
Fast and Provably Good Seedings for k-Means

Olivier Bachem
Department of Computer Science

ETH Zurich
olivier.bachem@inf.ethz.ch

Mario Lucic
Department of Computer Science

ETH Zurich
lucic@inf.ethz.ch

S. Hamed Hassani
Department of Computer Science

ETH Zurich
hamed@inf.ethz.ch

Andreas Krause
Department of Computer Science

ETH Zurich
krausea@ethz.ch

Abstract

Seeding – the task of finding initial cluster centers – is critical in obtaining high-
quality clusterings for k-Means. However, k-means++ seeding, the state of the
art algorithm, does not scale well to massive datasets as it is inherently sequential
and requires k full passes through the data. It was recently shown that Markov
chain Monte Carlo sampling can be used to efficiently approximate the seeding
step of k-means++. However, this result requires assumptions on the data gener-
ating distribution. We propose a simple yet fast seeding algorithm that produces
provably good clusterings even without assumptions on the data. Our analysis
shows that the algorithm allows for a favourable trade-off between solution quality
and computational cost, speeding up k-means++ seeding by up to several orders
of magnitude. We validate our theoretical results in extensive experiments on a
variety of real-world data sets.

1 Introduction

k-means++ (Arthur & Vassilvitskii, 2007) is one of the most widely used methods to solve k-Means
clustering. The algorithm is simple and consists of two steps: In the seeding step, initial cluster
centers are found using an adaptive sampling scheme called D2-sampling. In the second step, this
solution is refined using Lloyd’s algorithm (Lloyd, 1982), the classic iterative algorithm for k-Means.

The key advantages of k-means++ are its strong empirical performance, theoretical guarantees on
the solution quality, and ease of use. Arthur & Vassilvitskii (2007) show that k-means++ produces
clusterings that are in expectation O(log k)-competitive with the optimal solution without any
assumptions on the data. Furthermore, this theoretical guarantee already holds after the seeding
step. The subsequent use of Lloyd’s algorithm to refine the solution only guarantees that the solution
quality does not deteriorate and that it converges to a locally optimal solution in finite time. In
contrast, using naive seeding such as selecting data points uniformly at random followed by Lloyd’s
algorithm can produce solutions that are arbitrarily bad compared to the optimal solution.

The drawback of k-means++ is that it does not scale easily to massive data sets since both its
seeding step and every iteration of Lloyd’s algorithm require the computation of all pairwise distances
between cluster centers and data points. Lloyd’s algorithm can be parallelized in the MapReduce

framework (Zhao et al., 2009) or even replaced by fast stochastic optimization techniques such as
online or mini-batch k-Means (Bottou & Bengio, 1994; Sculley, 2010). However, the seeding step
requires k inherently sequential passes through the data, making it impractical even for moderate k.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



This highlights the need for a fast and scalable seeding algorithm. Ideally, it should also retain the
theoretical guarantees of k-means++ and provide equally competitive clusterings in practice. Such
an approach was presented by Bachem et al. (2016) who propose to approximate k-means++ using a
Markov chain Monte Carlo (MCMC) approach and provide a fast seeding algorithm. Under natural
assumptions on the data generating distribution, the authors show that the computational complexity
of k-means++ can be greatly decreased while retaining the same O(log k) guarantee on the solution
quality. The drawback of this approach is that these assumptions may not hold and that checking
their validity is expensive (see detailed discussion in Section 3).

Our contributions. The goal of this paper is to provide fast and competitive seedings for k-Means
clustering without prior assumptions on the data. As our key contributions, we

(1) propose a simple yet fast seeding algorithm for k-Means,
(2) show that it produces provably good clusterings without assumptions on the data,
(3) provide stronger theoretical guarantees under assumptions on the data generating distribution,
(4) extend the algorithm to arbitrary distance metrics and various divergence measures,
(5) compare the algorithm to previous results, both theoretically and empirically, and
(6) demonstrate its effectiveness on several real-world data sets.

2 Background and related work

We will start by formalizing the problem and reviewing several recent results. Let X denote a set of
n points in R

d. For any finite set C ⇢ R
d and x 2 X , we define

d(x,C)2 = min
c2C
kx� ck22.

