two symbolic transitions

from state q0 to itself. The first corresponds to the cases

where the input character c needs to be escaped, and the

second to cases where the input does not

need to be escaped.

3.5 Join Composition and Equivalence

We now give an informal description of our core algo-

rithms for reasoning about SFTs: join composition and

equivalence. We then show how these algorithms can be

used to check properties such as idempotence, existence

of an input yielding a target string, and commutativity.

The join compositionA ◦B corresponds to a program

transformation that constructs a single loop over the in-

put string out of two consecutive loops in SFTs A andB.

The join composition algorithm constructs an SFT A◦B
such that T[[A◦B]] = T[[A]]◦T[[B]]. The intuition behind the

construction is that the outputs produced by A are sub-

stituted symbolically in as the inputs consumed by the

B. The composition algorithm proceeds by depth-first

search, first computing QA◦B as constructed as a reach-

able subset of QA × QB , starting from (q0A, q
0
B). Here

we use the SMT solver to determine reachability, calling

the solver as a black box to determine if a path from one

state to another is feasible or not. This makes our con-

struction independent of the particular background the-

ory. In general, this is not true for other recent exten-

sions of finite transducers such as streaming transduc-

ers [6], where compositionality depends on properties of

the background theory that is being used.

Two SFTs A and B are equivalent if TA = TB . Let

Dom(A)
def
= {v | TA(v) 6= ∅}.

Checking equivalence of A and B reduces to two sepa-

rate tasks:

1. Deciding domain-equivalence: Dom(A) =
Dom(B).

2. Deciding partial-equivalence: for all v ∈
Dom(A) ∩ Dom(B), TA(v) = TB(v).

Note that 1 and 2 are independent and do not imply

each other, but together they imply equivalence. Do-

main equivalence holds for all SFTs constructed by BEK,

because all programs share the same domain, namely

that of strings. Checking partial equivalence is more in-

volved. We leverage the fact that all SFTs we construct

are single-valued. Our equivalence algorithm first com-

putes the join composition of A and B, then uses the

SMT solver to search for inputs that cause A to differ

from B. We have a nonconstructive proof of termina-

tion for this algorithm: it establishes that if A and B
are equivalent, then the search must terminate in time

quadratic in the number of states of the composed au-

tomata. In practice, the SMT solver carries out this

search, and our results in Section 4 show scaling is closer

to linear in practice.

Equivalence and join composition allow us to carry out

a variety of other analyses. Idempotence of an SFT A
can be first checked by computing B = A ◦ A, then
checking the equivalence ofA andB. If the two SFTs are

not equivalent, then A fails to be idempotent. Similarly,

commutativity of two SFTs A and B can be determined

by computingC = A◦B andD = B ◦A, then checking
equivalence. The idea is illustrated in Figure 7. We can

also compute the inverse image of a SFT with respect to a

string s, which lets us find out the set of inputs to the SFT
that yield s as an output. We use all of these analyses to

check sanitizers for security

properties in the next section.

� ^]v�µ�����]vP_
z

A not

idempotent

A x A

A A

A

� ^]v�µ�����]vP_ z
A and B not

commutative

B x A

B A

A x B

A B

Figure 7: Using composition and equivalence of SFTs

to decide idempotence and commutativity.

Our approach has an advantage over traditional finite

transducers (FTs), due to succinctness of SFTs. Suppose

for example that the background character theory T is k-
bit bit vector arithmetic where k depends on the desired

character range (e.g., for Unicode, k = 16). An explicit

expansion of a BEK SFT A to [[A]] may increase the size

(nr of transitions) by a factor of 2k. Partial-equivalence
of single-valued FTs is solvable O(n2) [15] time. Thus,

for an SFT A of size n, using the partial-equivalence al-

gorithm for [[A]] takes O((2kn)2) time. In contrast, the

partial-equivalence algorithm for BEK SFTs is O(n2).
When the background theory is linear arithmetic, then

the alphabet is infinite and a correspoding FT algorithm

is therefore not even possible.

4 Evaluation

In the following subsections, we evaluate the real-world

applicability of BEK in terms of expressivess,

utility, and performance:

• Section 4.1 evaluates whether BEK can model ex-

isting real-world code. We conduct an emperical

study of a large body of code to see how widely-

used BEK-modelable sanitizer functions are (Sec-

tion 4.1.1), and we evaluate which BEK features

are needed to model sanitizers from AutoEscape,

OWASP, and Internet Explorer 8 (Section 4.1.2).

• We put BEK to work to check existing sanitizers for

idempotence, commutativity, and reversibility (Sec-

tion 4.2).

