
FAST AND REGULARIZED RECONSTRUCTION OF BUILDING FAÇADES FROM
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ABSTRACT:

Regularized arrangement of primitives on building façades to aligned locations and consistent sizes is important towards structured 
reconstruction of urban environment. Mixed integer linear programing was used to solve the problem, however, it is extremely 
time consuming even for state-of-the-art commercial solvers. Aiming to alleviate this issue, we cast the problem into binary integer 
programming, which omits the requirements for real value parameters and is more efficient to be solved . Firstly, the bounding boxes 
of the primitives are detected using the YOLOv3 architecture in real-time. Secondly, the coordinates of the upper left corners and 
the sizes of the bounding boxes are automatically clustered in a binary integer programming optimization, which jointly considers 
the geometric fitness, regularity and additional constraints; this step does not require a priori knowledge, such as the number of 
clusters or pre-defined grammars. Finally, the regularized bounding boxes can be directly used to guide the façade reconstruction in 
an interactive environment. Experimental evaluations have revealed that the accuracies for the extraction of primitives are above 
0.82, which is sufficient for the following 3D reconstruction. The proposed approach only takes about 10% to 20% of the runtime 
than previous approach and reduces the diversity of the bounding boxes to about 20% to 50%.

1. INTRODUCTION

Reconstruction of building façades is one of the key steps to-

wards complete reconstruction of a LOD-3 (Level-of-Details)

model in CityGML protocol (Gröger, Plümer, 2012). Se-

mantic objects such as windows, doors, and balconies are im-

portant components of a building façade. Extracting them

(Hoegner, Stilla, 2015) and arranging them in a regularized

manner (Hensel et al., 2019) are two important steps towards

structured LOD-3 reconstruction (Zhu et al., 2020). And the

street-view image is arguably the best option for the above ob-

jectives due to the public availability and effectiveness in col-

lecting, such as the Google street map (Anguelov et al., 2010).

For the detection of semantic objects in street-view images,

classical methods include the use of projected histograms

(Lee, Nevatia, 2004, Kostelijk, 2012), gradient projection, K-

means clustering (Recky, Leberl, 2010), correlation coefficient

(Mayer, Reznik, 2007), perceptual grouping (Sirmacek et al.,

2011) and etc.. Such methods do not consider the structural and

spatial distribution of the semantic objects. Recently, methods

based on deep learning (Mathias et al., 2016, Liu et al., 2017)

have been widely used to extract the semantic objects on build-

ing façade, which have achieved impressive results on images

with projective distortion and scale difference; but the regular-

ities of semantic objects have not been considered yet.

In general, these semantic objects should conform to certain

regularities, such as aligned locations and consistent sizes.

However, due to the characteristics of projection distortion and

complex background, the geometric attributes of the extracted

primitives in images of buildings façade are generally deviated
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slightly from the expected. Although the regularization of 2D

boundaries, such as edges of buildings, are widely studied in

the community (Xie et al., 2018), the approaches cannot be dir-

ectly adopted. In addition, the regular arrangements of façades

can also be learned for specific scenarios (Dehbi, Plümer, 2011,

Dehbi et al., 2017); however, the learned models can only be

used in inductive fashion, e.g. it does not generalize to unseen

data.

Recently, a general and promising approach to align different

objects of building façades using Mixed Integer Linear Pro-

gramming (MILP) was proposed (Hensel et al., 2019). How-

ever, in our practice the MILP is too complex to solve, which re-

quires prohibitively high runtime consumption. Because we are

aiming to integrate the pipeline into an interactive reconstruc-

tion environment, at least near real-time response of the solver

is required. To solve this issue, we reformulate the problem as

a Binary Integer Programming (BIP), with all the unknowns in

the binary space of {0, 1}, and the objective can be expressed

explicitly as logical operations of the binary variables. Rather

than MILP, the BIP is relatively more efficient to be handled

by state-of-the-art optimization routines (Gleixner et al., 2018,

Gurobi, 2014).