The objective of k-Means clustering is to find a set C of k cluster centers in R
d such that the

quantization error �C(X ) is minimized, where

�C(X ) =
X

x2X

d(x,C)2.

We denote the optimal quantization error with k centers by �k
OPT (X ), the mean of X by µ(X ), and

the variance of X by Var(X ) =
P

x2X
d(x, µ(X ))2. We note that �1

OPT (X ) = Var(X ).

D2-sampling. Given a set of centers C, the D2-sampling strategy, as the name suggests, is to sample
each point x 2 X with probability proportional to the squared distance to the selected centers,

p(x | C) =
d(x,C)2

P

x02X d(x0, C)2
. (1)

The seeding step of k-means++ builds upon D2-sampling: It first samples an initial center uniformly
at random. Then, k � 1 additional centers are sequentially added to the previously sampled centers
using D2-sampling. The resulting computational complexity is Θ(nkd), as for each x 2 X the
distance d(x,C)2 in (1) needs to be updated whenever a center is added to C.

Metropolis-Hastings. The Metropolis-Hastings algorithm (Hastings, 1970) is a MCMC method for
sampling from a probability distribution p(x) whose density is known only up to constants. Consider
the following variant that uses an independent proposal distribution q(x) to build a Markov chain:
Start with an arbitrary initial state x1 and in each iteration j 2 [2, . . . ,m] sample a candidate yj using
q(x). Then, either accept this candidate (i.e., xj = yj) with probability

⇡(xj�1, yj) = min

✓
p(yj)

p(xj�1)

q(xj�1)

q(yj)
, 1

◆

(2)

or reject it otherwise (i.e., xj = xj�1). The stationary distribution of this Markov chain is p(x).
Hence, for m sufficiently large, the distribution of xm is approximately p(x).

Approximation using MCMC (K-MC
2). Bachem et al. (2016) propose to speed up k-means++ by

replacing the exact D2-sampling in (1) with a fast approximation based on MCMC sampling. In each
iteration j 2 [2, 3, . . . , k], one constructs a Markov chain of length m using the Metropolis-Hasting

2



algorithm with an independent and uniform proposal distribution q(x) = 1/n. The key advantage is
that the acceptance probability in (2) only depends on d(yj , C)2 and d(xj�1, C)2 since

min

✓
p(yj)

p(xj�1)

q(xj�1)

q(yj)
, 1

◆

= min

✓
d(yj , C)2

d(xj�1, C)2
, 1

◆

.

Critically, in each of the k � 1 iterations, the algorithm does not require a full pass through the data,
but only needs to compute the distances between m points and up to k� 1 centers. As a consequence,
the complexity of K-MC

2 is O
�
mk2d

�
compared to O(nkd) for k-means++ seeding.

To bound the quality of the solutions produced by K-MC
2, Bachem et al. (2016) analyze the mixing

time of the described Markov chains. To this end, the authors define the two data-dependent quantities:

↵(X ) = max
x2X

d(x, µ(X ))2
P

x02X
d(x0, µ(X ))2

, and �(X ) =
�1
OPT (X )

�k
OPT (X )

. (3)

In order to bound each term, the authors assume that the data is generated i.i.d. from a distribution F
and impose two conditions on F . First, they assume that F exhibits exponential tails and prove that

in this case ↵(X ) 2 O
�
log2 n

�
with high probability. Second, they assume that “F is approximately

uniform on a hypersphere”. This in turn implies that �(X ) 2 O(k) with high probability. Under
these assumptions, the authors prove that the solution generated by K-MC

2 is in expectation O(log k)-
competitive with the optimal solution if m 2 Θ

�
k log2 n log k

�
. In this case, the total computational

complexity of K-MC
2 is O

�
k3d log2 n log k

�
which is sublinear in the number of data points.

