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konnte. Besonders dankbar bin ich meinen Eltern, Angelika und Dietmar. Sie gaben mir

Neugier und Erkundungsdrang, und Selbstbewusstsein. Ich danke meinem Bruder Stefan
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1
Introduction

The goal of the research area of information retrieval (IR) is to develop the insights and

technology needed to provide access to data collections. The most prominent applica-

tions, web search engines like Bing, Google, or Yahoo!, provide instant and easy access

to vast and constantly growing collections of web pages. A user looking for information

submits a query to the search engine, receives a ranked list of results, and follows links

to the most promising ones. To address the flood of data available on the web, today’s

web search engines have developed into very complex systems. They combine hundreds

of ranking features (properties of the query, a document, and the relationship between

the two) with the goal of creating the best possible search results for all their users at all

times.1

A ranker (or ranking function) is the part of a search engine that determines the order

in which documents retrieved for a given user query should be presented. Until recently,

most rankers were developed manually, based on expert knowledge. Developing a good

ranker may be easy for some search tasks, but in many cases what constitutes a good

ranking depends on the search context, such as users’ background knowledge, age, or

location, or their specific search goals and intents (Besser et al., 2010; Hofmann et al.,

2010a; Rose and Levinson, 2004; Shen et al., 2005). And even though there is an enor-

mous variety in the tasks and goals encountered in web search, web search engines are

only the tip of the iceberg. More specialized systems are everywhere: search engines

for companies’ intranets, local and national libraries, universities’ course catalogues, and

users’ personal documents (e.g., photos, emails, and music) all provide access to dif-

ferent, more or less specialized, document collections, and cater to different users with

different search goals and expectations. Addressing each of these settings manually is

infeasible. Instead, we need to look for scalable methods that can learn good rankings

without expensive, and necessarily limited, manual or semi-manual tuning.

For automatically tuning the parameters of a ranking function, machine learning al-

gorithms are invaluable (Liu, 2009). Most methods employ supervised learning to rank,

i.e., algorithms are trained on examples of relevant and non-relevant documents for par-

ticular queries. Data to train these approaches is typically obtained from experts who

label document-query pairs, which is time-consuming and expensive. In many settings,

such as personalized or localized search, or when deploying a search engine for a com-

1http://www.wired.com/magazine/2010/02/ff_google_algorithm/all/,

retrieved December 29, 2012.

1

http://www.wired.com/magazine/2010/02/ff_google_algorithm/all/
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pany’s intranet or a library catalogue, collecting the large amounts of training data re-

quired for supervised learning is usually not feasible (Sanderson, 2010). Even in envi-

ronments where training data is available, it may not capture typical information needs

and user preferences perfectly (Radlinski and Craswell, 2010), and cannot anticipate fu-

ture changes in user needs.

In this thesis we follow an alternative approach, called online learning to rank. This

technology can enable “self-learning search engines” that learn directly from natural in-

teractions with their users. Such systems promise to be able to continuously adapt and

improve their rankings to the specific setting they are deployed in, and continue to learn

for as long as they are being used.

Learning directly from user interactions is fundamentally different from the currently

dominant supervised learning to rank approaches for IR, where training data is assumed

to be randomly sampled from some underlying distribution, and where absolute and re-

liable labels are provided by professional annotators. In an online learning setting, feed-

back for learning is a by-product of natural user interactions. This strongly affects what

kind of feedback can be obtained, and the quality of the obtained feedback. For example,

users expect to be presented with useful results at all times, so trying out new rankings

(called exploration) can have a high cost in user satisfaction and needs to be balanced

against possible future learning gains. Also, feedback inferred from user interactions can

be noisy, and it may be affected by how search results are presented (one example of

such an effect is caption bias). Learning from such lower-quality feedback may result

in degraded learning, unless we can design learning to rank algorithms that are robust

against these effects. In this thesis we investigate the principles that allow effective on-

line learning to rank for IR, and translate our insights into new algorithms for fast and

reliable online learning.

1.1 Research Outline and Questions

The broad question that motivates the research for this thesis is: Can we build search

engines that automatically learn good ranking functions by interacting with their users?

Individual components towards solving this problem already exist (see Chapter 2 for an

overview), but other aspects, such as how to learn from noisy and relative feedback, have

not yet been investigated. This thesis aims to close some of these gaps, contributing to

the long-term goal of a complete online learning to rank solution for IR.

We start our investigation by focusing on the type and quality of feedback that can be

obtained for learning to rank in an online setting. Extracting reliable and useful feedback

for learning to rank from natural user interactions is difficult, because user interactions

are noisy and context-dependent. The most effective techniques identified so far focus

on extracting relative information, i.e., they infer user preferences between documents or

whole result rankings. In this thesis we focus on these relative feedback techniques, and

particularly on so-called interleaved comparison methods that infer preferences between

rankings using click data. Besides in online learning to rank applications, these methods

are used for online evaluation for search engine research and development in general.

Given that three interleaved comparison methods have been developed previously,

we first aim to understand how these methods compare to each other, i.e., how can we

2



1.1. Research Outline and Questions

decide which method to use for an online learning to rank system, or to evaluate a given

retrieval system? We formalize criteria for analyzing interleaved comparison methods,

to answer the following questions:

RQ 1 What criteria should an interleaved comparison method satisfy to enable reliable

online learning to rank for IR?

RQ 2 Do current interleaved comparison methods satisfy these criteria?

In answering these questions, we identify three minimal criteria that interleaved com-

parison methods should satisfy: fidelity, soundness, and efficiency. An interleaved com-

parison method has fidelity if the quantity it measures, i.e., the expected outcome of

ranker comparisons, properly corresponds to the true relevance of the ranked documents.

It is sound if its estimates of that quantity are statistically sound, i.e., unbiased and con-

sistent. It is efficient if those estimates are accurate with only little data.

Analyzing previously developed interleaved comparison methods, we find that none

of them exhibit fidelity. To address this shortcoming, we develop a new interleaved com-

parison method, probabilistic interleave (PI), that is based on a probabilistic interpreta-

tion of the interleaving process. An extension of PI, PI-MA, is then derived to increase

the method’s efficiency by marginalizing over known variables instead of using noisy

estimates. Regarding these new methods, we address the following questions:

RQ 3 Do PI and its extension PI-MA exhibit fidelity and soundness?

RQ 4 Is PI-MA more efficient than previous interleaved comparison methods? Is it

more efficient than PI?

While previous interleaved comparison methods required collecting new data for

each ranker comparison, our probabilistic framework enables the reuse of previously

collected data. Intuitively, the information contained in these previously collected lists

and user clicks should provide some information about the relative quality of new target

rankers. However, the source distribution under which the data was collected may differ

from the target distribution under which samples would be collected if the new target

rankers were compared with live data. This can result in biased estimates of comparison

outcomes. To address this problem, we design a second extension of PI, PI-MA-IS. It

uses importance sampling to compensate for differences between the source and target

distribution, and marginalization to maintain high efficiency. Investigating this method

analytically and experimentally allows us to address the following questions:

RQ 5 Can historical data be reused to compare new ranker pairs?

RQ 6 Does PI-MA-IS maintain fidelity and soundness?

RQ 7 Can PI-MA-IS reuse historical data effectively?

We then turn to more practical issues of using interleaved comparisons in a web

search setting. In this setting, user clicks may be affected by aspects of result pages

other than true result relevance, such as how results are presented. If such visual aspects

affect user clicks, the question becomes what click-based evaluation really measures. We

address the following questions:

RQ 8 (How) does result presentation affect user clicks (caption bias)?

3



1. Introduction

RQ 9 Can we model caption bias, and compensate for it in interleaving experiments?

RQ 10 (How) does caption bias affect interleaving experiments?

After addressing the above questions regarding the quality of feedback that can be

obtained in online learning to rank for IR settings, we turn to the principles of online

learning to rank for IR. Given the characteristics and restrictions of online learning to

rank, we investigate how to perform as effectively as possible in this setting. One cen-

tral challenge that we formulate is the exploration-exploitation dilemma. In an online

setting, a search engine learns continuously, while interacting with its users. To satisfy

users’ expectations as well as possible at any point in time, the system needs to exploit

what it has learned up to this point. It also needs to explore possibly better solutions, to

ensure continued learning and improved performance in the future. We hypothesize that

addressing this dilemma by balancing exploration and exploitation can improve online

performance. We design two algorithms for achieving such a balance in pairwise and

listwise online learning to rank:

RQ 11 Can balancing exploration and exploitation improve online performance in on-

line learning to rank for IR?

RQ 12 How are exploration and exploitation affected by noise in user feedback?

RQ 13 How does the online performance of different types (pairwise and listwise) of

online learning to rank for IR approaches relate to balancing exploration and ex-

ploitation?

Finally, we return to the question of how to learn as quickly and effectively as possi-

ble in an online learning to rank for IR setting. We hypothesize that reusing click data that

was collected during earlier learning steps could be used to gain additional information

about the relative quality of new rankers. Based on our PI-MA-IS method for reusing

historical data, we develop two algorithms for learning with historical data reuse. The

first, RHC, reuses historical data to make ranker comparisons during learning more reli-

able. The other, CPS, uses historical data for more effective exploration of the solution

space. The research questions addressed by our subsequent research are:

RQ 14 Can previously observed (historical) interaction data be used to speed up online

learning to rank?

RQ 15 Is historical data more effective when used to make comparisons more reliable

(as in RHC), or when used to increase local exploration (as in CPS)?

RQ 16 How does noise in user feedback affect the reuse of historical interaction data for

online learning to rank?

1.2 Main Contributions

In this section we summarize the main algorithmic, theoretical, and empirical contribu-

tions of this thesis.

4
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Algorithmic contributions:

• A probabilistic interleaved comparison method, called probabilistic interleave (PI),

that exhibits fidelity, and an extension of PI, called PI-MA, that increases the effi-

ciency of PI by marginalizing over known variables instead of using noisy obser-

vations.

• The first interleaved comparison method that allows reuse of historical interaction

data (called PI-MA-IS, an extension of PI-MA).

• An approach for integrating models of caption bias with interleaved comparison

methods in order to compensate for caption bias in interleaving experiments.

• The first two online learning to rank for IR algorithms (one pairwise, one listwise

approach) that can balance exploration and exploitation.