In summary, this paper proposes a fast and regularized recon-

struction methods for the façades of buildings from street-view

images. Firstly, we extract typical façade primitives using real-

time object detection pipeline, e.g. the YOLOv3 architectural

(Redmon et al., 2016, Redmon, Farhadi, 2018). Secondly, the

positions and sizes of the primitives are clustered using BIP by

optimizing two competing desires of retaining the best fitness

and regularities, for which we require no extra information of

the façades. At last, the primitives after clustering are recon-
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structed in an interactive environment, e.g. SketchUp, by sub-

stituting each clustered primitive with a pre-built component

model or interactively sketching the component on street-view

images.

2. RELATED WORKS

A lot of works have been devoted to extraction and segment-

ation of building façades, in the communities of photogram-

metry, computer vision and computer graphics. With regard to

detecting façade objects from images, in recent years, various

deep learning architectures, such as CNN (Krizhevsky et al.,

2012) and RNN (Graves et al., 2008), have achieved impressive

results for various computer vision tasks, such as image classi-

fication (Chan et al., 2015) and object detection (Girshick et al.,

2015). Although earlier CNN architectures can greatly improve

the accuracy of object detection, the detection rate is very slow.

This is because that several segregated steps (Girshick et al.,

2015) are used, including generation of proposals and classific-

ation of the regions. For this reason, the usage in applications

requiring real-time responses is limited. The YOLO (You Only

Look Once) network (Redmon et al., 2016, Redmon, Farhadi,

2018), as the name suggested, only requires a single integrated

forward passing in the testing stage and achieves real-time de-

tection rates for off-the-shelf video sensors. The incrementally

upgraded YOLOv3 (Redmon, Farhadi, 2018), due to the integ-

ration of ResNet (He et al., 2016), FPN (Feature Pyramid Net-

work) (Lin et al., 2017), and binary cross entropy loss, greatly

improves both detection speed and detection accuracy. In the

meantime, it has also increased the performance on small tar-

gets, which is suitable for detecting semantic objects with com-

plex repeating structures on the building façade. And therefore,

this paper adopts the YOLOv3 as the backbone for the detection

of the primitives.

With regard to the regular arrangements of objects, based

on explicit or implicit procedural methods, the structure of

façade was inferred through grammatical rules, including ran-

dom grammar (Alegre, Dellaert, 2004), syntax trees (Ripperda,

Brenner, 2006), and the bottom-up or top-down hybrid ap-

proach (Han, Zhu, 2008). They all required setting the cor-

rect parameters of the shape syntax in advance. Although these

methods have achieved good results, they assume that the im-

age is composed of a fairly regular grid; in addition, fixed ex-

pressions of the grammars are not capable to cover the diversit-

ies in real-world applications. Procedural grammars are also

quite cumbersome to be edited and compiled, which requires

tremendous expert knowledge. Human intervention is also re-

quired to select the appropriate grammar for a particular build-

ing. Although style classifiers (Mathias et al., 2016) was de-

veloped to alleviate the above issues, which automatically re-

cognized architectural styles from low-level image features, the

use of style syntax is still needed in advance, which is probably

a limitation for this approach.

Recent approaches based on mixed integer programming is ar-

guably the most flexible and powerful tool for the problem

of regular arrangement of objects. It has been used for ar-

rangements of the 2D boundaries and 3D planes (Monszpart

et al., 2015), reconstruction of surface meshes (Boulch et al.,

2014, Nan, Wonka, 2017), modeling of the roof structures of

the LOD-2 models (Goebbels, Pohle-Fröhlich, 2019) and the

façades (Hensel et al., 2019). However, most of them for-

mulated the optimization problem as MILP (Goebbels, Pohle-

Fröhlich, 2019, Hensel et al., 2019) or even mixed integer non-

linear programming (Monszpart et al., 2015), which has un-

knowns in both spaces of integer and real values. Unfortu-

nately, this kind of problems raised up in the operational re-

search has no efficient solvers for large scale problems, even

using state-of-the-art commercial libraries (Gurobi, 2014). A

practical remedy is to reformulate the problem into BIP (Nan,

Wonka, 2017, Kelly et al., 2017, Kelly, Mitra, 2018), which

only considers binary variables and linear energies; the regu-

larities can still be explicitly modeled through the logical oper-

ations using the binary variables and there are relatively more

efficient solvers for these simpler problems. Therefore, we use

BIP to model the regularization problem of the façade objects.