Other related work. A survey on seeding methods for k-Means was provided by Celebi et al.
(2013). D2-sampling and k-means++ have been extensively studied in the literature. Previous work
was primarily focused on related algorithms (Arthur & Vassilvitskii, 2007; Ostrovsky et al., 2006;
Jaiswal et al., 2014, 2015), its theoretical properties (Ailon et al., 2009; Aggarwal et al., 2009) and
bad instances (Arthur & Vassilvitskii, 2007; Brunsch & Röglin, 2011). As such, these results are
complementary to the ones presented in this paper.

An alternative approach to scalable seeding was investigated by Bahmani et al. (2012). The au-
thors propose the k-meansk algorithm that retains the same O(log k) guarantee in expectation as
k-means++. k-meansk reduces the number of sequential passes through the data to O(log n) by
oversampling cluster centers in each of the rounds. While this allows one to parallelize each of the
O(log n) rounds, it also increases the total computational complexity from O(nkd) to O(nkd log n).
This method is feasible if substantial computational resources are available in the form of a cluster.
Our approach, on the other hand, has an orthogonal use case: It aims to efficiently approximate
k-means++ seeding with a substantially lower complexity.

3 Assumption-free K-MC2

Building on the MCMC strategy introduced by Bachem et al. (2016), we propose an algorithm which
addresses the drawbacks of the K-MC

2 algorithm, namely:

(1) The theoretical results of K-MC
2 hold only if the data is drawn independently from a distribution

satisfying the assumptions stated in Section 2. For example, the results do not extend to heavy-
tailed distributions which are often observed in real world data.

(2) Verifying the assumptions, which in turn imply the required chain length, is computationally hard
and potentially more expensive than running the algorithm. In fact, calculating ↵(X ) already
requires two full passes through the data, while computing �(X ) is NP-hard.

(3) Theorem 2 of Bachem et al. (2016) does not characterize the tradeoff between m and the expected

solution quality: It is only valid for the specific choice of chain length m = Θ
�
k log2 n log k

�
.

As a consequence, if the assumptions do not hold, we obtain no theoretical guarantee with regards
to the solution quality. Furthermore, the constants in Theorem 2 are not known and may be large.

Our approach addresses these shortcomings using three key elements. Firstly, we provide a proposal
distribution that renders the assumption on ↵(X ) obsolete. Secondly, a novel theoretic analysis
allows us to obtain theoretical guarantees on the solution quality even without assumptions on �(X ).
Finally, our results characterize the tradeoff between increasing the chain length m and improving
the expected solution quality.

3



Algorithm 1 ASSUMPTION-FREE K-MC
2(AFK-MC

2)

Require: Data set X , # of centers k, chain length m
// Preprocessing step

1: c1  Point uniformly sampled from X
2: for all x 2 X do
3: q(x) 1

2 d(x, c1)
2/

P

x02X
d(x0, c1)

2 + 1
2n

// Main loop
4: C1  {c1}
5: for i = 2, 3, . . . , k do
6: x Point sampled from X using q(x)
7: dx  d(x,Ci�1)

2

8: for j = 2, 3, . . . ,m do
9: y  Point sampled from X using q(y)

10: dy  d(y, Ci�1)
2

11: if
dyq(x)
dxq(y)

> Unif(0, 1) then x y, dx  dy
12: Ci  Ci�1 [ {x}
13: return Ck

Proposal distribution. We argue that the choice of the proposal distribution is critical. Intuitively,
the uniform distribution can be a very bad choice if, in any iteration, the true D2-sampling distribution
is “highly” nonuniform. We suggest the following proposal distribution: We first sample a center
c1 2 X uniformly at random and define for all x 2 X the nonuniform proposal

q(x | c1) =
1

2

d(x, c1)
2

P

x02X
d(x0, c1)2

| {z }

(A)

+
1

2

1

|X |
|{z}

(B)

. (4)

The term (A) is the true D2-sampling distribution with regards to the first center c1. For any data
set, it ensures that we start with the best possible proposal distribution in the second iteration. We
will show that this proposal is sufficient even for later iterations, rendering any assumptions on ↵
obsolete. The term (B) regularizes the proposal distribution and ensures that the mixing time of
K-MC

2 is always matched up to a factor of two.