• We performpair-wise equivalence checks on a num-

ber of ported HTMLEncode implementations, as well

as two outsourced implementations (Section 4.3).

• We evaluate effectiveness of existing HTMLEncode

implementations against known attack strings taken

from the Cross-site Scripting Cheat Sheet (Sec-

tion 4.4).

• We use a synthetic benchmark to evaluate the scal-

ability of performing equivalence checks on BEK

programs (Section 4.5).

• We provide a short example to highlight the fact

that BEK programs can be readily translated to other

programming languages (Section 4.6).

These experiments are based on an implementation that

consists of roughly 5, 000 lines of C# code that imple-

ments the basic transducer algorithms and Z3 [14] inte-

gration, with another 1, 000 lines of F# code for transla-
tion from BEK to transducers. Our experimentswere car-

ried out on a Lenovo ThinkPad W500 laptop with 8 GB

of RAM and an Intel Core 2 Duo P9600 processor run-

ning at 2.67 GHz, running 64-bit Windows 7.

4.1 Expressive Utility

Thus far, we discussed the expressiveness of BEK pri-

marily in theoretical terms. In this subsection, we turn

our attention to real-world applicability instead, through

a case study that aims to demonstrate that a wide variety

of commonly used sanitizers can be ported to

BEK with relative ease.

4.1.1 Frequency of Sanitizer use in PHP code.

PHP is a widely-used open source server-side scripting

language. Minamide’s seminal work on the static anal-

ysis of dynamic web applications [26] includes finite-

transducer based models for a subset of PHP’s sanitizer

functions. These transducers are hand-crafted in several

thousand lines of OCaml. We conducted an informal re-

view of the PHP source to confirm that each transducer

could be modeled as a BEK program.

Our goal is to perform a high-level quantitative com-

parison of the applicability of BEK, on the one hand,

and existing string constraint solvers (e.g., DPRLE [17],

Hampi [20], Kaluza [30], and Rex [35]) on the other. For

this comparison, we assume that each Minamide trans-

ducer could instead be modeled as a BEK program. We

then use statistics from a study by Hooimeijer [16] that

measured the relative frequency, by static count, of 111

distinct PHP string library functions. The Hooimeijer

study was conducted in December 2009, and covers the

top 100 projects on SourceForge.net, or about 9.6 mil-

lion lines of PHP code. The study considered most, but

not all, sanitizers provided by Minamide.

Out of the 111 distinct functions considered in the

Hooimeijer study, 27 were modeled as transducers by

Minamide and thus encodable in BEK. In the sam-

pled PHP code, these 27 functions account for 68, 238
out of 251, 317 uses, or about 27% of all string-related

call sites. By comparison, traditional regular expression

functionsmodeled by tools like Hampi [20] and Rex [35]

account for just 29,141 call sites, or about 12%. We note

that BEK could be readily integrated into an automaton-

based tool like Rex, however, and our features are largely

complimentary to those of traditional string constraint

solvers. These results suggest that BEK provides a signif-

icant improvement in the “coverage” of real-world code

by string analysis tools.

4.1.2 Language Features

For the remainder of the experiments, we use a small

dataset of ported-to-BEK sanitizers. We now discuss

that dataset and the manual conversion effort required.

The results are summarized in Figure 8, and described in

more detail below.

Google AutoEscape and OWASP. We converted san-

itizers from the OWASP sanitizer library to BEK pro-

grams. We also evaluated sanitizers from the Google

AutoEscape framework to determine what language fea-

tures they would need to be expressed in BEK. These

sanitizers are marked with prefixes GA and OWASP, re-

spectively, in Figure 8. We verified that each of these

sanitizers can be implemented in BEK. In several cases,

we find additional non–native features that could be

added to BEK to support these sanitizers.

Internet Explorer. In addition, we extracted sanitizers

from the binary of Internet Explorer 8 that are used

in the IE Cross-Site Scripting Filter feature, denoted

IEFilter1 to IEFilter17 in Figure 8. For this study,

we analyze the behavior of the IE 8 sanitizers under

the assumption the server performs no sanitization of

its own on user data. Of these 21 sanitizers, we could

convert 17 directly into BEK programs. The remaining 4
sanitizers track a potentially unbounded list of characters

that are either emitted unaltered or escaped, depending

on the result of a regular expression match. BEK does

not enable storing strings of input characters.

The manual translation took several hours per sani-

tizer. Figure 8 breaks down our BEK programs based on

“Native” features of the BEK language, and “Not Native”

features which are not currently in the BEK language.