3. DETECTION OF FAÇADE PRIMITIVES USING

YOLOV3

We use YOLOv3 (Redmon, Farhadi, 2018) to detect axis-

aligned bounding boxes of primitives because of its real-time

performance. For completeness, we briefly introduce the archi-

tecture and implementation details of YOLOv3 here. Rather

than other region-based CNN methods (Girshick et al., 2015),

YOLO (Redmon et al., 2016) uses regression to directly pro-

cess the entire image, and obtains categories and positions of

the targets in a single forward propagation. YOLO implements

an end-to-end pipeline for detection by dividing the image into

s × s grids. If the center of the semantic component is in a

grid, the grid is responsible for predicting the target. Each grid

will generate B bounding boxes, and each bounding box must

predict its confidence χ, which is defined as the product of the

probability P of the target contained in the bounding box and

the accuracy Q, as χ = P × Q. If the grid contains semantic

objects, then P = 1, otherwise P = 0. Q represents the in-

tersection ratio of the labeled box in training samples and the

predicted box. When Q = 1, it means that the labeled box and

the predicted box coincide perfectly.

If a grid contains semantic components, which corresponds to

C classes, it is represented by Pi for each class. Therefore, we

can obtain the intermediate score of each grid and each class as

φi = Pi × χ. The scores are truncated at 0 and non-maximum

suppression is used to remove bounding boxes with a large re-

petition rate. In the end, each bounding box only retains the ob-

jects with positive confidence scores and the highest categories.

In YOLOv3, in order to improve the accuracy of target detec-

tion, the residual network (He et al., 2016) is used as backbone.

The features before entering the residual box and the features

output by the residual box are combined to extract deeper fea-

ture information. On the building façade, even if they are the

same type of semantic objects, their sizes and poses are not the

same. YOLOv3 uses multi-scale fusion (Lin et al., 2017) to de-

tect objects, and has good adaptability to the scale changes of

objects.

4. REGULAR ARRANGEMENTS OF FAÇADE

PRIMITIVES USING BINARY INTEGER

PROGRAMMING

After initial extraction of the bounding boxes of the building

façade, we then use BIP to restore the spatial regularity of

the windows, doors and balconies, inspired by previous work

(Hensel et al., 2019). Although the MILP method has been suc-

cessfully used in many studies (Boulch et al., 2014, Hensel et

al., 2019), in our pipeline, because we are aiming at an interact-

ive reconstruction pipeline, the runtime should be kept reason-
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ably low. In the following, we describe our reformulated prob-

lem setup using BIP instead of MILP.

4.1 Problem setup using binary integer programming

After extracting the initial primitives, we have N bounding

boxes for each image, and each bounding box is uniquely de-

termined by a set of four parameters (x, y, w, h) , where (x, y)
and (w, h) are coordinate of the upper left corner and size of

the bounding box, respectively (Figure 1a). Instead of directly

optimizing these parameters that are real values using MILP

(Hensel et al., 2019), we cast it into a model selection problem

using BIP.

Specifically, we first establish a model space for each attribute

of the bounding box, e.g. X = {X1, X2, ..., XN} for the at-

tribute of x coordinate. The size of |X| could be the number of

bounding boxes N , but we choose to compress it by pre-cluster

the model space using a very confident lower bound δl as de-

scribed later. We then assign a binary variable ax
i,k ∈ {0, 1}

to represent the state of the selection, i.e. if the model Xk is

selected for the attribute x of the ith bounding box. In addition,

we use the one-hot vector ξi
1 to represent the whole state of

the ith bounding box as ξi = (ai,0, ai,1, ..., ai,|X|)
T .

y

x

w

h

(a) Parameters for primitives

Y
2

Y
1

Y
3
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1

H
2

W
2
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1

X
2
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3

(b) Parameters for model spaces

Figure 1. Parameters for primitives and model spaces.