Algorithm. Algorithm 1 details the proposed fast seeding algorithm ASSUMPTION-FREE K-MC
2. In

the preprocessing step, it first samples an initial center c1 uniformly at random and then computes the
proposal distribution q(· | c1). In the main loop, it then uses independent Markov chains of length m
to sample centers in each of the k � 1 iterations. The complexity of the main loop is O

�
mk2d

�
.

The preprocessing step of ASSUMPTION-FREE K-MC
2 requires a single pass through the data to

compute the proposal q(· | c1). There are several reasons why this additional complexity of O(nd)
is not an issue in practice: (1) The preprocessing step only requires a single pass through the data
compared to k passes for the seeding of k-means++. (2) It is easily parallelized. (3) Given random
access to the data, the proposal distribution can be calculated online when saving or copying the data.
(4) As we will see in Section 4, the effort spent in the preprocessing step pays off: It often allows
for shorter Markov chains in the main loop. (5) Computing ↵(X ) to verify the first assumption of
K-MC

2 is already more expensive than the preprocessing step of ASSUMPTION-FREE K-MC
2.

Theorem 1. Let ✏ 2 (0, 1) and k 2 N. Let X be any set of n points in R
d and C be the output of

Algorithm 1 with m = 1 + 8
✏
log 4k

✏
. Then, it holds that

E [�C(X )]  8(log2 k + 2)�k
OPT (X ) + ✏Var(X ).

The computational complexity of the preprocessing step is O(nd) and the computational complexity

of the main loop is O
�
1
✏
k2d log k

✏

�
.

This result shows that ASSUMPTION-FREE K-MC
2 produces provably good clusterings for arbitrary

data sets without assumptions. The guarantee consists of two terms: The first term, i.e., 8(log2 k +
2)�k

OPT (X ), is the theoretical guarantee of k-means++. The second term, ✏Var(X ), quantifies the
potential additional error due to the approximation. The variance is a natural notion as the mean is
the optimal quantizer for k = 1. Intuitively, the second term may be interpreted as a scale-invariant
and additive approximation error.

4



Theorem 1 directly characterizes the tradeoff between improving the solution quality and the resulting
increase in computational complexity. As m is increased, the solution quality converges to the
theoretical guarantee of k-means++. At the same time, even for smaller chain lengths m, we obtain
a provable bound on the solution quality. In contrast, the guarantee of K-MC

2 on the solution quality
only holds for a specific choice of m.

For completeness, ASSUMPTION-FREE K-MC
2 may also be analyzed under the assumptions made

in Bachem et al. (2016). While for K-MC
2 the required chain length m is linear in ↵(X ),

ASSUMPTION-FREE K-MC
2 does not require this assumption. In fact, we will see in Section 4 that

this lack of dependence of ↵(X ) leads to a better empirical performance. If we assume �(X ) 2 O(k),
we obtain the following result similar to the one of K-MC

2 (albeit with a shorter chain length m).

Corollary 1. Let k 2 N and X be a set of n points in R
d satisfying �(X ) 2 O(k). Let C be the

output of Algorithm 1 with m = Θ(k log k). Then it holds that

E [�C(X )]  8(log2 k + 3)�k
OPT (X ).

The computational complexity of the preprocessing is O(nd) and the computational complexity of the

main loop is O
�
k3d log k

�
.

3.1 Proof sketch for Theorem 1

In this subsection, we provide a sketch of the proof of Theorem 1 and defer the full proof to
Section A of the supplementary materials. Intuitively, we first bound how well a single Markov chain
approximates one iteration of exact D2-sampling. Then, we analyze how the approximation error
accumulates across iterations and provide a bound on the expected solution quality.

For the first step, consider any set C ✓ X of previously sampled centers. Let c1 2 C denote the
first sampled center that was used to construct the proposal distribution q(x | c1) in (4). In a single
iteration, we would ideally sample a new center x 2 X using D2-sampling, i.e., from p(x | C) as
defined in (1). Instead, Algorithm 1 constructs a Markov chain to sample a new center x 2 X as the
next cluster center. We denote by p̃c1m(x | C) the implied probability of sampling a point x 2 X using
this Markov chain of length m.