• The first two online learning to rank algorithms that can utilize previously observed

(historical) interaction data: reliable historical comparisons (RHC), and candidate

preselection (CPS).

Theoretical contributions:

• A framework for analyzing interleaved comparison methods in terms of fidelity,

soundness, and (previously proposed) efficiency.

• Analysis of the interleaved comparison methods balanced interleave, team draft,

and document constraints, showing that none exhibits fidelity.

• Two proofs that show that our proposed extensions of PI, PI-MA and PI-MA-IS

maintain soundness.

• A general-purpose probabilistic model of caption bias in user click behavior that

can combine document-pairwise and pointwise features.

• A formalization of online learning to rank for IR as a contextual bandit problem,

and formulation of the exploration-exploitation dilemma in this setting.

Empirical contributions:

• An experimental framework that allows for the assessment of online evaluation

and online learning to rank methods using annotated learning to rank data sets and

click models in terms of their online performance.

• An empirical evaluation of PI, PI-MA, and all existing interleaved comparison

methods, showing that PI-MA is the most efficient method.

• An empirical evaluation of interleaved comparison methods under historical data,

showing that PI-MA-IS is the only method that can effectively reuse historical data.

• A large-scale assessment of our caption-bias model with pairwise and pointwise

feature sets using real click data in a web search setting, showing that pointwise

features are most important, but combinations of pointwise and pairwise features

are most accurate for modeling caption bias.
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• Results of applying caption bias models to interleaving experiments in a web

search setting, indicating that caption bias can affect interleaved comparison out-

comes.

• The first empirical evidence that shows that balancing exploration and exploitation

in online learning to rank for IR can significantly improve online performance in

online learning to rank for IR.

• First empirical evidence showing that reusing historical data for online learning to

rank can substantially and significantly improve online performance.

In addition to the contributions listed above, the software developed for running on-

line learning to rank experiments following our experimental setup is made freely avail-

able (Appendix A). This software package includes reference implementations of the

developed interleaved comparison methods (PI, PI-MA, and PI-MA-IS) and online learn-

ing to rank approaches (balancing exploration and exploitation in pairwise and listwise

online learning, online learning to rank with historical data reuse).

1.3 Thesis Overview

This section gives an overview of the content of each chapter of this thesis. The next

chapter (Chapter 2) introduces background for all subsequent chapters. Chapter 3 details

the problem formulation used throughout this thesis, and introduces the experimental

setup that forms the basis of the empirical evaluations in Chapters 4, 6, and 7.

The next four chapters are the main research chapters of this thesis. Each focuses on

a specific aspect of online learning to rank for IR. We start with the most central compo-

nent, the feedback mechanism, in Chapter 4. This chapter develops a framework for an-

alyzing interleaved comparison methods, and proposes a new, probabilistic, interleaved

comparison method (PI) and two extensions for more efficient comparisons (PI-MA),

and for comparisons with reuse of historical interaction data (PI-MA-IS). Chapter 5 in-

vestigates interleaved comparison methods in a web search setting, and develops models

for compensating for caption bias in interleaved comparisons. Chapter 6 focuses on ap-

proaches for online learning, and investigates how exploration and exploitation can be

balanced in online learning to rank for IR, and whether such a balance can improve the

online performance of such systems. Finally, Chapter 7 integrates the interleaved com-

parison methods developed in Chapter 4 with an online learning to rank algorithm to

investigate whether and in what way historical data reuse can speed up online learning to

rank for IR. We draw conclusions and give an outlook on future work in Chapter 8.

All research chapters build on background introduced in Chapter 2, and all but Chap-

ter 5 use the experimental setup detailed in Chapter 3. Although ideas developed in

earlier chapters are referred to in later chapters, each chapter is relatively self-contained

(assuming knowledge of the background material provided in Chapters 2 and 3). An

exception is Chapter 7, which builds on the interleaved comparison methods developed

in Chapter 4.

Readers familiar with existing online evaluation and online learning to rank ap-

proaches can skip over Chapter 2. Also, for readers primarily interested in the main
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ideas and theoretical contributions of this thesis, it is recommended to skip Chapter 3

and only revisit it to understand empirical results as needed.

1.4 Origins

The following publications form the basis of chapters in this thesis.

• Chapter 4 is based on (Hofmann et al., 2011c, 2012b, 2013c).

• Chapter 5 is based on (Hofmann et al., 2012a).

• Chapter 6 is based on (Hofmann et al., 2011a, 2013b).

• Chapter 7 is based on (Hofmann et al., 2013a).

In addition, Chapter 3 combines material from (Hofmann et al., 2011a,c, 2012b,

2013a,b,c). Finally, this thesis draws from insights and experiences gained in (Besser

et al., 2010; Hofmann et al., 2008, 2009a,b, 2010a,b, 2011b; Lubell-Doughtie and Hof-

mann, 2012; Tsivtsivadze et al., 2012).
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2
Background

In this chapter we introduce the concepts and previous work on which this thesis is based.

Most immediately relevant are the baseline approaches for online learning to rank, which

are presented in §2.5. However, we build up related material in several steps. First, we

start with general concepts and terminology from IR (§2.1), and learning to rank for IR

(§2.2). Because online learning to rank for IR relies on implicit feedback, such as click

data, we review existing work on uses of such data for improving IR systems (in §2.3).

In this section, we also detail the feedback mechanisms we build on, namely the inter-

leaved comparison methods balanced interleave (BI), team draft (TD), and document

constraints (DC).

Besides IR, this thesis draws on concepts and techniques developed in reinforcement

learning (RL), a machine learning paradigm where systems learn from interactions with

their environment. Many ideas developed within RL are applicable to online learning to

rank for IR, and we review relevant research in this area in §2.4. Finally, we detail the

two online learning approaches that form our baseline learning algorithms in §2.5.

2.1 Information Retrieval

The term “information retrieval” was coined only in 1950 (as recalled by Mooers (1960)),

but research in this area has been actively pursued for at least the last 100 years. De-

veloped at the end of the 19th and the beginning of the 20th centuries, the first auto-

matic retrieval systems used mechanical solutions to speed up lookup in library cata-

logues (Sanderson and Croft, 2012). Research in this area accelerated with the tech-

nological developments of the following decades – systems based on microfilm were

succeeded by punchcards and early computerized systems – and ambitious visions were

formulated of systems that would allow users to pave trails through information land-

scapes (Bush, 1945), and that could mine users’ search behavior to learn the language to

describe documents from a user’s perspective (Mooers, 1960).

Since then, IR has undergone dramatic changes, not least because of the pervasive-

ness and scale at which recorded information has become widely accessible. However,

some of the components and concepts central to IR were first developed during early IR

research. In this section, we give a brief overview of the concepts that are central to IR

and that we refer to throughout this thesis.
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2. Background

An IR system provides its users with access to information, which is typically stored

in the form of a document collection. Interaction between a user and a retrieval system

is initiated by the user, with the goal of satisfying some (more or less explicit) infor-

mation need (Belkin et al., 1982). The user expresses this information need in a query

(e.g., as a sequence of keywords, but other forms are possible1), and submits the query

to the retrieval system. Based on the query, the system’s task is to select information to

present to the user that is likely to be relevant to the users’ information need (the con-

cept of relevance is central to IR, but is notoriously difficult to define; we discuss this

concept in detail towards the end of this section). Most often, this takes the form of se-

lecting documents from its collection. The result presentation is typically in the form of a

ranking, in the order of probability of the documents’ relevance to the user’s information

need (Robertson, 1977).

A major focus of IR research is the development of retrieval models that capture the

relationship between a query and a document. In early retrieval systems, the boolean

model was dominant (Salton et al., 1983). This model allows users to formulate queries

in the form of logical clauses, and retrieve the set of documents that match the query.

Limitations of this model led to the development of weighting schemes that allowed users

or systems to assign weights to individual terms to indicate their importance (Salton et al.,

1975). A result of this effort was the vector space model (VSM), in which queries and

documents are represented by vectors in some space of terms (Salton, 1979). Instead of

returning sets of matching documents, retrieval systems based on the VSM return ranked

lists in which documents are ordered by their similarity to the user query in vector space.

One of the most influential weighting schemes developed for the VSM is TF-IDF. In it,

terms in document vectors are weighted by their term frequency (TF – the number of

times the term occurs in the document) times their inverse document frequency (IDF –

the inverse of the number of documents in the collection in which the term occurs).

The concept of document rankings was further formalized in the Probability Rank-

ing Principle, which states that retrieval performance is optimized when systems rank

documents by their probability of relevance (Robertson, 1977) (assuming an individual

user and independence between documents). Consequently, probabilistic approaches to

IR were developed, with BM25 as one of the most widely-known variants (Spärck Jones

et al., 2000). The most recently developed major IR approaches are based on statisti-

cal language modeling, where documents are modeled as sequences of words that are

drawn from an underlying distribution. There, scoring a document for a given query

is implemented as estimating the probability that the query and the document are sam-

pled from the same distribution (Hiemstra, 1998; Ponte and Croft, 1998). Besides these

major retrieval models, many alternatives and extensions have been proposed. Recent

developments include extended language models that take, e.g., term proximity into ac-

count (Metzler, 2011) and models based on quantum theory (Van Rijsbergen, 2004).

The developed content-based retrieval models were often found to be effective for

finding documents that matched the topic of a query. However, early results of IR re-

1The empirical research described in this thesis is conducted on data collections that represent textual docu-

ments and text-based queries. However, the developed technology is independent of the type of collection and

can, in principle, be applied to any feature-based representation of query-document pairs, where both “query”

and “document” are interpreted very broadly (e.g., documents can be any retrievable entity). Our methods

require that results for a query can be interleaved (cf., §2.3.1).
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search showed that such topical matches are not always sufficient, and that the use of

additional sources of information could improve results (Salton, 1963). One information

source that has been explored extensively are references or citations that link documents

such as scientific papers. Garfield (1964) first proposed to index citations and use them

for scientific literature search. A crucial insight was that citation information could be

represented as a graph structure that could be analyzed to identify e.g., groups of related

documents (Salton, 1963). With the advent of the web, such graph-based methods were

extended to authoritative web pages based on the link structure of the web. Key develop-

ments, such as the HITS algorithm developed by Kleinberg (1999), and the related Page-

Rank algorithm, proved crucial for effective web search (Brin and Page, 1998). Today,

graph-based approaches are extended e.g., to understand community structures on the

social web, and are applied to develop tools for social and personalized search (Carmel

et al., 2009; Efron, 2011). Besides the large-scale graph structure exploited by algorithms

such as PageRank, more fine-grained structural information has been shown to be useful

for retrieval (Hofmann et al., 2009b). Extensions of topical retrieval models that take

document structure into account are BM25F (“fielded” BM25) (Robertson et al., 2004)

and the Indri search engine that is based on a combination of language modeling and

inference networks (Metzler and Croft, 2004).