In fact, the model spaces of the attributes of the primitives for

a single façade are generally quite limited in urban environ-

ment. That is the ratio N/|X| is generally quite large, which

leads to unnecessarily too many parameters. Therefore, we

pre-cluster all the attributes separately using the mean shift ap-

proach (Cheng, 1995); and the threshold is set to the lower

bound δl. The values in the model space X are determined by

the centers of the clusters, as shown in Figure 1b. To ensure

the accuracies of the results, the lower bound δl in mean shift

1 We omit the superscript for attribute when not ambiguous. In addition

the Greek symbols are used for one-hot vectors and Roman symbols

for variables.

clustering should be as small as possible to avoid aggregating

parameters of different properties into the same category. It

should be noted that, although the same threshold δl is used for

all the attributes, the number of clusters |X|, |Y|, |W| and |H|
are generally different.

In summary, the purpose is to optimize all the selecting vectors

ξ, under the energy functions and constraints as described be-

low. And the total size of explicit unknowns is N×(|X|+ |Y|+
|W|+ |H|).

4.2 Energy functions to be optimized

Our loss function consists of a data item and a regularity item.

First of all, our goal is to make the sum of the changes of the

bounding boxes against the initial locations as small as possible

after the regularization. Therefore, we first calculate the resid-

ual vector ǫ for each bounding box, which represents the errors

for different selections, as

ǫ
x
i = (xi −X0, xi −X1, ..., xi −X|X|)

T , (1)

where the superscript x denotes different attributes.

In this way, the total energy Oa
d for attribute a caused by the

selection vectors, e.g. offsets for the coordinates of upper left

corners and differences for the sizes of the rectangles, can be

briefly expressed as,

Oa
d =

N∑

i

|ǫai | · ξ
a
i . (2)

Equation 2 means that, for each bounding box, we only account

for the error of the selected value in model space, i.e. when

ai,k = 1. The final data term of the energy function is therefore

intuitively the summation of all the attributes as

Od = Ox
d +Oy

d +Ow
d +Oh

d . (3)

With only the data term, we always have a trivial solution that

have the best fit, e.g. choosing the nearest center of the mean

shift clustering. Therefore, we introduce a regularity item. The

intuition behind this term is that higher regularity generally

means less categories; fortunately, the number of selected cat-

egories is easy to model as illustrated in Figure 2. For each

attribute a, the total number of selected categories, e.g. the reg-

ularity term Oa
g , can be explicitly expressed as the following

logical expression,

Oa
g = ‖ξa

1
∨ ξ

a
2
∨ ... ∨ ξ

a
N‖1, (4)

where ‖ · ‖1 is the L1 norm that is the absolute summation of

all the elements of a vector and for binary variables L1 norm

simply counts the number of non-zero variables; the binary op-

erator ∨ is the element-wise logical or for the one-hot vectors.

Similar to Equation 3, the final regularity term is a weighted

summation across all the attributes as

Og = ωxOx
g + ωyOy

g + ωwOw
g + ωhOh

g , (5)

where ω denotes the weights of different attributes. And the

final energy function is

O = Od +Og. (6)
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Figure 2. Illustration of the regularity energy as in Equation 4,

which is the total number of selected models.

4.3 Constraints of the binary integer programming

The variables ξi = (ai,0, ai,1, ..., ai,N )T cannot be adjusted

freely. Obviously, because each bounding box can only choose

one state, we have the following constraint C1 for each bound-

ing box,

C1 :
∑

k

ai,k = 1, ∀ i ≤ N. (7)

Another practical constraint c2 is that we could very confidently

ignore certain model spaces if the residual |ǫi,k| exceeds an up-

per bound δu, as.

C2 : ai,k = 0, ∀ |ǫi,k| > δu. (8)

It seems the additional constraints may increase the complex-

ity of the problem, but interestingly, in practice, we find that

the additional constraints significantly reduce the runtime, with

almost no differences in the final results.