Many of these features can be integrated modeled using

transducers, however, by enhancing the language of con-

straints used for symbolic labels. In addition, with the

exception of 4 Internet Explorer sanitizers, we found that
a maximum lookaheadwindow of eight characters would

suffice for handling all our sanitizers. Finally, we discov-

ered that the arithmetic on characters was limited to right

shifts and linear arithmetic, which can be expressed in

the Z3 solver we use.

We note that all “Not Native” features could be added

to the BEK languagewith few or no changes to the under-

lying SFT algorithms for join composition and equiva-

lence checking: only the front end would need to change.

4.1.3 Browser Code

Ideally, we could use BEK to model the parser of an ac-

tual web browser. Then, we could use our analyses to

check whether there exists a string that passes through a

given sanitizer yet causes javascript execution. We per-

formed a preliminary exploration of the WebKit browser

to determine how difficult it would be to write such

a model with BEK. Unfortunately, we found multiple

Native Not Native
boolean multiple mult.

Name vars iters regex lookahead arith. functions

a2bb2a 1 7 X 7 7 7

escapeBrackets 1 X 7 7 7 7

escapeMetaAndLink 1 X X 7 7 7

escapeString0 1 7 7 7 7 7

escapeString 1 7 7 7 7 7

escapeStringSimple 1 7 7 7 7 7

getFileExtension 2 7 7 7 7 7

GA HtmlEscape 0 7 7 7 7 7

GA PreEscape 0 7 7 7 7 7

GA SnippetEsc 3 7 7 X 7 7

GA CleanseAttrib 1 7 7 X 7 7

GA CleanseCSS 0 7 7 7 7 7

GA CleanseURLEsc 0 7 7 7 7 7

GA ValidateURL 2 X 7 X X 7

GA XMLEsc 0 7 7 7 7 7

GA JSEsca 0 7 7 X 7 7

GA JSNumber 2 X 7 X 7 7

GA URLQueryEsc 1 X 7 7 X 7

GA JSONESc 0 7 7 7 7 7

GA PrefixLine 0 7 7 7 7 7

OWASP HTMLEncode 0 7 7 X 7 7

IEFilter1 3 7 X 7 7 7

IEFilter2 4 7 X 7 7 7

IEFilter3 5 7 X 7 7 7

IEFilter4 4 7 X 7 7 7

IEFilter5 4 7 X 7 7 7

IEFilter6 5 7 X 7 7 7

IEFilter7 4 7 X 7 7 7

IEFilter8 4 7 X 7 7 7

IEFilter9 5 7 X 7 7 7

IEFilter10 5 7 X 7 7 7

IEFilter11 4 7 X 7 7 7

IEFilter12 4 7 X 7 7 7

IEFilter13 4 7 X 7 7 7

IEFilter14 4 7 X 7 7 7

IEFilter15 1 7 X 7 7 7

IEFilter16 1 7 X 7 7 7

IEFilter17 1 7 X 7 7 7

Figure 8: Expressiveness: different language features

used by the original corpus of different programs. A

cross means that the feature was not used by the pro-

gram in its initial implementation. A checkmark means

the feature was used by the program. boolean variables,

multiple iterations over a string, and regular expressions

are native constructs in BEK. Multiple lookahead, arith-

metic, and functions are not native to BEK and must be

emulated during the translation. We also show the dis-

tinct boolean variables used by the BEK implementation.

functions that require features, such as bounded looka-

head and transducer composition, which are not yet sup-

ported by the BEK language.

For example, we considered a function in the Safari

implementation of WebKit that performs Javascript de-

coding [7]. This function requires at a minimum the use

of functions to connect hexadecimal to ASCII, a looka-

head of 5 characters, function composition, and scan-

ning for occurrences of a target character. While as

noted above we believe these features could be added

to BEK without fundamentally changing the underlying

algorithms for symbolic transducers, the BEK language

does not yet support them.

4.2 Checking Algebraic Properties

We argued in Section 2 that idempotence and commuta-

tivity are key properties for sanitizers. In addition, the

property of reversibility, that from the output of a sani-

tizer we can unambiguously recover the input, is impor-

tant as an aid to debugging.

4.2.1 Order Independence

We now evaluate whether 17 sanitizers used in IE 8 are

order independent. Order independence means that the

sanitizers have the same effect no matter in what order

they are applied. If the order does matter, then the choice

of order can yield surprising results. As an example, in

rule-based firewalls, a set of rules that are not order in-

dependent may result in a rule never being applied, even

though the administrator of the firewall believes the rule

is in use.