In recent years, a wide variety of additional contextual factors have been integrated

with retrieval models. For example, terms extracted from users’ previous queries and

previously visited web pages can capture aspects of users’ general interests and cognitive

background (Matthijs and Radlinski, 2011; Shen et al., 2005). Similarly, detecting users’

search goals and intents can be used to improve retrieval performance (Besser et al., 2010;

Teevan et al., 2008). In a study of contextual factors in expert finding, we found that

several task-dependent factors, such as media experience, organizational structure, and

position of an expert in an organization, could improve retrieval performance (Hofmann

et al., 2008, 2010a). Finally, the use of location (Bennett et al., 2011) and temporal

information (Berberich et al., 2010) was shown to improve search results in, e.g., web

and news search.

Newly developed IR models are evaluated following the strong tradition of empirical

research in this area. The Cranfield paradigm, which forms the foundation of the Text

Retrieval Conference (TREC — the largest IR evaluation campaign) (Voorhees, 2002)

allowed rapid progress toward effective topical retrieval models by abstracting away dif-

ferences between individual users. This setup concentrates on the basic elements of IR

evaluation. Given document-query pairs, expert annotators (also called relevance judges)

are required to manually provide relevance judgments, i.e., to annotate whether or in

how far a document is considered relevant for a given query (Voorhees and Harman,

2005). Potential differences between judges and other non-topical aspects of relevance

were not considered initially. However, extensions of the Cranfield paradigm address

interactive IR (Over, 2001), the retrieval of varied information objects (e.g., people, en-

tities, user generated content (Bailey et al., 2007; Balog et al., 2011; Ounis et al., 2008)),

and consider relationships between individual documents (in the novelty and diversity

tracks (Clarke et al., 2009; Soboroff and Harman, 2003)) and queries (in the interactive

and session tracks (Kanoulas et al., 2010; Over, 2001)). Detailed surveys of evaluation

in IR and interactive IR can be found in (Sanderson, 2010) and (Kelly, 2009).

Given a TREC-style document collection with relevance judgments, the quality of an
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IR system is computed using one or more IR evaluation measures. Early work focused on

recall and precision, but many alternatives have been proposed since (Sanderson, 2010).

A measure that was developed during the early years of TREC, and that continues to be

influential, is Mean Average Precision (MAP), which captures ranking performance in

a single summary statistic. Other metrics have been developed to allow for graded rele-

vance judgments (Järvelin and Kekäläinen, 2002), assess the quality of diversified result

lists (Clarke et al., 2011), or explicitly model assumptions about user behavior (Chapelle

et al., 2009; Yilmaz et al., 2010).

In this thesis we evaluate ranking performance in terms of Normalized Discounted

Cumulative Gain (NDCG) (Järvelin and Kekäläinen, 2002). This measure was proposed

to deal with graded relevance judgments, and is the most commonly used evaluation mea-

sure for assessing interleaved comparison methods (Radlinski and Craswell, 2010) and

online learning to rank (Yue and Joachims, 2009). We use the formulation from (Burges

et al., 2005):2

NDCG =

len(l)
�

i=1

2rel(l[i]) − 1

log2(i+ 1)
iNDCG

−1. (2.1)

For a given result list l of length len(l), this metric sums over the gain that is based on the

relevance label (rel(l[i])) of each document, and divides it by a discount factor (based on

the log of the rank i at which the document was presented). This sum is then normalized

by the ideal NDCG (iNDCG) that would be obtained on an ideal document ranking.

As mentioned above, the goal of retrieval models and evaluation efforts is to cor-

rectly select or rank “relevant” documents. Despite being the most central concept of

IR research, the meaning of “relevance” has been debated throughout the development

of the field. Relevance has been operationalized in many different ways, ranging from

topical relevance (whether a document is about a given topic), to cognitive (concerning

the relation between the presented information and a user’s cognitive state, e.g., back-

ground or domain knowledge) (Ingwersen and Järvelin, 2005) and situational (concern-

ing the relation between the presented information and a user’s situation) views (Sarace-

vic, 2007). Defining this concept is an interdisciplinary effort, and forms an important

overlap between IR and Information Seeking – a research area where the information

seeking process itself is the main focus of investigation. Discussions range from aspects

of human psychology, where information seeking can be characterized as behavior with

the goal of reducing uncertainty (and relevant information is information that indeed re-

duces uncertainty) (Morrison, 1993; Wilson et al., 2002), to epistemological reflections

that characterize relevance in terms of subject knowledge (Hjørland, 2010). Here, we

adopt a working definition of relevance as situational. We consider information relevant

when it addresses an (implicit or explicit) information need of the user (of an IR system)

at a given time and place. In addition, relevance can be graded, i.e., pieces of information

can be more or less relevant to a user in a given situation.

The concept of relevance is important to this thesis, because its central motivation

is the question of how to design retrieval systems that can address situational relevance.

In recent years, the amount and variety of digitally available information has increased

2Note that our formulation differs from earlier ones, including the one provided with the LETOR toolkit,

where documents at rank 2 are not discounted (cf., (Järvelin and Kekäläinen, 2002)). Here, we use the formu-

lation from (Burges et al., 2005) so that relevance differences at the highest ranks can be detected.
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dramatically, as have the types of information needs that more and more heterogenous

users try to answer using these systems. These changes have fostered increasing interest

in research on contextual factors for improving retrieval systems. This work can be seen

as an effort towards addressing situational relevance.

As more contextual factors are identified, we think that different combinations of

these factors will be needed to provide optimal results to each user at each point in time.

Developing such combinations manually is impossible, so methods for automatically

learning such combinations are needed. One solution for automatically tuning retrieval

systems is learning to rank for IR. Existing learning to rank methods will be surveyed in

the next section. In this thesis, we specifically focus on methods for online learning to

rank for IR, which can automatically improve a retrieval system based on observed user

behavior. This technology enables search engines that interactively adapt to their users,

moving closer to the goal of presenting the best possible search results to each user at

each point in time.

2.2 Learning to Rank for IR

Current web search systems take many (possibly hundreds) of ranking features into ac-

count. To address the problem of tuning the large sets of parameters of such systems,

learning to rank methods were developed. These methods use machine learning tech-

niques to tune the parameters of an IR system automatically. Learning to rank for IR is

an active research area, and many approaches have been proposed and refined in recent

years (Liu, 2009). In this section we give a brief overview of the types of learning to rank

methods developed for IR settings.

For the purpose of this thesis, we assume that learning to rank for IR approaches

require a feature-based representation, where feature vectors encode characteristics of

a query, a document, and the relationship between the query and the document. Such

feature-based representations enable generalization across documents and queries. The

goal of the learner is then to find generalizable patterns in how to combine ranking fea-

tures to improve search results (e.g., according to some IR evaluation metric). This

leads to the following problem formulation for supervised learning to rank. The input

is provided as samples of the form (x, y, q). Here, x = (x1, . . . , xn)
T ∈ R

n is an

n-dimensional feature vector that represents the relationship between a document and

a query; y denotes the ground truth relevance label of the document for a given query;

finally, q ∈ Z indicates to which query the sample belongs. The ground truth label y
can be obtained from a trained annotator, but it can also be inferred from user behavior

(§2.3).

The vast majority of learning to rank for IR approaches are developed for the su-

pervised setting. In this setting, training data in the form of a representative sample of

queries, documents, and relevance judgments is assumed. The specific form and seman-

tics of the input (feature vectors) and output (predicted labels) differ between supervised

learning to rank approaches. Following (Cao et al., 2007), three broad types are dis-

tinguished, namely pointwise, pairwise, and listwise approaches (Cao et al., 2007; Liu,

2009). Distinguishing between these types is helpful, as it provides insights into the

characteristics of learning approaches, such as the type of loss function or optimization

13



2. Background

goal that can be formulated. In turn, this allows conclusions about their effectiveness and

efficiency.

Pointwise learning to rank takes as input the feature vectors x for individual docu-

ments (Liu, 2009), and learns a mapping to the ground truth labels y. Depending on the

domain of y, standard supervised machine learning approaches can be used. For exam-

ple, binary relevance scores (i.e., predicting whether a document is relevant or not) can

be learned using standard classification approaches (Nallapati, 2004), and regression ap-

proaches can be used to learn continuous relevance scores (i.e., the degree of relevance

of a document) (Cossock and Zhang, 2006; Fuhr, 1989). The loss function depends on

the specific approach chosen, but could be the zero-one loss in the case of classification,

or the squared error in the case of regression. A disadvantage of both formulations is that

they do not correspond well to the IR ranking problem. In learning to rank for IR, the

order in which documents are placed is crucial, while an exact prediction of relevance

values is not. It is possible to show that perfect ranking performance can be achieved even

when classification or regression-type losses are high. In addition, IR training sets are

often highly imbalanced (there can be orders of magnitude more non-relevant documents

than relevant documents), making learning difficult. Advantages of pointwise approaches

are their low complexity when compared to pairwise and listwise approaches, and that

existing classification or regression approaches can be applied directly. Extensions of

the pointwise approach include ordinal regression, where a mapping to output scores and

thresholds to distinguish separate relevance levels are learned simultaneously. For exam-

ple, PRank is a popular and effective approach in settings where predictions of absolute

relevance labels are required (Crammer et al., 2001).

Pairwise learning to rank approaches operate on pairs of documents, i.e., they take as

input pairs of document vectors for a given query (x1,q,x2,q) ∈ R
n × R

n (Liu, 2009).