4.4 Implementation details

The implementation of Equation 4 needs some tricks, because

it involves the logical operations. For two binary variable a and

b, the logical or result c = a ∨ b can be modeled by adding the

following constraints,

c ≤a+ b

c ≥a

c ≥b

. (9)

In fact, this kind of fixed routines can be handled efficiently and

gracefully by state-of-the-art solvers (Chinneck, 2007, Gurobi,

2014). For the parameters, we set δl ∈ [3, 5] pixels and δu =
10δl; and ωx = ωy = 100 and ωw = ωh = 10 are used

empirically. In this way, all the energy functions and constraints

are linear functions, which are solved using the Mosek library

(Mosek, 2010).

5. EXPERIMENTAL EVALUATIONS

5.1 Evaluation of detections of façade primitives

This paper uses the CMP façade database (Tylecek, 2012) as

the training data set, which contains a total of 606 building

façade images around the world. These images are manually

labeled with 12 semantic objects on the façade. We choose

three typical primitives: window, door and balcony. We built

the YOLOv3 model based on Keras (Gulli, Pal, 2017) to train

the above data set. At the same time, we took 30 typical build-

ing façade images from Google street view (Anguelov et al.,

2010) for testing, and manually labeled them for evaluations.

In order to verify the effectiveness of this method, we adopted

the same evaluation method in (Rahmani, Mayer, 2018). We

counted every classified pixel as either true positive(TP) or false

positive(FP), and the precision is thus TP/(TP +FP ). On our

test dataset, for windows, doors, and balconies, our average ex-

traction precision reached 0.917, 0.856, and 0.852.

In addition, we used the same test dataset ICG Graz50

(Riemenschneider et al., 2012) to compare with a recent method

(Hensel et al., 2019) based on Fatser RCNN (Table 1). Both

methods are trained on the CMP dataset. The precisions of the

extraction of windows and doors listed in (Hensel et al., 2019)

are 0.892 and 0.834, and the precision of our method based on

YOLOv3 are 0.882 and 0.825. Considering that YOLOv3 is

more efficient than Faster RCNN, the mild precision loss is ac-

ceptable. And the detection performance could be considered

satisfactory.

Table 1. Comparison of precisions on the ICG Graz50 dataset,

with model trained on the CMP façade dataset.

Window Door

Hensel et al. (2019) 0.892 0.834
Proposed 0.882 0.825

We tested the precision of window extraction using images with

different resolutions and different layout complexity (Table 2).

The scale is measured by downsampling the images and the lay-

out complexity is the total number of the selected modes on the

of the four attributes of the windows. It can be seen from Table

2 that when the resolution of the image is within a certain range,

the extraction precision is good and the difference is small; but

when the resolution is too low, the extraction precision is signi-

ficantly reduced. In addition, it can be noticed that as the layout

complexity increases, the extraction precision tends to gradu-

ally decrease. In summary, when the images are captured at a

relatively high resolution, the layout complexity has a greater

impact on the extraction precision.

Table 2. Detection performance with respect to different scale of

images and different complexities of façade layout.

Scale 1 1/2 1/4 1/8 1/16
Precision 0.854 0.845 0.893 0.895 0.565

Complexity 32 36 56 76 92
Precision 0.928 0.916 0.908 0.868 0.82

5.2 Evaluation and comparisons of the regular arrange-

ments of the primitives

We selected three typical building façade images of three cities

in the United States (US), United Kingdom (UK), and Canada

(CA) to evaluate the performance of the regularization. Both

qualitative and quantitative evaluations are conducted and we

also compare the runtime performance against the MILP ap-

proach (Hensel et al., 2019).

Qualitative evaluations. Figure 3 compares the extracted and

regularized bounding boxes for the US, UK and CA datasets.