The following result shows that in any iteration either C is ✏1-competitive compared to c1 or the
Markov chain approximates D2-sampling well in terms of total variation distance1.

Lemma 1. Let ✏1, ✏2 2 (0, 1) and c1 2 X . Consider any set C ✓ X with c1 2 C. For m �
1 + 2

✏1

log 1
✏2

, at least one of the following holds:

(i) �C(X ) < ✏1�c1(X ), or

(ii) kp(· | C)� p̃c1m(· | C)kTV  ✏2.

In the second step, we bound the expected solution quality of Algorithm 1 based on Lemma 1. While
the full proof requires careful propagation of errors across iterations and a corresponding inductive
argument, the intuition is based on distinguishing between two possible cases of sampled solutions.

First, consider the realizations of the solution C that are ✏1-competitive compared to c1. By definition,
�C(X ) < ✏1�c1(X ). Furthermore, the expected solution quality of these realizations can be bounded
by 2✏1 Var(X ) since c1 is chosen uniformly at random and hence in expectation �c1(X )  2Var(X ).

Second, consider the realizations that are not ✏1-competitive compared to c1. Since the quantization
error is non-increasing in sampled centers, Lemma 1 implies that all k � 1 Markov chains result in a
good approximation of the corresponding D2-sampling. Intuitively, this implies that the approxima-
tion error in terms of total variation distance across all k�1 iterations is at most ✏2(k�1). Informally,
the expected solution quality is thus bounded with probability 1� ✏2(k � 1) by the expected quality
of k-means++ and with probability ✏2(k � 1) by �c1(X ).

Theorem 1 can then be proven by setting ✏1 = ✏/4 and ✏2 = ✏/4k and choosing m sufficiently large.

1Let Ω be a finite sample space on which two probability distributions p and q are defined. The total variation
distance kp� qk

TV
between p and q is given by 1

2

P
x∈Ω

|p(x)� q(x)|.

5



Table 1: Data sets used in experimental evaluation

DATA SET N D K EVAL α(X )

CSN (EARTHQUAKES) 80,000 17 200 T 546
KDD (PROTEIN HOMOLOGY) 145,751 74 200 T 1,268
RNA (RNA SEQUENCES) 488,565 8 200 T 69
SONG (MUSIC SONGS) 515,345 90 2,000 H 526
SUSY (SUPERSYM. PARTICLES) 5,000,000 18 2,000 H 201
WEB (WEB USERS) 45,811,883 5 2,000 H 2

Table 2: Relative error of ASSUMPTION-FREE K-MC
2 and K-MC

2 in relation to k-means++.

CSN KDD RNA SONG SUSY WEB

K-MEANS++ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RANDOM 399.54% 314.78% 915.46% 9.67% 4.30% 107.57%

K-MC
2 (m = 20) 65.34% 31.91% 32.51% 0.41% -0.03% 0.86%

K-MC
2 (m = 100) 14.81% 3.39% 9.84% 0.04% -0.08% -0.01%

K-MC
2 (m = 200) 5.97% 0.65% 5.48% 0.02% -0.04% 0.09%

AFK-MC
2 (m = 20) 1.45% -0.12% 8.31% 0.01% 0.00% 1.32%

AFK-MC
2 (m = 100) 0.25% -0.11% 0.81% -0.02% -0.06% 0.06%

AFK-MC
2 (m = 200) 0.24% -0.03% -0.29% 0.04% -0.05% -0.16%

3.2 Extension to other clustering problems

While we only consider k-Means clustering and the Euclidean distance in this paper, the results are
more general. They can be directly applied, by transforming the data, to any metric space for which
there exists a global isometry on Euclidean spaces. Examples would be the Mahalanobis distance and
Generalized Symmetrized Bregman divergences (Acharyya et al., 2013).

The results also apply to arbitrary distance measures (albeit with different constants) as D2-sampling
can be generalized to arbitrary distance measures (Arthur & Vassilvitskii, 2007). However, Var(X )
needs to be replaced by �1

OPT (X ) in Theorem 1 since the mean may not be the optimal quantizer (for
k = 1) for a different distance metric. The proposed algorithm can further be extended to different
potential functions of the form k · kl and used to approximate the corresponding Dl-sampling (Arthur
& Vassilvitskii, 2007), again with different constants. Similarly, the results also apply to bregman++

(Ackermann & Blömer, 2010) which provides provably competitive solutions for clustering with a
broad class of Bregman divergences (including the KL-divergence and Itakura-Saito distance).