These pairs are mapped to binary labels, e.g., y ∈ {−1,+1}, that indicate whether the

two documents are presented in the correct order, or should be switched. This problem

can be reduced to binary classification by transforming the input to a single combined

feature vector x = x1,q −x2,q . In this case, the loss function could be based on the clas-

sification errors on all document pairs. Optimizing for this loss function may again result

in a mismatch with ranking performance, because in IR evaluation metrics are much

more sensitive to ranking changes at the top of a result list, than to changes at the bot-

tom of a result list. In contrast, simply counting classification errors would consider all

switches of relevant and non-relevant documents equally important. Also, queries with

many associated candidate documents may skew results, as IR metrics are typically av-

eraged with equal weights per query. The complexity of the pairwise approach is higher

than for the pointwise approach (quadratic in the number of documents if all possible

document pairs are considered), but sampling approaches have been shown to be highly

effective and efficient (Sculley, 2009). Finally, depending on the form of the learned

function, deriving a final ranking from predictions of pairwise preferences may be hard.

However, a major advantage of the pairwise approach over the pointwise approach is

that it abstracts from specific relevance scores and instead focuses on the relative order

of (pairs of) documents. A widely known and effective approach to pairwise learning to

rank is RankSVM, a support vector machine approach to minimizing the pairwise hinge

loss (Herbrich et al., 1999; Joachims, 2002). Related approaches are developed in the

area of preference learning (Fürnkranz and Hüllermeier, 2010).
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Listwise learning to rank operates on complete result rankings (Liu, 2009). These

approaches take as input the n-dimensional feature vectors of all m candidate docu-

ments for a given query (x1,q, . . . ,xm,q) ∈ R
n×m, and learn to predict either the scores

for all candidate documents, or complete permutations of documents. The loss func-

tion for such an approach can be an IR evaluation measure, although these can be hard

to optimize directly, as they are non-smooth and non-differentiable. Alternatives in-

clude smooth approximations of such measures (e.g., SoftRank (Taylor et al., 2008)),

or, when ground truth is provided in the form of ranked lists, measures of the differ-

ence between predicted rankings and the ground truth (e.g., ListNet (Cao et al., 2007)).

Listwise approaches have the advantage that they can directly optimize for high ranking

performance, but their complexity can be high. Listwise learning to rank approaches

are considered the state-of-the-art, as evidenced by the winning approach of the Yahoo!

Learning to Rank Challenge3 (Burges et al., 2011). Best performance was achieved by

an ensemble that combines listwise models, including LambdaRank (Burges et al., 2005;

Donmez et al., 2009) and LambdaMART (Burges et al., 2006), which optimize listwise

measures directly using gradient descent and boosted decision trees.

As in other supervised learning settings, supervised learning to rank for IR methods

typically assume that a representative set of training data (including judgments) is avail-

able at training time, so that characteristics of the data can be estimated from this set.

This labeled data is most often obtained through manual relevance judgment, a process

that is often expensive and, because relevance judges may interpret queries differently

from actual users, may not accurately capture users’ preferences (Sanderson, 2010) (cf.,

situational relevance, §2.1). A number of semi-supervised learning methods have been

proposed more recently, which can, in addition to expensive labeled data, take into ac-

count unlabeled sample data, for example as a means of regularization (Szummer and

Yilmaz, 2011; Tsivtsivadze et al., 2012).

Both supervised and semi-supervised learning to rank approaches work offline. They

use provided training data to learn a ranking function that is expected to generalize well

to new data drawn from the same distribution as the training data. Once deployed, they do

not continue to learn. In contrast, online methods hold the promise of allowing learning

while interacting with users of the retrieval system.

The most common approach for learning without prior labels is active learning,

where the learner is initially provided with an unlabeled training sample, and can re-

quest labels for selected samples from an annotator or relevance judge. The focus of

these methods is to reduce manual labeling effort; however, they are not designed to

learn from natural user interactions. Active learning approaches have been developed

to request labels for queries and documents so that they gain as much information as

possible from each labeled instance. Xu et al. (2007) present an algorithm that learns

a linear combination of features based on relevance, document density, and diversity,

which is then used to select documents for which to obtain feedback. Similarly, Xu

and Akella (2008) follow a probabilistic approach that selects documents expected to

minimize model variance. Donmez and Carbonell (2009) apply active learning to two

state-of-the-art learning to rank algorithms, RankSVM and RankBoost. Their approach

selects the training instances expected to have the largest effect on the current model.

3See http://learningtorankchallenge.yahoo.com/ for details.
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An interesting extension of the active learning paradigm is a recently proposed co-

active learning algorithm (Shivaswamy and Joachims, 2012). It assumes that both system

and user actively explore possible solutions to speed up learning. Interactions are mod-

eled such that the system presents an initial ranked list, which is then improved by the

user. It was shown that feedback provided in this way can lead to effective learning.

In contrast to offline (semi-)supervised learning, we address learning to rank in an

online setting, where a system learns directly from interactions with the user. In this

setting, labeled training data is not provided but needs to be collected through interaction

with the user (Yue and Joachims, 2009). In contrast to active learning, feedback is not

explicitly requested, but has to be inferred from natural user interactions. No training

data is required before deploying the system (but any existing data could be used for

bootstrapping the system), and the system is expected to transparently adapt to its users’

true preferences. Online learning to rank for IR naturally maps to problem formulations

developed in the area of reinforcement learning (§2.4).

The main challenges that need to be addressed by online learning to rank for IR

approaches include the quality of available feedback (e.g., when inferring feedback from

click data, see §2.3, addressed in Chapters 4 and 5), and the need to learn quickly and

reliably from the available feedback while maintaining high result quality while learning

(addressed in Chapters 6 and 7).

Our work builds on existing pairwise and listwise online learning to rank for IR ap-

proaches as follows. A first evaluation of RankSVM in an online setting demonstrated

that learning from implicit feedback is possible in principle (Joachims, 2002). How to

best collect feedback for effective learning from implicit feedback has so far not been

examined further, but we hypothesize that online approaches need to explore to learn

effectively. Our work on pairwise online learning to rank is based on the approach

in (Joachims, 2002), which is detailed below (Algorithm 4 in §2.5.1).

Two of the methods for online learning to rank for IR that have been proposed so

far perform listwise learning, meaning that they learn from probabilistic comparisons

between pairs of candidate rankers using listwise feedback (Yue and Joachims, 2009;

Yue et al., 2012). A first such method, Dueling Bandit Gradient Descent (DBGD) was

proposed by (Yue and Joachims, 2009). This method implements stochastic gradient

descent over a large or infinite space of ranking solutions. Alternatively, algorithms

based on multi-armed bandit formulations have been developed to efficiently find the

best ranking solutions of a given set (Yue et al., 2012). Our work on listwise online

learning to rank is based on the DBGD algorithm (Algorithm 5 in §2.5.2).

2.3 Click Data and other Types of Implicit Feedback

In the previous section we gave an overview of online learning to rank approaches, de-

signed to learn from user behavior. A crucial component of such an approach is its

feedback mechanism, i.e., how to interpret user behavior to provide useful information

for learning. In this section we give a brief overview of approaches for leveraging user

behavior to improve retrieval.

The earliest method for integrating user feedback with retrieval approaches is the rel-

evance feedback approach introduced by Rocchio (1971). This approach allows users
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to indicate which returned documents are relevant and/or non-relevant to their informa-

tion need, and extracts information from the labeled documents to devise a more specific

query. Relevance feedback approaches have continued to evolve throughout the past

decades. A thorough review is provided in (Ruthven and Lalmas, 2003).

Relevance feedback is an example of explicit feedback. Explicit feedback is not part

of users’ natural interactions towards achieving their (search) goal, but rather it is pro-

vided with the sole purpose of improving retrieval performance. It is similar to relevance

judgments made by professional judges in that it is reliable (as it is consciously provided

to improve system performance) but expensive (it requires users’ time and effort).

In contrast to explicit feedback, implicit feedback is inferred from users’ natural in-

teractions with a (retrieval) system. Approaches for improving retrieval performance

using implicit feedback are based on the idea that user interactions can provide some

information about user satisfaction, e.g., with the relevance of presented search results.

Implicit feedback can include all aspects of recorded user behavior, such as clicks, mouse

movement, dwell time, etc. Compared to explicit feedback, obtaining implicit feedback

is much cheaper, as it is a by-product of natural user interactions, and requires no ad-

ditional time or cognitive effort of the user. On the other hand, implicit feedback is

typically much noisier than explicit feedback, and therefore its interpretation and use are

much more difficult. Surveys and further references on the use of implicit feedback in

retrieval are provided in (Fox et al., 2005; Kelly and Teevan, 2003).

In this thesis, we focus on online learning to rank using click-through data. Click data

is a side-product of natural user interactions. It is abundant in frequently-used search

applications, and (to some degree) reflects user behavior and preferences. Clicks are

part of the natural interaction between users and (web and other) search engines, and in

comparison to other types of feedback can be collected in large quantities at very low

cost. Consequently, a large body of work has focused on using click behavior to infer

information about users’ satisfaction with the search results (Carterette and Jones, 2008;

Chapelle and Zhang, 2009; Dupret et al., 2007; Kamps et al., 2009; Radlinski et al.,

2008b; Wang et al., 2009) and to improve search result quality (Agichtein et al., 2006;

Boyan et al., 1996; Dou et al., 2008; Ji et al., 2009; Joachims, 2002; Jung et al., 2007;

Shen et al., 2005).

As for all forms of implicit feedback, a challenge when using click data is how to ac-

curately interpret it. For instance, top-ranked web search results are clicked much more

frequently than lower-ranked results, even in the absence of a strong difference in rele-

vance (Joachims et al., 2007). Jung et al. (2007) found that click data does contain useful

information, but that variance is high. They propose aggregating clicks over search ses-

sions and show that focusing on clicks towards the end of sessions can improve relevance

predictions. Similarly, Scholer et al. (2008) found that click behavior varies substantially

across users and topics, and that click data is too noisy to serve as a reliable measure of

absolute relevance. Fox et al. (2005) found that combining several implicit indicators can

improve accuracy, though it remains well below that of explicit feedback. In particular,

evaluation methods that interpret clicks as absolute relevance judgments in more broadly

used settings such as literature search, web search, or search on Wikipedia, were found to

be rather unreliable, due to large differences in click behavior between users and search

topics (Kamps et al., 2009; Radlinski et al., 2008b). Finally, click behavior was found to

be affected by visual aspects of result presentation (§2.3.2).
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Nonetheless, in some applications, click data has proven reliable. In searches of

expert users who are familiar with the search system and document collection, clicks can

be as reliable as purchase decisions (Hofmann et al., 2010b; Zhang and Kamps, 2010).