The black frame represents the extracted primitives and the

red frame indicates the regularized results. It can be noticed

that after regularization, the semantic objects on the building
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Window Door Balcony

Window Door Balcony

Regularized Detected

Regularized Detected

Regularized Detected

(a) CA

Window Door Balcony

Window Door Balcony

Regularized Detected

Regularized Detected

Regularized Detected

(b) UK

Window Door Balcony

Window Door Balcony

Regularized Detected

Regularized Detected

Regularized Detected

(c) US

Figure 3. Comparison of detected and regularized façade primitives for the three datasets. The second and third rows show the detected

and regularized primitives, respectively. The fourth row compares them and the last two rows give two enlarged demonstrations.
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façade are arranged more neatly and consistently and still fit

well enough to the original bounding boxes, as demonstrated in

the enlarged regions. In addition, Figure 4 demonstrates the re-

constructed façades for the three datasets in off-the-shelf mod-

eling solutions.

(a) US

(b) UK

(c) CA

Figure 4. Reconstructed façades for the three datasets, in which

the right column demonstrates the enlarged areas in the cyan

rectangles.

Quantitative evaluations. We counted the number of used

model space before and after the regularization to measure the

regularity of the results, e.g. Oa
g in Eq. 4. Table 3 demonstrates

the results, and it could be noted that, the selected parameters

only account for about 50% for the coordinates of the corners

and 20% for the sizes.

Table 3. Quantitative evaluations of the regularity by the size of

the model space before and after regularization, i.e. Oa
g in Eq. 4.

The number of the selected model space significantly reduced

after optimization.

Dataset
#Detected #Regularized

|X| |Y| |W| |H| |X| |Y| |W| |H|

US 76 62 35 39 38 25 5 4
UK 22 20 17 17 16 6 6 6
CA 47 39 29 26 31 6 10 5

Comparisons of runtime. In order to verify the efficiency of

the method in this paper, we tested six building façades with

complex structures and numerous parameters, and compared

the proposed BIP approach against the MILP approach (Hensel

et al., 2019). The results are shown in the Table 4 and the

runtime of the proposed BIP approach only accounts for about

10% to 20% of the MILP approach. For the MILP approach

(Hensel et al., 2019), the number of explicit unknown paramet-

ers are N(2|X| + 2|Y| + |W| + |H|) + 8N , including 8N real

value parameters. In the proposed approach, the number of ex-

plicit unknown parameters is N(|X| + |Y| + |W| + |H|). Al-

though the proposed method has slightly fewer parameters, the

numbers are still in the same order of magnitude. Therefore,

it is the reformulated problem that account for the performance

differences.

Table 4. Comparison of the runtime between MILP and the

proposed BIP approaches. The second to fifth columns

demonstrates the complexities of the model space.

N |X| |Y| |W| |H| MILP (s) BIP (s)

26 11 5 3 2 5.7 0.9
74 20 13 3 3 150.9 19.9
60 29 10 4 7 135.2 20.8
61 10 16 4 7 84.6 12.7
67 24 6 4 5 106.2 16.6
45 35 12 9 9 123.6 20.3

6. CONCLUSION

This paper proposed an approach for the regular arrangement of

primitives of the building façades using BIP. Compared to the

MILP approach, BIP is considerably faster and achieves near

real-time performance with similar level of data fitness and reg-

ularities. The detected and rearranged bounding boxes of the

primitives can be directly used for the modeling of the façade

features, which is a key step towards the LOD-3 reconstruc-

tion. However, current approaches can only detect axis-aligned

objects, future works may be devoted to explore the reconstruc-

tion of more complex façade features. Code is available at ht-

tps://github.com/saedrna/Ranger.
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modeling. IEEE Geoscience and Remote Sensing Letters, 1-5.

10.1109/LGRS.2019.2962696.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 

https://doi.org/10.5194/isprs-annals-V-2-2020-365-2020 | © Authors 2020. CC BY 4.0 License.

 

371


	Introduction
	Related Works
	Detection of façade primitives using YOLOv3
	Regular arrangements of façade primitives using binary integer programming
	Problem setup using binary integer programming
	Energy functions to be optimized
	Constraints of the binary integer programming
	Implementation details

	Experimental evaluations
	Evaluation of detections of façade primitives
	Evaluation and comparisons of the regular arrangements of the primitives

	Conclusion