Each IE 8 sanitizer defines a specific input set on

which it will transform strings, which we can compute

from the BEK model. We began by checking all 136 pairs
of IE 8 sanitizers to determine whether their input sets

were disjoint. Only one pair of sanitizers showed a non-

trivial intersection in their input sets. A non-trivial in-

tersection signals a potential order dependence, because

the two sanitizers will transform the same strings. For

this pair, we used BEK to check that the two sanitizers

output the same language, when restricted to inputs from

their intersection. BEK determined that the transforma-

tion of the two sanitizers on thesel inputs was exactly the

same — i.e., the two sanitizers were equivalent on the

intersection set. We conclude that the IE 8 sanitizers are

in fact order independent, up to errors in our extraction

of the sanitizers and our assumption that no server-side

modification is present.

4.2.2 Idempotence and Reversibility

We now examine the idempotence of several BEK pro-

grams, including the IE 8 sanitizers. Figure 9 reports

the results. The number of states in the symbolic finite

transducer created from each BEK program. For each

transducer, we then report whether it is idempotent and

whether it is reversible. This shows the number of states

acts as a rough guide to the complexity of the sanitizer.

For example, we see that IE filter 9 out of 17 is quite

complicated, with 25 states.

4.2.3 Commutativity

We investigated commutativity of seven different imple-

mentations of HTMLEncode, a sanitizer commonly used

by web applications. Four implementations were gath-

ered from internal sources. Three were created for our

Name States Idempotent? Reversible?

a2bb2a 1 7 X

escapeBrackets 1 X 7

escapeMetaAndLink 1 X X

escapeString0 1 7 7

escapeString 1 7 7

escapeStringSimple 1 7 7

getFileExtension 2 7 7

IEFilter1 6 X 7

IEFilter2 9 X 7

IEFilter3 19 X 7

IEFilter4 13 X 7

IEFilter5 13 X 7

IEFilter6 16 X 7

IEFilter7 13 X 7

IEFilter8 12 X 7

IEFilter9 25 X 7

IEFilter10 18 X 7

IEFilter11 11 X 7

IEFilter12 11 X 7

IEFilter13 14 X 7

IEFilter14 14 X 7

IEFilter15 1 X 7

IEFilter16 1 X 7

IEFilter17 1 X 7

Figure 9: For each BEK benchmark programs, we report

the number of states in the corresponding symbolic trans-

ducer. We then report whether the transducer is idempo-

tent, and whether the transducer is reversible.

HTMLEncode1 X X X 7 7 X 7

HTMLEncode2 X X X 7 7 X 7

HTMLEncode3 X X X 7 7 X 7

HTMLEncode4 7 7 7 X 7 7 7

Outsourced1 7 7 7 7 X 7 7

Outsourced2 X X X 7 7 X 7

Outsourced3 7 7 7 7 7 7 X

Figure 10: Commutativity matrix for seven different im-

plementations of HTMLEncode. The Outsourced imple-

mentations were written by freelancers from a high level

English specification.

project specifically by hiring freelance programmers to

create implementations from popular outsourcing web

sites. We provided these programmers with a high

level specification in English that emphasized protection

against cross-site scripting attacks. Figure 10 shows a

commutativity matrix for the HTMLEncode implementa-

tions. A X indicates the pair of sanitizers commute,

while a 7 indicates they do not. The matrix contains 12
check marks out of 42 total comparisons of distinct sani-

tizers, or 28.6%. Our implementation took less than one

minute to complete all 42 comparisons.

4.3 Differences Between Multiple Implementations

Multiple implementations of the “same” functionality are

commonly available from which to choose when writing

a web application. For example, newer versions of a li-

brary may update the behavior of a piece of code. Differ-

ent organizationsmay also write independent implemen-

tations of the same functionality, guided by performance

HTMLEncode1 X X X 0 − X 0

HTMLEncode2 X X X 0 − X 0

HTMLEncode3 X X X 0 − X
′

HTMLEncode4 0 0 0 X 0 0 0

Outsourced1 − − − 0 X − 0

Outsourced2 X X X 0 − X 0

Outsourced3 0 0 ′ 0 0 0 X

Figure 11: Equivalence matrix for our implementations

of HTMLEncode. A X indicates the implementations are

equivalent. For implementations that are not equivalent,

we show an example character that exhibits different be-

havior in the two implementations. The symbol 0 refers

to the null character.

improvements or by different requirements. Given these

different implementations, the first key question is “do

all these implementations compute the same function?”

Then, if there are differences, the second key question is

“how do these implementations differ?”

As described above, because BEK programs corre-

spond to single valued symbolic finite state transduc-

ers, computing the image of regular languages under the

function defined by a BEK program is decidable. By tak-

ing the image of Σ∗ under two different BEK programs,

we can determine whether they output the

same set of strings.

We checked equivalence of seven different implemen-

tations in C# (as explained above) of the HTMLEncode

sanitization function. We translated all seven implemen-

tations to BEK programs by hand. First, we discovered

that all seven implementations had only one state when

transformed to a symbolic finite transducer. We then

found that all seven are neither reversible nor idempotent.