Methods for optimizing the click-through rates in ad placement (Langford et al., 2008)

and web search (Radlinski et al., 2008a) have also learned effectively from click data.

Methods that use implicit feedback to infer the relevance of specific document-query

pairs have also proven effective. Shen et al. (2005) show that integrating click-through

information for query-document pairs into a content-based retrieval system can improve

retrieval performance substantially. Agichtein et al. (2006) demonstrate dramatic per-

formance improvements by re-ranking search results based on a combination of implicit

feedback sources, including click-based and link-based features.

The quickly growing area of click modeling develops and investigates models of

users’ click behavior (Chapelle and Zhang, 2009; Dupret and Liao, 2010; Dupret et al.,

2007). These models are trained per query to predict clicks and/or relevance of docu-

ments that have not been presented to users at a particular rank, or that have not been

presented at all for the given query. An advantage of click models is that they directly

model absolute relevance grades of individual documents. However, it is not yet clear

to what degree they can complement or replace editorial judgments for evaluation. Ex-

tensions of click models combine inferred relevance with editorial judgments. These

extensions have been found to effectively leverage click data to allow more accurate

evaluations with relatively few explicit judgments (Carterette and Jones, 2008; Ozertem

et al., 2011). Recently developed evaluation metrics that incorporate insights gained

from click models (Chapelle et al., 2009; Moffat and Zobel, 2008) provide new possibil-

ities for combining click data and editorial judgments, further bridging the gap between

click-based and traditional retrieval evaluation. The click models mentioned above can

be reused to some degree but, unlike our methods, do not generalize across queries.

Since clicks and other implicit feedback vary so much across queries, it is diffi-

cult to use them to learn models that generalize across queries. To address this prob-

lem, Joachims (2002) proposes to interpret clicks not as absolute feedback (e.g., whether

or not a document is relevant), but relative to its context (whether a clicked document is

more or less relevant than a preceding non-clicked document). This interpretation was

successfully demonstrated by Joachims (2002), and forms the basis of our research on

document-pairwise online learning to rank (Chapter 6, esp., §6.1.1).

A particularly promising approach to interpreting click-through data are interleaved

comparison methods (Radlinski et al., 2008b). These methods use clicks on interleaved

result lists to infer relative feedback on ranking functions, and have been shown to pro-

vide reliable comparisons in large-scale web search evaluations (Chapelle et al., 2012;

Radlinski and Craswell, 2010). A more detailed discussion of interleaved comparison

methods and an overview of existing methods are provided in the next section. The

research presented in this thesis builds on these methods.

2.3.1 Interleaved Comparison Methods

Interleaved comparison methods use click data to compare ranking functions. These

methods are quickly gaining popularity as a form of online evaluation, a complement to

TREC-style evaluations. Compared to TREC-style evaluations, which require expensive
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manual relevance judgments, interleaved comparison methods rely only on click data,

which can be collected cheaply and unobtrusively. Furthermore, since this data is based

on the behavior of real users, it more accurately reflects how well their actual information

needs are met (Radlinski et al., 2008b). Previous work demonstrated that two rankers can

be successfully compared using click data in practice (Chapelle et al., 2012).

From the viewpoint of learning to rank, interleaved comparison methods are interest-

ing, as they infer listwise feedback from clicks, which can enable online listwise learn-

ing to rank approaches. Methods for learning to rank from such feedback have been

proposed (Yue and Joachims, 2009; Yue et al., 2012), but our work is the first to empiri-

cally confirm that online learning to rank is possible using the relative, listwise feedback

obtained from interleaved comparison methods (Chapter 6).

At a high level, interleaved comparison methods compare rankers in two steps, one

interleaving step and one comparison step. During the interleaving step, ranked result

lists for a given query are obtained from the two competing rankers. From these, an

interleaved result list is generated in such a way that position bias between the two rankers

is minimized (Radlinski et al., 2008b). The interleaved result list is presented to the

user and clicks are recorded. Then, during the comparison step, the observed clicks are

associated with the original rankers to infer which ranker the user would prefer.

Interleaving involves showing each user results returned by both retrieval functions.

This allows the user’s selection process to provide evidence as to which retrieval function,

in expectation, returns relevant results more often. By doing this direct comparison, inter-

leaving has been shown to be more sensitive than alternative approaches (Radlinski et al.,

2008b). Radlinski and Craswell (2010) compare the reliability and sensitivity of TD to

judgement-based evaluation in a web search setting, and Chapelle et al. (2012) provide

a detailed comparison and evaluation of several interleaving approaches. Alternative in-

terleaving approaches have also been proposed (Joachims, 2003) (cf., BI, below), as well

as alternative scoring approaches (He et al., 2009) (cf. DC, below). In their most recent

work (contemporary with this thesis) Radlinski and Craswell (2013) formulate interleav-

ing as an optimization problem, and explore several rank-based scoring functions with

the goal of increasing the sensitivity of interleaved comparisons.

Below, we introduce the three existing interleaved comparison methods, BI, TD,

and DC. All three methods are designed to compare pairs of rankers (l1(q), l2(q)).
4

Here, rankers are deterministic functions that, given a query q, produce a ranked list

of documents d. Given l1 and l2, interleaved comparison methods produce outcomes

o ∈ {−1, 0, 1} that indicate whether the quality of l1 is judged to be lower, equal to,

or higher than that of l2, respectively. For reliable comparisons, these methods are typi-

cally applied over a large number of queries and the individual outcomes are aggregated.

However, in this section, we focus on how interleaved comparison methods compute

individual outcomes. We analyze these interleaved comparison methods in §4.1, and

propose a new, probabilistic interleaved comparison method in §4.2. We present learning

approaches based on interleaved comparisons, and empirical evaluations in Chapters 6

and 7.

4If it is clear from the context which q is referred to, we simplify our notation to l1 and l2.

19



2. Background

Balanced Interleave

BI (Joachims, 2003; Radlinski et al., 2008b) generates an interleaved result list l as fol-

lows (cf., Algorithm 1, lines 3–12). First, one of the result lists is randomly selected as

the starting list and its first document is placed at the top of l. Then, the non-starting list

contributes its highest-ranked document that is not already part of the list. These steps

repeat until all documents have been added to l, or until it has the desired length. Next,

the constructed interleaved list l is displayed to the user, and the user’s clicks on result

documents are recorded. The clicks c that are observed are then attributed to each list as

follows (lines 13–17). For each original list, the rank of the lowest-ranked document that

received a click is determined, and the minimum of these values is denoted as v. Then,

the clicked documents ranked at or above v are counted for each original list. The list

with more clicks in its top v is deemed superior. The lists tie if they obtain the same

number of clicks.

Algorithm 1 Interleaved comparison with BI, following (Chapelle et al., 2012).

1: Input: l1, l2
2: l = []; i1 = 0; i2 = 0
3: first 1 = random bit()
4: while (i1 < len(l1)) ∧ (i2 < len(l2)) do

5: if (i1 < i2) ∨ ((i1 == i2) ∧ (first 1 == 1)) then

6: if l1[i1] �∈ l then

7: append(l, l1[i1])
8: i1 = i1 + 1
9: else

10: if l2[i2] �∈ l then

11: append(l, l2[i2])
12: i2 = i2 + 1

// present l to user and observe clicks c, then infer outcome (if at least one click was observed)

13: dmax = lowest-ranked clicked document in l

14: v = min {j : (dmax = l1[j]) ∨ (dmax = l2[j])}
15: c1 = len {i : c[i] = true ∧ l[i] ∈ l1[1..v]}
16: c2 = len {i : c[i] = true ∧ l[i] ∈ l2[1..v]}
17: return −1 if c1 > c2 else 1 if c1 < c2 else 0

Team Draft

The alternative interleaved comparison method TD (Radlinski et al., 2008b) creates an

interleaved list following the model of “team captains” selecting their team from a set of

players (cf., Algorithm 2). For each pair of documents to be placed on the interleaved

list, a coin flip determines which list gets to select a document first (line 4). It then

contributes its highest-ranked document that is not yet part of the interleaved list. The

method also records which list contributed which document in an assignment a (lines 7,

11). To compare the lists, only clicks on documents that were contributed by each list (as

recorded in the assignment) are counted towards that list (lines 12–14), which ensures
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Algorithm 2 Interleaved comparison with TD, following (Chapelle et al., 2012).

1: Input: l1, l2
2: l = []; a = []
3: while (∃i : l1[i] �∈ l) ∨ (∃i : l2[i] �∈ l) do

4: if count(a, 1) < count(a, 2) ∨ (rand bit() == 1) then

5: j = min {i : l1[i] �∈ l}
6: append(l, l1[j])
7: append(a, 1)
8: else

9: j = min {i : l2[i] �∈ l}
10: append(l, l2[j])
11: append(a, 2)

// present l to user and observe clicks c, then infer outcome

12: c1 = len {i : c[i] = true ∧ a[i] == 1}
13: c2 = len {i : c[i] = true ∧ a[i] == 2}
14: return −1 if c1 > c2 else 1 if c1 < c2 else 0

that each list has an equal chance of being assigned clicks. Again, the list that obtains

more clicks wins the comparison. Recent work demonstrates that TD can reliably identify

the better of two rankers in practice (Chapelle et al., 2012; Radlinski and Craswell, 2010).

Document Constraints

While BI and TD directly aggregate clicks to detect preferences between rankers, He

et al. (2009) hypothesize that the efficiency of interleaved comparison methods can be

improved if methods also take into account the preference relations between documents

that can be inferred from clicks. Based on this hypothesis, the authors propose an ap-

proach that we refer to as DC (cf., Algorithm 3).

Result lists are interleaved and clicks observed as for BI (lines 3–12). Then, follow-

ing (Joachims, 2002), the method infers constraints on pairs of individual documents,

based on their clicks and ranks. Two types of constraints are defined: (1) for each pair of

a clicked document and a higher-ranked non-clicked document, a constraint is inferred

that requires the former to be ranked higher than the latter; (2) a clicked document is

inferred to be preferred over the next unclicked document.5 The method compares the

inferred constraints to the original result lists and counts how many constraints are vio-

lated by each. The list that violates fewer constraints is deemed superior. Though more

computationally expensive, this method proved more reliable than either BI or TD on

synthetic data (He et al., 2009).