4 Experimental results

In this section2, we empirically validate our theoretical results and compare the proposed algorithm
ASSUMPTION-FREE K-MC

2 (AFK-MC
2) to three alternative seeding strategies: (1) RANDOM, a

“naive” baseline that samples k centers from X uniformly at random, (2) the full seeding step of
k-means++, and (3) K-MC

2. For both ASSUMPTION-FREE K-MC
2 and K-MC

2, we consider the
different chain lengths m 2 {1, 2, 5, 10, 20, 50, 100, 150, 200}.

Table 1 shows the six data sets used in the experiments with their corresponding values for k. We
choose an experimental setup similar to Bachem et al. (2016): For half of the data sets, we both train
the algorithm and evaluate the corresponding solution on the full data set (denoted by T in the EVAL

column of Table 1). This corresponds to the classical k-Means setting. In practice, however, one is
often also interested in the generalization error. For the other half of the data sets, we retain 250,000
data points as the holdout set for the evaluation (denoted by H in the EVAL column of Table 1).

For all methods, we record the solution quality (either on the full data set or the holdout set) and mea-
sure the number of distance evaluations needed to run the algorithm. For ASSUMPTION-FREE K-MC

2

this includes both the preprocessing and the main loop. We run every algorithm 200 times with
different random seeds and average the results. We further compute and display 95% confidence
intervals for the solution quality.

2An implementation of ASSUMPTION-FREE K-MC
2 has been released at http://olivierbachem.ch.

6

http://olivierbachem.ch


10
0

10
1

10
2

10
3

Chain length m

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
ra
in
in
g
e
rr
o
r

×10
5 CSN

afk-mc2

k-mc2

k-means++

random

10
0

10
1

10
2

10
3

Chain length m

1

2

3

4

5

6

7

8

9
×10

11 KDD

afk-mc2

k-mc2

k-means++

random

10
0

10
1

10
2

10
3

Chain length m

0

1

2

3

4

5

6

7

8

9
×10

7 RNA

afk-mc2

k-mc2

k-means++

random

10
0

10
1

10
2

10
3

Chain length m

6.5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

H
o
ld
o
u
t
e
rr
o
r

×10
11 SONG

afk-mc
2

k-mc
2

k-means++

random

10
0

10
1

10
2

10
3

Chain length m

5.00

5.05

5.10

5.15

5.20

5.25

5.30
×10

5 SUSY

afk-mc
2

k-mc
2

k-means++

random

10
0

10
1

10
2

10
3

Chain length m

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
×10

2 WEB

afk-mc
2

k-mc
2

k-means++

random

Figure 1: Quantization error in relation to the chain length m for ASSUMPTION-FREE K-MC
2 and

K-MC
2 as well as the quantization error for k-means++ and RANDOM (with no dependence on m).

ASSUMPTION-FREE K-MC
2 substantially outperforms K-MC

2 except on WEB. Results are averaged
across 200 iterations and shaded areas denote 95% confidence intervals.

10
4

10
5

10
6

10
7

10
8

Distance evaluations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
ra
in
in
g
e
rr
o
r

×10
5 CSN

k-means++

afk-mc2

k-mc2

10
4

10
5

10
6

10
7

10
8

Distance evaluations

1

2

3

4

5

6

7

8

9
×10

11 KDD

k-means++

afk-mc2

k-mc2

10
4

10
5

10
6

10
7

10
8

Distance evaluations

0

1

2

3

4

5

6

7

8
×10

7 RNA

k-means++

afk-mc2

k-mc2

10
6

10
7

10
8

10
9

Distance evaluations

6.5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

H
o
ld
o
u
t
e
r
r
o
r

×10
11 SONG

k-means++

afk-mc
2

k-mc
2

10
6

10
7

10
8

10
9

10
10

Distance evaluations

5.00

5.05

5.10

5.15

5.20

5.25

5.30
×10

5 SUSY

k-means++

afk-mc
2

k-mc
2

10
6

10
7

10
8

10
9

10
10

10
11

Distance evaluations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
×10

2 WEB

k-means++

afk-mc
2

k-mc
2

Figure 2: Quantization error in relation to the number of distance evaluations for
ASSUMPTION-FREE K-MC