For example, the ampersand character & is expanded to

& by all seven implementations. This in turn con-

tains an ampersand that will be re-expanded on future

applications of the sanitizer, violating idempotence.

For each BEK program, we checked whether it was

equivalent to the other HTMLEncode implementations.

Figure 11 shows the results. For cases where the

two implementations are not equivalent, BEK derived

a counterexample string that is treated differently by

the two implementations. For example, we discov-

ered that Outsourced1 escapes the − character, while

Outsourced2 does not. We also found that one of the

HTMLEncode implementations does not encode the sin-

gle quote character. Because the single quote charac-

ter can close HTML contexts, failure to encode it could

cause unexpected behavior for a web developer who uses

this implementation. For example, a recent attack on the

Google Analytics dashboard was enabled by failure to

sanitize a single quote [33].

This case study shows the benefit of automatic analy-

sis of string manipulating functions to check equivalence.

HTML Attribute

Implementation context context

HTMLEncode1 100% 93.5%

HTMLEncode2 100% 93.5%

HTMLEncode3 100% 93.5%

HTMLEncode4 100% 100%

Outsourced1 100% 93.5%

Outsourced2 100% 93.5%

Outsourced3 100% 93.5%

Figure 12: Percentage of XSS Cheat Sheet strings, in

both HTML tag context and tag attribute contexts, that

are ruled out by each implementation of HTMLEncode.

Without BEK, obtaining this information using manual

inspection would be difficult, error prone, and time con-

suming. With BEK, we spent roughly 3 days total trans-

lating from C# to BEK programs. Then BEK was able

to compute the contents of Figure 11 in less than one

minute, including all equivalence

and containment checks.

4.4 Checking Filters Against The Cheat Sheet

The Cross-Site Scripting Cheat Sheet (“XSS Cheat

Sheet”) is a regularly updated set of strings that trigger

JavaScript execution on commonly used web browsers.

These strings are specially crafted to cause popular web

browsers to execute JavaScript, while evading common

sanitization functions. Once we have translated a sani-

tizer to a program in BEK, because BEK uses symbolic

finite state transducers, we can take a “target” string and

determine whether there exists a string that when fed to

the sanitizer results in the target. In other words, we

can check whether a string on the Cheat Sheet has a pre-

image under the function defined by a BEK program.

We sampled 28 strings from the Cheat Sheet. The

Cheat Sheet shows snippets of HTML, but in practice a

sanitizer might be run only on a substring of the snip-

pet. We focused on the case where a sanitizer is run

on the HTML Attribute field, extracting sub-strings from

the Cheat Sheet examples that correspond to the attribute

parsing context. While HTMLEncode should not be used

for sanitizing data that will become part of a URL at-

tribute, in practice programmers may accidentally use

HTMLEncode in this “incorrect” context. We also added

some strings specifically to check the handling of HTML

attribute parsing by our sanitizers. As a result, we ob-

tained two sets of attack strings: HTML and Attribute.

For each of our implementations, for all strings in

each set, we then asked BEK whether pre-images of that

string exist. Figure 12 shows what percentage of strings

have no pre-image under each implementation. All seven

Figure 13: Self-equivalence experiment.

implementations correctly escape angle brackets, so no

string in the HTML set has a pre-image under any of the

sanitizers. In the case of the Attribute strings, however,

we found that some of the implementations do not escape

the string“&#”, potentially yielding an attack. Only one

of our implementations of HTMLEncode made it impos-

sible for all of the strings in the Attribute set from ap-

pearing in its output. Each set of strings took between 36
and 39 seconds for BEK to check the entire set of strings

against a sanitizer.

4.5 Scalability of Equivalence Checking

Our theoretical analysis suggests that the speed of

queries to BEK should scale quadratically in the number

of states of the symbolic finite transducer. All sanitiz-

ers we have found in “the wild,” however, have a small

number of states. While this makes answering queries

about the sanitizers fast, it does not shed light on the em-

pirical performance of BEK as the number of states in-

creases. To address this, we performed two experiments

with synthetically generated symbolic finite transducers.

These transducers were specially created to exhibit some

of the structure observed in real sanitizers, yet have many

more states than observed in

practical sanitizer implementations.

Self-equivalence experiment. We generated symbolic

finite transducers A from randomly generated BEK pro-

grams having structure similar to typical sanitizers. The

time to check equivalence of A with itself is shown in

Figure 13 where the size is the number of states plus

the number of transitions in A. Although the worst case
complexity is quadratic, the actual observed complexity,

for a sample size of 1,000, is linear.