5Variants of this method can be derived by using only the constraints of type (1), or by using an alternative

constraint (2) where only unclicked documents are considered that are ranked immediately below the clicked

document. In preliminary experiments, we evaluated all three variants and found the one using constraints (1)

and (2) as stated above to be the most reliable. Note that only constraints of type (1) were used in earlier work

(Hofmann et al., 2011c, 2012b).
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Algorithm 3 Interleaved comparison with DC, following (He et al., 2009).

1: Input: l1, l2
2: l = []; i1 = 0; i2 = 0
3: first 1 = random bit()
4: while (i1 < len(l1)) ∧ (i2 < len(l2)) do

5: if (i1 < i2) ∨ ((i1 == i2) ∧ (first 1 == 1)) then

6: if l1[i1] �∈ l then

7: append(l, l1[i1])
8: i1 = i1 + 1
9: else

10: if l2[i2] �∈ l then

11: append(l, l2[i2])
12: i2 = i2 + 1

// present l to user and observe clicks c, then infer outcome

13: v1 = violated(l, c, l1) // count constraints inferred from l and c that are violated by l1

14: v2 = violated(l, c, l2) // count constraints inferred from l and c that are violated by l2

15: return −1 if v1 < v2 else 1 if v1 > v2 else 0

2.3.2 Click Bias

While clicks are becoming more popular as a source of preference indications on search

results, a number of studies have found that click behavior is affected by bias. In this

section we give a brief overview of the types of bias previously found to affect users’

click behavior in web search.

In the context of interleaved comparisons, position bias has been addressed. Position

bias results from the layout of a search result page. Because users generally expect

more relevant items to be listed at the top of a page, and because people are used to

reading pages from top to bottom, top-ranked results are typically the most likely to

be examined. This phenomenon was first confirmed in eye-tracking studies (Granka

et al., 2004; Guan and Cutrell, 2007). Craswell et al. (2008) developed models of user

behavior to describe position bias, and described a cascade model to explain this effect.

The model was refined in several follow-up studies, e.g., to account for multiple clicks on

the same result page (Guo et al., 2009b), and to account for differences in click behavior

for different types of queries and search goals (Guo et al., 2009a).

In addition to position bias, which reflects where on the page a result was displayed,

click behavior is also affected by caption bias, caused by how the result was displayed.

Clarke et al. (2007) studied caption bias by comparing features and click behavior on

pairs of search results. They found that results were more often clicked on when they

had longer snippets, shorter URLs, more query terms matching the caption, matches

of the whole query as a phrase, if the caption was more readable, or if it contained

the term “official” or terms related to images. Yue et al. (2010b) compared click data

on result documents that were sampled to minimize position bias using the Fair Pairs

approach (Radlinski and Joachims, 2006) to editorial judgments. They identified a bias

towards captions that included more highlighted (bold) terms, i.e., items with more bold

terms would be clicked more frequently than similar results with fewer bold terms.
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Other factors affecting click behavior include the domain of the search result (Ieong

et al., 2012), whether or not search results are grouped (e.g., by intent) (Dumais and

Cutrell, 2001), page loading time (Wang et al., 2009), the amount of context shown in

the snippet (Tombros and Sanderson, 1998), and the relation between task and result

caption (Cutrell and Guan, 2007).

In this thesis, we address the effects of visual factors on click behavior, in particular

in a web search setting, in Chapter 5. In §5.2.4, we report on the effects of such caption

bias on interleaving experiments. While our model focuses on caption bias, our approach

is generally applicable to other sources of click bias. In the remainder of this thesis, we

compensate for position bias using interleaved comparisons (Chapters 4 and 7) or by

balancing exploration and exploitation (Chapter 6), and assume that other sources of

click bias have been compensated for.

2.4 Reinforcement Learning

In this thesis, we formulate online learning to rank as an RL problem, a problem in which

an agent learns from interactions with an environment (Kaelbling et al., 1996; Sutton and

Barto, 1998) (cf., Chapter 3). Using this formulation allows us to draw from the ideas and

solutions developed in RL. First, we give an overview of the terminology and concepts

from RL that are important for the IR problem formulation proposed in Chapter 3. Then

we outline standard RL concepts and solutions that form the basis for methods developed

in this thesis, including strategies for balancing exploration and exploitation (§2.4.2), and

off-policy evaluation (§2.4.3).

In RL, an agent interacts with an unknown environment over a series of timesteps,

observing the state of the environment, taking actions, and receiving rewards, which can

be positive, negative, or zero (Kaelbling et al., 1996). For example, a robot navigating

an unfamiliar maze can take actions to move in different directions and might receive

positive reward for reaching a goal and negative reward for using a scarce resource such

as battery power. The distinguishing characteristic of RL problems is that the agent

learns through trial and error (Sutton and Barto, 1998). In this setting, the agent can

only observe the rewards for the actions it selected, meaning that it is never shown any

examples of the optimal action for any situation, as is the case in e.g., supervised learning.

The goal of the agent in an RL problem is to maximize cumulative reward, accumu-

lated while interacting with the environment. How cumulative reward is defined depends

on whether the task is formulated as a finite or infinite horizon problem. In finite hori-

zon problems, the interaction between the agent and its environment is limited to a fixed

number of timesteps T . For example, the task of playing soccer could be modeled as a

finite horizon problem that terminates when time expires. In this case, the cumulative

reward C is simply the sum of rewards received until termination:

C =
T
�

i=1

ri,

where ri is the reward received on the ith timestep.

In infinite horizon problems, the interaction between the agent and its environment

continues indefinitely. E.g., the task of managing resources in a factory can be modeled
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Figure 2.1: Generic RL problem and terminology. In contextual bandit problems states

are independent of previous actions.

as an infinite horizon problem, since factories often remain open indefinitely. One issue

with infinite horizon problems is the infinitely delayed splurge: since there are always

infinitely many timesteps to go, the agent always explores, confident that enough time

remains to exploit. To address the issue, infinite horizon problems typically include a

discount factor γ ∈ [0, 1) which weights immediate rewards higher than future rewards.

Hence, the agent has an incentive to balance exploration and exploitation, instead of

always exploring. Here, cumulative reward is defined as the discounted infinite sum of

rewards:

C =

∞
�

i=1

γi−1ri. (2.2)

When γ = 0, the agent cares only about maximizing immediate rewards through ex-

ploitation. As γ approaches 1, future rewards take on greater importance and the agent’s

incentive to explore increases. One way to interpret the discount factor is to suppose that

there is a 1 − γ probability that the task will terminate at each timestep. Rewards are

thus weighted according to the probability that the task will last long enough for them to

occur. This is the formulation used in this thesis (cf., §3.2).

An agent’s behavior is determined by its policy, which specifies what action it should

take in each state. Solutions to finding an optimal policy fall in two categories. First,

policy-search methods use optimization techniques such as gradient methods (Sutton

et al., 2000) or evolutionary computation (Moriarty et al., 1999) to directly search the

space of policies for those accruing maximal reward. Second, value-function methods

work by estimating the expected long-term reward for taking an action in a state and be-

having optimally thereafter (Sutton, 1988). Given an optimal value function, an optimal

policy can be easily derived by selecting in each state the greedy action: the one that

maximizes this value function. The methods explored in this thesis are based on policy

search.

2.4.1 Contextual Bandit Problems

Particularly relevant to this thesis are methods for tackling contextual bandit problems

(also known as bandits with side information or associative RL (Auer, 2003; Barto et al.,

1981; Langford and Zhang, 2008)), a well-studied type of RL problem (Auer, 2003;
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Barto et al., 1981; Langford and Zhang, 2008; Strehl et al., 2006), as they have been

successfully applied to problems similar to learning to rank for IR (Agarwal et al., 2008;

Langford et al., 2008; Li et al., 2010, 2011; Radlinski et al., 2008a; Zhang et al., 2003).

A contextual bandit problem is a special case of an RL problem in which states are

independent of the agent’s actions. In other words, the agent has no control over the states

to which it transitions (Figure 2.1). Instead, its actions affect only its immediate reward.

A difference between typical contextual bandit formulations and online learning to rank

for IR is that in IR (absolute) reward cannot be observed directly. Instead, feedback

for learning can be inferred from observed user interactions as noisy relative preference

indications (cf., §2.3).

Contextual bandit formulations have proved successful in applications that are similar

to online learning to rank for IR, in cases where implicit feedback can be interpreted in

absolute terms (e.g., in cases where maximizing the click-through rate can be assumed to

lead to good task performance). One solution is to reduce the contextual bandit problem

to several multi-armed bandit problems (a multi-armed bandit problem has only one state

or context), so that a different solution is learned for each context. For example, Langford

et al. (2008) consider the ad placement application. Given a website, their algorithm

learns the value of placing each of a set of candidate ads on the website. Similarly,

Radlinski et al. (2008a) consider how to learn diverse document lists such that different

information needs are satisfied; they present an algorithm for doing so that balances

exploration and exploitation. Our solutions differ from this type of approach in that

context is taken into account by using a feature-based representation, which allows them

to generalize over queries (cf. §2.2).

Another widely-studied application area of related approaches is news recommenda-

tion, where news stories are selected for a user population or for individual users. Work

in this area has focused on learning approaches (Agarwal et al., 2008; Li et al., 2010),

and methods for offline evaluation (Li et al., 2011). Finally, an application to adaptive

filtering is presented by Zhang et al. (2003). However, like other RL algorithms, these

methods all assume access to absolute feedback. For example, in ad placement, clicks

can be interpreted as absolute feedback because they are directly correlated with the

value of the ad-website pair (assuming a pay-per-click model). Since interpreting clicks

as absolute feedback is problematic in online IR settings (Joachims et al., 2007; Radlin-

ski et al., 2008b) (§2.3), these methods are not directly applicable. While in related areas

implicit feedback can often be interpreted as absolute reward, this is not possible in our

setting.

2.4.2 Balancing Exploration and Exploitation

A central challenge of RL is the problem of balancing exploration and exploitation.6

As the agent’s environment is initially unknown, and the agent only receives feedback

(reward) for the actions it tries, the agent needs to try out new actions to learn about

their effects. In addition, it is not enough for the agent to discover a good solution by

6In the related area of search and optimization, exploration and exploitation are used in a different sense.