2, K-MC
2 and k-means++. ASSUMPTION-FREE K-MC

2 provides a
speedup of up to several orders of magnitude compared to k-means++. Results are averaged across
200 iterations and shaded areas denote 95% confidence intervals.

7



Table 3: Relative speedup (in terms of distance evaluations) in relation to k-means++.

CSN KDD RNA SONG SUSY WEB

K-MEANS++ 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥

K-MC
2 (m = 20) 40.0⇥ 72.9⇥ 244.3⇥ 13.3⇥ 237.5⇥ 2278.1⇥

K-MC
2 (m = 100) 8.0⇥ 14.6⇥ 48.9⇥ 2.7⇥ 47.5⇥ 455.6⇥

K-MC
2 (m = 200) 4.0⇥ 7.3⇥ 24.4⇥ 1.3⇥ 23.8⇥ 227.8⇥

AFK-MC
2 (m = 20) 33.3⇥ 53.3⇥ 109.7⇥ 13.2⇥ 212.3⇥ 1064.7⇥

AFK-MC
2 (m = 100) 7.7⇥ 13.6⇥ 39.2⇥ 2.6⇥ 46.4⇥ 371.0⇥

AFK-MC
2 (m = 200) 3.9⇥ 7.0⇥ 21.8⇥ 1.3⇥ 23.5⇥ 204.5⇥

Discussion. Figure 1 shows the expected quantization error for the two baselines, RANDOM and
k-means++, and for the MCMC methods with different chain lengths m. As expected, the seeding
step of k-means++ strongly outperforms RANDOM on all data sets. As the chain length m increases,
the quality of solutions produced by both ASSUMPTION-FREE K-MC

2 and K-MC
2 quickly converges

to that of k-means++ seeding.

On all data sets except WEB, ASSUMPTION-FREE K-MC
2 starts with a lower initial error due to the

improved proposal distribution and outperforms K-MC
2 for any given chain length m. For WEB,

both algorithms exhibit approximately the same performance. This is expected as ↵(X ) of WEB is
very low (see Table 1). Hence, there is only a minor difference between the nonuniform proposal of
ASSUMPTION-FREE K-MC

2 and the uniform proposal of K-MC
2. In fact, one of the key advantages

of ASSUMPTION-FREE K-MC
2 is that its proposal adapts to the data set at hand.

As discussed in Section 3, ASSUMPTION-FREE K-MC
2 requires an additional preprocessing step

to compute the nonuniform proposal. Figure 2 shows the expected solution quality in relation
to the total computational complexity in terms of number of distance evaluations. Both K-MC

2

and ASSUMPTION-FREE K-MC
2 generate solutions that are competitive with those produced by

the seeding step of k-means++. At the same time, they do this at a fraction of the computational
cost. Despite the preprocessing, ASSUMPTION-FREE K-MC

2 clearly outperforms K-MC
2 on the data

sets with large values for ↵(X ) (CSN, KDD and SONG). The additional effort of computing the
nonuniform proposal is compensated by a substantially lower expected quantization error for a given
chain size. For the other data sets, ASSUMPTION-FREE K-MC

2 is initially disadvantaged by the cost
of computing the proposal distribution. However, as m increases and more time is spent computing
the Markov chains, it either outperforms K-MC

2 (RNA and SUSY) or matches its performance (WEB).

Table 3 details the practical significance of the proposed algorithm. The results indicate that in
practice it is sufficient to run ASSUMPTION-FREE K-MC

2 with a chain length independent of n.
Even with a small chain length, ASSUMPTION-FREE K-MC

2 produces competitive clusterings at
a fraction of the computational cost of the seeding step of k-means++. For example on CSN,
ASSUMPTION-FREE K-MC

2 with m = 20 achieves a relative error of 1.45% and a speedup of 33.3⇥.
At the same time, K-MC

2 would have exhibited a substantial relative error of 65.34% while only
obtaining a slightly better speedup of 40.0⇥.