Commutativity experiment. We generated symbolic

finite transducers from randomly generated BEK pro-

grams having structure similar to typical santizers. For

each symbolic finite transducer A, we checked commu-

Figure 14: Commutativity experiment.

tativity with a small BEK program UpToLastDot that re-

turns a string up to the last dot character. The time to

determine that A ◦ UpToLastDot and UpToLastDot ◦ A
are equivalent is shown in Figure 14 where the size is the

total number of states plus the number of transitions in

A. The time to check non-equivalence was in most cases

only a few milliseconds, thus all experiments exclude the

data where the result is not equivalent, and only include

cases where the result is equivalent. Although the worst

case complexity is quadratic, the actual observed com-

plexity, over a sample size of 1,000

individual cases, was near-linear.

4.6 From BEK to Other Languages

We have built compilers from BEK programs to com-

monly used languages. When the time comes for deploy-

ment, the developer can compile to the language of her

choice for inclusion into an application.

Figure 15 shows a small example of a BEK program

and the result of its JavaScript compilation. As part of

the compilation, we have taken advantage of our knowl-

edge of properties of JavaScript to improve the speed of

the compiled code. For example, we push characters into

arrays instead of creating new string objects. The result

is standard JavaScript code that can be easily included in

any web application. By adding additional compilers for

common languages, such as C#, we can give a developer

multiple implementations of a sanitizer that are guaran-

teed to be equivalent for use in different contexts.

5 Related Work

SANER combines dynamic and static analysis to validate

sanitization functions in web applications [9]. SANER

creates finite state transducers for an over-approximation

of the strings accepted by the sanitizer using static anal-

ysis of existing PHP code. In contrast, our work focuses

on a simple language that is expressive enough to capture

existing sanitizers or write new ones by hand, but then

compile to symbolic finite state transducers that precisely

capture the sanitization function. SANER also treats the

issue of inputs that may be tainted by an adversary, which

is not in scope for our work. Our work also focuses on ef-

ficient ways to compose sanitizers and combine the the-

ory of finite state transducers with SMT solvers, which

is not treated by SANER.

Minamide constructs a string analyzer for PHP code,

then uses this string analyzer to obtain context free gram-

mars that are over-approximations of the HTML output

by a server [26]. He shows how these grammars can

be used to find pages with invalid HTML. The method

proposed in [21] can also be applied to string analysis

by modeling regular string analysis problems as higher-

order multi-parameter tree transducers (HMTTs) where

strings are represented as linear trees. While HMTTs al-

// orginal Bek program

program test0(t);

string s;

s := iter(c in t)

{b := false;} {

case ((c == ’a’)): i

b := !(b) && b;

b := b || b;

b := !(b);

yield (c);

case (true) :

yield (’$’);

};

//

// JavaScript translation

//

function test0(t) {

var s = function ($){

var result = new Array();

for(i=0;i<$.length; i++){

var c = $[i];

if ((c == String.fromCharCode(97))) {

b = (!(b) && b);

b = (b || b);

b = !(b);

result.push(c);

}

if (t) {

result.push(String.fromCharCode(36));

}

};

return result.join(’’);

}

return s(t);

}

Figure 15: A small example BEK program (top) and its

compiled version in JavaScript (bottom). Note the use of

result.push instead of explicit array assignment.

low encodings of finite transducers, arbitrary background

character theories are not directly expressibly in order to

encode SFTs. Our work treats issues of composition and

state explosion for finite state transducers by leveraging

recent progress in SMT solvers, which aids us in reason-

ing precisely about the transducers created by transfor-

mation of BEK programs and by avoiding state space ex-

plosion and bitblasting for large character domains such

as Unicode. Moreover, SMT solvers provide a method

of extracting concrete counterexamples.

Wasserman and Su also perform static analysis of

PHP code to construct a grammar capturing an over-

approximation of string values. Their application is to

SQL injection attacks, while our framework allows us to

ask questions about any sanitizer [36]. Follow-on work

combines this work with dynamic test input generation to

find attacks on full PHP web applications [37]. Dynamic

analysis of PHP code, using a combination of symbolic

and concrete execution techniques, is implemented in the

Apollo tool [8]. The work in [39] describes a layered

static analysis algorithm for detecting security vulnera-

bilities in PHP code that is also enable to handle some

dynamic features. In contrast, our focus is specifically

on sanitizers instead of on full applications; we empha-

size analysis precision over scaling to large code bases.

Christensen et al.’s Java String Analyzer is a static

analysis package for deriving finite automata that charac-

terize an over-approximationof possible values for string

variables in Java [13]. The focus of their work is on an-

alyzing legacy Java code and on speed of analysis. In

contrast, we focus on precision of the analysis and on

constructing a specific language to capture sanitizers, as

well as on the integration with SMT solvers.