There, exploration means global search (over a large part of a solution space) and exploitation means local

search (close to previously identified optima) (Chen et al., 2009). In this thesis we always refer to exploration

and exploitation in the RL meaning, as described in this section.
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the end of learning (as is the case in supervised learning). Rather, it should maximize

the cumulative reward it receives during its interaction with the environment. For this

reason, balancing exploration and exploitation is crucial. The agent needs to try out new

solutions to be able to learn from the observed feedback, and it needs to exploit what it

has already learned to ensure high reward.7

Most approaches for balancing exploration and exploitation in RL have been devel-

oped for value-function methods. For these methods, it is possible to compute a Bayes-

optimal exploration strategy (Poupart et al., 2006; Strens, 2000), but doing so is typically

intractable. Many approaches for heuristically balancing exploration and exploitation

exist (Kaelbling, 1993; Sutton and Barto, 1998). E.g., in �-greedy exploration (Watkins,

1989), the agent selects an action with probability � at each step. With probability 1− �,

it selects the greedy action, i.e., the one with highest currently estimated value.

Policy-search methods are by nature exploratory, so maximizing cumulative perfor-

mance requires supplementing them with mechanisms for properly balancing exploration

and exploitation. To this end, exploration heuristics developed for value-function meth-

ods have been successfully adapted for policy search (Whiteson and Stone, 2006b).

Because balancing exploration and exploitation is considered important for optimiz-

ing performance while learning in an RL setting, we hypothesize that similar benefits can

be achieved in online learning to rank for IR. We investigate this hypothesis in Chapter 6.

2.4.3 Off-policy Evaluation

One part of this thesis explores the idea of reusing previously collected data for inter-

leaved comparisons (Chapter 4) and online learning to rank for IR (Chapter 7). Such

data reuse was not possible with previous interleaved comparison methods. However,

from an RL perspective, our work is related to off-policy learning (Precup et al., 2000;

Sutton and Barto, 1998). Off-policy learning was developed in the RL community to

address settings where interactions with the environment (to evaluate a new policy) is

expensive (e.g., due to cost of material, such as a robot, or because repeating many real-

time interactions can take a long time). When data from earlier policy evaluations is

available, off-policy methods estimate the value of new policies based on this data.

Algorithms for off-policy evaluation have been developed for tasks similar to IR,

namely news recommendation (Dudı́k et al., 2011; Li et al., 2011) and ad placement

(Langford et al., 2008; Strehl et al., 2010). In both settings, the goal is to evaluate the

policy of an agent (recommendation engine, or ad selector) that is presented with a con-

text (e.g., a user profile, or website for which an ad is sought), and selects from a set of

available actions (news stories, ads). Off-policy learning in this context is hard because

the data is sparse, i.e., not all possible actions were observed in all possible contexts. So-

lutions to this problem are based on randomization during data collection (Li et al., 2011),

approximations for cases where exploration is non-random (Langford et al., 2008; Strehl

et al., 2010), and combining biased and high-variance estimators to obtain more robust

7Balancing exploration and exploitation plays an important role in many areas, such as sequential exper-

imental design and in the multi-armed bandit work coming from the applied probability community. Early

work includes (Robbins, 1952), with an important breakthrough by Gittins (1979). A recent overview can be

found in (Mahajan and Teneketzis, 2008). Exploration and exploitation have also been extensively studied as

fundamental principles of human and animal decision-making behavior (Cohen et al., 2007).
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results (Dudı́k et al., 2011).

Though sparse data is also a problem in IR, existing solutions to off-policy evaluation

are not directly applicable. These methods assume reward can be directly observed (e.g.,

in the form of clicks on ads). Since clicks are too noisy to be treated as absolute reward in

IR (Kamps et al., 2009; Radlinski et al., 2008b), only relative feedback can be inferred.

In §4.2.3, we consider how to reuse historical data for interleaved comparison methods

that work with implicit, relative feedback.

However, one tool employed by existing off-policy methods that is applicable to

our setting is a statistical technique called importance sampling (MacKay, 1998; Precup

et al., 2000). Importance sampling can be used to estimate the expected value ET [f(X)]
under a target distribution PT when data was collected under a different source distribu-

tion PS . The importance sampling estimator is:

ET [f(X)] ≈
1

n

n
�

i=1

f(xi)
PT (xi)

PS(xi)
, (2.3)

where f is a function of X , and the xi are samples of X collected under PS . These

are then reweighted according to the ratio of their probability of occurring under PT and

PS . This estimator can be proven to be statistically sound (i.e., unbiased and consistent,

cf., Definition 4.1.3 in §4.1) as long as the source distribution is non-zero at all points at

which the target distribution is non-zero (MacKay, 1998).

Importance sampling can be more or less efficient than using the target distribution

directly, depending on how well the source distribution focuses on regions important for

estimating the target value. In §4.2.3, we use importance sampling to derive an unbiased

and consistent estimator of interleaved comparison outcomes using historical data. In

Chapter 7, we show that this estimator allows effective reuse of historical interaction

data in online learning to rank for IR.

2.5 Baseline Online Learning to Rank Approaches

Below, we detail our two baseline algorithms for online learning to rank for IR, which

form the basis of our work on pairwise and listwise online learning to rank for IR in

Chapters 6 and 7.

Both approaches are based on a feature-representation of document-query relations,

i.e., input consists of the feature vectors of the m candidate documents for a given query

(x1, . . . ,xm).8 Also, both learn a weight vector w for linear-weighted combinations

of these features. At any point t during learning, a ranked list can be obtained from

a current weight vector wt for a given query by scoring the candidate documents us-

ing s = wT
t × (x1, . . . ,xm), and sorting them by their scores. The weight vectors are

learned using feedback inferred from user clicks. In the case of the pairwise approach,

user behavior is used to infer preferences between document pairs. In the case of the list-

wise approach, preferences are inferred between complete result lists using interleaved

comparison methods (§2.3.1).

8In practice, candidate documents are typically collected based on some feature-based criteria, such as a

minimum retrieval score.
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2.5.1 Learning from Document-Pairwise Feedback

Our first approach builds off a pairwise formulation of learning to rank, and a stochastic

gradient descent learner. Document-pairwise approaches model the pairwise relations

between documents for a given query. Our formulation of the learning to rank problem

from implicit feedback follows Joachims (2002). The learning algorithm is a stochastic

gradient descent algorithm, following Zhang (2004) and (Sculley, 2009).

Pairwise preferences are inferred from clicks, following Joachims (2002) (cf., §2.3).

For example, assume a query q, in response to which the system returns documents

(d1, d2, d3), in this order. If the user clicks on documents d2 and d3, but not on d1,

we can infer that d2 � d1 and d3 � d1. From these observations, labeled data could be

extracted as (d1, d2,−1) and (d1, d3,−1).
Given a set of labeled document pairs, we apply the stochastic gradient descent

(SGD) algorithm by Zhang (2004, Algorithm 2.1). This algorithm finds an optimal

weight vector ŵ that minimizes the empirical loss L(w,x, y) given a set P of labeled

training samples, each consisting of a feature vector x and a label y:

ŵ = arg min
w





1

|P|

|P|
�

i=1

L(w,xi, yi) +
λ

2
||w||22



 , (2.4)

where the last term is a regularization term. Using the hinge loss, i.e., L(w,x, y) =
max(0, 1− ywTx), the algorithm optimizes the same quantity as RankSVM (Joachims,

2002). It was shown to perform competitively on standard learning to rank data sets in

terms of ranking performance with only a fraction of the training time (Sculley, 2009).

Here, we follow the implementation provided in sofia-ml,9 and apply it to pairwise learn-

ing by setting x = (x1,q − x2,q), where x1,q and x2,q are the feature vectors of two

candidate documents for a query q.

Combining the above method of inferring pairwise feedback and the pairwise learn-

ing method, we obtain our pairwise baseline algorithm (Algorithm 4). It receives as input

a document set D, learning rate η, regularizer weight λ, and an initial weight vector w0.

For each observed query qt, a set of feature vectors φ(di|qt) is extracted that characterize

the relationship between the query and each candidate document di ∈ D. The document

feature vectors are then scored using the weight vector learned so far (wt−1), and sorted

by this score to obtain an exploitative result list (the best ranking given what has been

learned so far).

The constructed exploitative result list is shown to the user, and clicks on any of the

result documents are observed. From the observed clicks c, all possible labeled docu-

ment pairs P are inferred using the pairwise labeling method described above (Joachims,

2002). The labeled samples in P are then used to update the weight vector w. For

each pair, the loss is obtained by comparing the current solution to the observed la-

bel (line 10 in the definition of the hinge loss above). If the labels do not match, or

the prediction margin is too small, the weight vector is updated using the update rule

wt = wt−1 + ηy(x1 − x2) − ηλwt−1. Here, we use the unregularized version of this

update rule (by setting λ = 0) and use a small constant η. This formulation was found

9Provided online at http://code.google.com/p/sofia-ml/.
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2.5. Baseline Online Learning to Rank Approaches

Algorithm 4 Baseline online learning to rank algorithm for the pairwise setting, based

on (Joachims, 2002; Sculley, 2009; Zhang, 2004).

1: Input: D, η, λ, w0

2: for query qt (t = 1..∞) do

3: X = φ(D|qt) // extract features

// generate result list

4: s = wT
t−1X

5: l = sort descending by score(D, s)[1 : 10]
6: Display l and observe clicked elements c.

7: Construct all labeled pairs P = (x1,x2, y) for qt from l and c.

8: for (x1,x2, y) in P do

9: if ywT
t−1(x1 − x2) < 1.0 and y �= 0.0 then

10: wt = wt−1 + ηy(x1 − x2)− ηλwt−1 // update wt

to show good convergence properties (Zhang, 2004) and resulted in good performance in

preliminary experiments.

2.5.2 Dueling Bandit Gradient Descent

Our listwise baseline approach is DBGD, a listwise stochastic gradient descent algorithm

proposed in (Yue and Joachims, 2009). It is based on randomized search of the solution

space, and uses feedback about the relative quality of result lists. The approach was

previously shown to work effectively under smoothness assumptions for this feedback,

and was empirically evaluated with stochastic feedback based on true NDCG differences.

DBGD learns weight vectors as shown in Algorithm 5 (Yue and Joachims, 2009).