5 Conclusion

In this paper, we propose ASSUMPTION-FREE K-MC
2, a simple and fast seeding algorithm for

k-Means. In contrast to the previously introduced algorithm K-MC
2, it produces provably good

clusterings even without assumptions on the data. As a key advantage, ASSUMPTION-FREE K-MC
2

allows to provably trade off solution quality for a decreased computational effort. Extensive experi-
ments illustrate the practical significance of the proposed algorithm: It obtains competitive clusterings
at a fraction of the cost of k-means++ seeding and it outperforms or matches its main competitor
K-MC

2 on all considered data sets.

Acknowledgments

This research was partially supported by ERC StG 307036, a Google Ph.D. Fellowship and an IBM
Ph.D. Fellowship.

8



References

Acharyya, Sreangsu, Banerjee, Arindam, and Boley, Daniel. Bregman divergences and triangle
inequality. In SIAM International Conference on Data Mining (SDM), pp. 476–484, 2013.

Ackermann, Marcel R and Blömer, Johannes. Bregman clustering for separable instances. In SWAT,
pp. 212–223. Springer, 2010.

Aggarwal, Ankit, Deshpande, Amit, and Kannan, Ravi. Adaptive sampling for k-means clustering.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pp. 15–28. Springer, 2009.

Ailon, Nir, Jaiswal, Ragesh, and Monteleoni, Claire. Streaming k-means approximation. In Neural
Information Processing Systems (NIPS), pp. 10–18, 2009.

Arthur, David and Vassilvitskii, Sergei. k-means++: The advantages of careful seeding. In Symposium
on Discrete Algorithms (SODA), pp. 1027–1035. Society for Industrial and Applied Mathematics,
2007.

Bachem, Olivier, Lucic, Mario, Hassani, S. Hamed, and Krause, Andreas. Approximate k-means++
in sublinear time. In Conference on Artificial Intelligence (AAAI), February 2016.

Bahmani, Bahman, Moseley, Benjamin, Vattani, Andrea, Kumar, Ravi, and Vassilvitskii, Sergei.
Scalable k-means++. Very Large Data Bases (VLDB), 5(7):622–633, 2012.

Bottou, Leon and Bengio, Yoshua. Convergence properties of the k-means algorithms. In Neural
Information Processing Systems (NIPS), pp. 585–592, 1994.

Brunsch, Tobias and Röglin, Heiko. A bad instance for k-means++. In Theory and Applications of
Models of Computation, pp. 344–352. Springer, 2011.

Cai, Haiyan. Exact bound for the convergence of Metropolis chains. Stochastic Analysis and
Applications, 18(1):63–71, 2000.

Celebi, M Emre, Kingravi, Hassan A, and Vela, Patricio A. A comparative study of efficient
initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40
(1):200–210, 2013.

Hastings, W Keith. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

Jaiswal, Ragesh, Kumar, Amit, and Sen, Sandeep. A simple D2-sampling based PTAS for k-means
and other clustering problems. Algorithmica, 70(1):22–46, 2014.

Jaiswal, Ragesh, Kumar, Mehul, and Yadav, Pulkit. Improved analysis of D2-sampling based PTAS
for k-means and other clustering problems. Information Processing Letters, 115(2):100–103, 2015.

Lloyd, Stuart. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):
129–137, 1982.

Ostrovsky, Rafail, Rabani, Yuval, Schulman, Leonard J, and Swamy, Chaitanya. The effectiveness of
Lloyd-type methods for the k-means problem. In Foundations of Computer Science (FOCS), pp.
165–176. IEEE, 2006.

Sculley, D. Web-scale k-means clustering. In World Wide Web (WWW), pp. 1177–1178. ACM, 2010.

Zhao, Weizhong, Ma, Huifang, and He, Qing. Parallel k-means clustering based on MapReduce. In
Cloud Computing, pp. 674–679. Springer, 2009.

9