Our work is complementary to previous efforts in ex-

tending SMT solvers to understand the theory of strings.

HAMPI [20] and Kaluza [31] extend the STP solver to

handle equations over strings and equations with mul-

tiple variables. Rex extends the Z3 solver to handle

regular expression constraints [35], while Hooimeijer et

al.show how to solve subset constraints on regular lan-

guages [17]. We in contrast show how to combine any

of these solvers with finite transducers whose edges can

take symbolic values in any of the theories

supported by the solver.

The work in [28] introduces the first symbolic ex-

tension of finite state transducers called a predicate-

augmented finite state transducer (pfst). A pfst has two

kinds of transitions: 1) p
ϕ/ψ
−→ q where ϕ and ψ are char-

acter predicates or ǫ, or 2) p
c/c
−→ q. In the first case

the symbolic transition corresponds to all concrete tran-

sitions p
a/b
−→ q such that ϕ(a) and ψ(b) are true, the

second case corresponds to identity transitions p
a/a
−→ q

for all characters a. A pfst is not expressive enough for

describing an SFT. Besides identities, it is not possible

to establish functional dependencies from input to out-

put that are needed for example to encode sanitizers such

as EncodeHtml.

A recent symbolic extension of finite transducers is

streaming transducers [6]. While the theoretical expres-

siveness of the language introduced in [6] exceeds that

of BEK, streaming transducers are restricted to charac-

ter theories that are total orders with no other operations.

Also, composition of streaming transducers requires an

explicit treatment of characters. It is an interesting future

research topic to investigate if there is an extension of

SFTs or a restriction of streaming transducers that allows

efficient symbolic analysis techniques to be applied.

6 Conclusions

Much prior work in XSS prevention assumes the correct-

ness of sanitization functions. However, practical expe-

rience shows writing correct sanitizers is far from triv-

ial. This paper presents BEK, a language and a compiler

for writing, analyzing string manipulation routines, and

converting them to general-purpose languages. Our lan-

guage is expressive enough to capture real web sanitizers

used in ASP.NET, the Internet Explorer XSS Filter, and

the Google AutoEscape framework, which we demon-

strate by porting these sanitizers to BEK.

We have shown how the analyses supported by our

tool can find security-critical bugs or check that such

bugs do not exist. To improve the end-user experience

when a bug is found, BEK produces a counter-example.

We discover that only 28.6% of our sanitizers commute,

∼79.1% are idempotent, and only 8% are reversibe. We

also demonstrate that most hand-written HTMLEncode

implementations disagree on at least some inputs. Un-

like previously published techniques, BEK deals equally

well with Unicode strings without creating a state ex-

plosion. Furthermore, we show that our algorithms for

equivalence checking and composition computation are

extremely fast in practice, scaling near-linearly with the

size of the symbolic finite transducer representation.

References

[1] About Safari 4.1 for Tiger. http://support.apple.com/kb/DL1045.

[2] Internet Explorer 8: Features.

http://www.microsoft.com/windows/internet-

explorer/features/safer.aspx.

[3] NoXSS Mozilla Firefox Extension. http://www.noxss.org/.

[4] OWASP: ESAPI project page. http://code.google.com/p/owasp-

esapi-java/.

[5] XSS (Cross Site Scripting) Cheat Sheet.

http://ha.ckers.org/xss.html.

[6] R. Alur and P. Cerný. Streaming transducers for algorithmic

verification of single-pass list-processing programs. In Proceed-

ings of the Symposium on Princples of Programming Languages,

pages 599–610, 2011.

[7] Apple. Jsdecode implementation, 2011. http://trac.

webkit.org/browser/releases/Apple/Safari%205.0/

JavaScriptCore/runtime/JSGlobalObjectFunctions.

cpp.

[8] S. Artzi, A. Kieżun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and

M. D. Ernst. Finding bugs in Web applications using dynamic

test generation and explicit-state model checking. Transactions

on Software Engineering, 99:474–494, 2010.

[9] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,

C. Kruegel, and G. Vigna. SANER: Composing static and dy-

namic analysis to validate sanitization in Web applications. In

Proceedings of the Symposium on Security and Privacy, 2008.

[10] D. Bates, A. Barth, and C. Jackson. Regular expressions con-

sidered harmful in client-side XSS filters. In Proceedings of the

Conference on the World Wide Web, pages 91–100, 2010.

[11] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analy-

sis for string-manipulating programs. In Proceedings of the Inter-

national Conference on Tools And Algorithms For The Construc-

tion And Analysis Of Systems, 2009.

[12] C. Y. Cho, D. Babić, E. C. R. Shin, and D. Song. Inference and

analysis of formal models of botnet command and control proto-

cols. In Proceedings of the Conference on Computer and Com-

munications Security, pages 426–439, 2010.

[13] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise

Analysis of String Expressions. In Proceedings of the Static Anal-

ysis Symposium, 2003.

[14] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In

Proceedings of the International Conference on Tools And Algo-

rithms For The Construction And Analysis Of Systems, 2008.

[15] A. J. Demers, C. Keleman, and B. Reusch. On some decidable

properties of finite state translations. Acta Informatica, 17:349–

364, 1982.

[16] P. Hooimeijer. Decision procedures for string constraints. Ph.D.

Dissertation Proposal, University of Virginia, April 2010.

[17] P. Hooimeijer and W. Weimer. A decision procedure for subset

constraints over regular languages. In Proceedings of the Con-

ference on Programming Language Design and Implementation,

pages 188–198, 2009.

[18] P. Hooimeijer andW.Weimer. Solving string constraints lazily. In

Proceedings of the International Conference on Automated Soft-

ware Engineering, 2010.

[19] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis

tool for detecting Web application vulnerabilities (short paper).

In Proceedings of the Symposium on Security and Privacy, May

2006.

[20] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst.

HAMPI: a solver for string constraints. In Proceedings of the

International Symposium on Software Testing and Analysis, 2009.

[21] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-

parameter tree transducers and recursion schemes for program

verification. In Proceedings of the Symposium on Principles of

Programming Languages, pages 495–508, 2010.

[22] D. Lindsay and E. V. Nava. Universal XSS via IE8’s XSS filters.

In Black Hat Europe, 2010.

[23] B. Livshits and M. S. Lam. Finding security errors in Java pro-

grams with static analysis. In Proceedings of the Usenix Security

Symposium, pages 271–286, Aug. 2005.

[24] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin:

Specification inference for explicit information flow problems. In

Proceedings of the Conference on Programming Language De-

sign and Implementation, June 2009.

[25] M. Martin, B. Livshits, and M. S. Lam. SecuriFly: Runtime

vulnerability protection for Web applications. Technical report,

Stanford University, Oct. 2006.

[26] Y. Minamide. Static approximation of dynamically generated

web pages. In Proceedings of the International Conference on

the World Wide Web, pages 432–441, 2005.

[27] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and

D. Evans. Automatically hardening Web applications using pre-

cise tainting. In Proceedings of the IFIP International Informa-

tion Security Conference, June 2005.

[28] G. V. Noord and D. Gerdemann. Finite state transducers with

predicates and identities. Grammars, 4:2001, 2001.

[29] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Lan-

guages, volume 1. Springer, 1997.

[30] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and

D. Song. A symbolic execution framework for JavaScript. Tech-

nical Report UCB/EECS-2010-26, EECS Department, University

of California, Berkeley, Mar 2010.

[31] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, F. Mao, and

D. Song. A symbolic execution framework for JavaScript. In

Proceedings of the IEEE Symposium on Security and Privacy,

2010.

[32] P. Saxena, D. Molnar, and B. Livshits. ScriptGard: Prevent-

ing script injection attacks in legacy Web applications with auto-

matic sanitization. Technical Report MSR-TR-2010-128, Micro-

soft Research, Sept. 2010.

[33] B. Schmidt. Google analytics XSS vulnerability,

2011. http://spareclockcycles.org/2011/02/03/

google-analytics-xss-vulnerability/.

[34] M. Veanes, N. Bjørner, and L. de Moura. Symbolic automata

constraint solving. In C. Fermüller and A. Voronkov, editors,

LPAR-17, volume 6397 of LNCS, pages 640–654. Springer, 2010.

[35] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic Regu-

lar Expression Explorer. In Proceedings of the International Con-

ference on Software Testing, Verification and Validation, 2010.

[36] G. Wassermann and Z. Su. Sound and precise analysis of Web

applications for injection vulnerabilities. In Proceedings of the

Conference on Programming Language Design and Implementa-

tion, 2007.

[37] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and

Z. Su. Dynamic test input generation for Web applications. In

Proceedings of the International Symposium on Software Testing

and Analysis, 2008.

[38] J. Williams. Personal communications, 2005.

[39] Y. Xie and A. Aiken. Static detection of security vulnerabilities

in scripting languages. In Proceedings of the Usenix Security

Symposium, pages 179–192, 2006.

[40] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapa-

tra. Fireman: A toolkit for firewall modeling and analysis. In

Proceedings of the Symposium on Security and Privacy, pages

199–213, 2006.