Its first input is a comparison function f(l1, l2), which compares two result lists l1 and

l2 using user clicks c (the return value oL ∈ R indicates whether the quality of the

two lists was inferred to be equal (oL = 0), or whether the first (oL < 0) or second

(oL > 0) list was inferred to be better; cf., 2.3.1). A second function, g(δ,w) is provided

to generate candidate rankers. The remaining inputs are the step sizes α10 and δ, and

an initial weight vector w0. An optional parameter θ indicates the maximum amount

of most recent historic interaction data that the algorithm should keep in memory for

possible reuse. This parameter is set to 0 in the baseline version.

The algorithm learns while interacting with search engine users as follows. At any

time, the hypothesized best solution up to that point is maintained as wt. When a query

qt is observed, a new candidate weight vector w�

t is generated using g(·) (line 4). Then,

result lists for qt are generated using both the current best (wt) and the candidate (w�

t)

weight vector (line 5; generate list(·) generates a result list using a weight vector as

shown in lines 4 and 5 of Algorithm 4). The two result lists are compared using f(l1, l2)
(line 6). If w�

t wins the comparison, wt is updated using the update rule wt ← wt+αut

(line 8). Otherwise, wt is not changed. Lines 11–14 of Algorithm 5 shows how historical

10Yue and Joachims (2009) use γ to denote the exploitation step size. We use α to avoid confusion with the

discount factor γ.
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Algorithm 5 Baseline online learning to rank algorithm for the listwise setting, based

on (Yue and Joachims, 2009).

1: Input: f(l1, l2), g(δ,w), α, δ, w0, θ (default: 0)

2: h ← []
3: for query qt (t ← 1..∞) do

4: (w�

t,ut) ← g(δ,wt) // generate candidate ranker

5: l1 = generate list(wt); l2 = generate list(w�

t)
6: (oL, l, a, c) ← f(l1, l2)
7: if oL > 0 then

8: wt+1 ← wt + αut // update current best ranker

9: else

10: wt+1 ← wt

// maintain historical data if needed

11: if θ > 0 then

12: if len(h) = θ then

13: remove(h,h[0])
14: append(h, (l, a, c))

Algorithm 6 generate candidate(·) (baseline method for generating candidate rankers,

to be used as g(δ,w) in Algorithm 5).

1: Input: δ, w

2: Sample unit vector u uniformly.

3: w� ← w + δu

4: return (w�,u)

data is recorded if necessary (if θ > 0, cf., Chapter 7 for learning approaches that reuse

historical data).

In the baseline version of this algorithm, generate candidate(·) is used to generate

candidate weight vectors as follows (Algorithm 6). First, a vector u is generated by

randomly sampling a unit vector. Then, w� is obtained by moving w by a step of size δ

in the direction u. An alternative method of candidate selection using historical data is

presented in §7.1.2.

Central to the performance of DBGD is the choice of a reliable feedback mecha-

nism. The algorithm learns using relative feedback, typically implemented in the form

of an interleaved comparison method (i.e., a method for inferring relative comparisons

between rankers). Previous to this work, DBDG was evaluated in supervised learning

settings only, i.e., its effectiveness using interleaved comparison methods had not been

confirmed. We give an overview of existing interleaved comparison methods in §2.3.1

and develop new ones in 4. Learning with DBGD and different interleaved comparison

methods is empirically investigated in Chapters 6 and 7.
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3
Problem Formulation and Experiments

In this chapter, we formalize online learning to rank for IR as a contextual bandit problem

and detail our experimental setup. The problem formulation is employed in all later

research chapters. The experimental setup is used to evaluate the algorithms presented

in Chapters 4, 6, and 7, using learning to rank data sets and click data. A different

experimental setup, based on observed user interactions with a web search engine, is

used in Chapter 5, and is explained in that chapter.

Below, we first detail our problem formulation (§3.1). We then give an overview of

the experimental setup (§3.2), before turning to the click models (§3.3), data sets (§3.4),

and evaluation measures (§3.5) used.

3.1 Problem Formulation

We formulate the problem of online learning to rank for IR as a continuous cycle of

interactions between users and a search engine, in which the search engine’s goal is to

provide the best possible search results at all times. In contrast to most current formu-

lations in IR, where the search engine passively applies its ranking model, we consider

it an active agent. To optimize its ranker, the search engine can learn from interaction

with its users. A natural fit for this problem are formalizations from RL, in which an

algorithm learns by trying out actions (e.g., document lists) that generate rewards (e.g.,

an evaluation measure such as NDCG) from its environment (e.g., users) (Sutton and

Barto, 1998) (cf. §2.4). Using this formalization allows us to describe this problem in a

principled way and to apply concepts and solutions from this well-studied area.

Figure 3.1 shows the interaction cycle. A user submits a query to a retrieval system,

which generates a document list and presents it to the user. The user interacts with the

list, e.g., by clicking on links, from which the retrieval system infers feedback about

the quality of the presented document list. Based on the inferred feedback, the retrieval

system can improve its ranker to better respond to future queries. This problem formu-

lation directly translates to an RL problem (cf., Figure 3.1, RL terminology in italics) in

which the retrieval system tries, based only on implicit feedback, to maximize a hidden

reward signal that corresponds to some evaluation measure. We make the simplifying

assumption that queries are independent, i.e., queries are independent of each other and
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Figure 3.1: The IR problem modeled as a contextual bandit problem, with IR terminology

in black and corresponding RL terminology in green and italics.

of previously displayed results.1 This renders the problem a contextual bandit problem

(Barto et al., 1981; Langford and Zhang, 2008) (§2.4.1).

Because our algorithms learn online, we need to measure their online performance,

i.e., how well they address users’ information needs while learning. Previous work in

learning to rank for IR has considered only final performance, i.e., performance on un-

seen data after training is completed (Liu, 2009), and, in the case of active learning,

learning speed in terms of the number of required training samples (Xu et al., 2010).

As is common in RL, we measure online performance in terms of cumulative reward,

i.e., the sum of rewards over all queries addressed during learning (Sutton and Barto,

1998). Many definitions of cumulative reward are possible, depending on the modeling

assumptions. We assume an infinite horizon problem, a formulation that is appropriate

for IR learning to rank problems that run indefinitely (§2.4). As shown in Eq. 2.2, we use

a discount factor γ ∈ [0, 1) to weight immediate rewards higher than future rewards.

To summarize, we model online learning to rank for IR as an interaction cycle be-

tween the user and the retrieval system. We assume an infinite horizon setting and use dis-

counting to emphasize immediate reward. This problem formulation differs from those

traditionally used in IR because performance depends on cumulative reward during the

entire learning process, rather than just the quality of the final retrieval system produced

by learning. It also differs from typical contextual bandit problems, which assume that

the agent has access to the true immediate reward resulting from its actions. Typical IR

evaluation measures require explicit feedback, which is not available in most realistic use

cases for online learning to rank. Thus, this contextual bandit problem is distinct in that

it requires the learner to cope with implicit feedback such as click behavior (§2.3).

3.2 Experimental Setup

Evaluating the ability of an algorithm to maximize cumulative performance in an online

IR setting poses unique experimental challenges. The most realistic experimental setup—

in a live setting with actual users—is risky because users may get frustrated with bad

1This formulation corresponds to a setting where each query is submitted by a different user.
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search results. The typical TREC-like setup used in supervised learning to rank for IR is

not sufficient because information on user behavior is missing.

To address these challenges, we propose an evaluation setup that simulates user in-

teractions. This setup combines data sets with explicit relevance judgments that are typi-

cally used for supervised learning to rank with recently developed click models. Given a

data set with queries and explicit relevance judgments, interactions between the retrieval

system and the user are simulated (cf., the box labeled “user/environment” in Figure 3.1).

Submitting a query is simulated by random sampling from the set of queries. After the

system has generated a result list for the query, feedback is generated using a click model

and the relevance judgments provided with the data set. Note that the explicit judgments

from the data set are not directly shown to the retrieval system but are used to simulate

the user feedback and measure cumulative performance.

We use this evaluation setup in two scenarios, the online evaluation scenario and the

online learning to rank scenario. Online evaluation is both a goal in itself and a subprob-

lem of online learning to rank. By itself, it allows the assessment of rankers that were

tuned e.g., manually, or using offline learning to rank, using real search engine traffic. As

a subproblem of online learning to rank, online evaluation provides the mechanism for

inferring feedback for learning.

The online evaluation scenario is investigated in Chapter 4. There, the goal of our

experiments is to assess the efficiency of interleaved comparison methods when com-

paring different rankers, and therefore we measure how much interaction data a method

needs to distinguish two rankers. We investigate the online learning to rank scenario in

Chapters 6 and 7. There, we focus on online performance, i.e., we measure cumulative

reward as described above. The details of each specific experiment are explained in the

respective chapters as needed.

Using simulated evaluations naturally has limitations, but allows us to systematically

investigate online evaluation and online learning to rank methods, without the risks asso-

ciated with experiments involving real users. Here, we can show how learning methods

behave under different assumptions about user behavior, but to what degree these as-

sumptions apply in specific practical settings needs to be studied in more detail, which is

beyond the scope of this thesis. We address one aspect of user behavior, caption bias, in

a study of real-live search engine traffic in Chapter 5.

3.3 Click Models

Our click models are based on the Dependent Click Model (DCM) (Guo et al., 2009a,b),2

a generalization of the cascade model (Craswell et al., 2008), that has been shown to be

effective in explaining users’ click behavior in web search. The model explains position

bias (i.e., the observation that higher-ranked results are much more likely to be clicked

than lower-ranked ones) by positing that users start examining documents at the top of

a result list. For each document they examine, they determine whether the document

representation (e.g., consisting of title, snippet and URL) appears promising enough to

warrant a click (we model this step of deciding to click with a click probability given

2Models that take additional information into account have been shown to more accurately reflect click

behavior (Xu et al., 2012), but these make stronger assumptions, rendering experiments unnecessarily complex.
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some relevance label P (C|R)). After each click, users decide whether they are satisfied

with the information provided in the clicked document(s) and they want to stop examin-

ing further results (with stop probability P (S|R)), or if they want to continue examining

results.

To instantiate this click model we need to define click and stop probabilities. When

the DCM is trained on large click logs, probabilities are estimated for individual query-

document pairs, while marginalizing over the position at which documents were pre-

sented in the training data. In our setting, learning these probabilities directly is not

possible, because no click log data is available. Therefore, we instantiate the model

heuristically, making choices that allow us to study the behavior of our approach in vari-

ous settings. Setting these probabilities heuristically is reasonable because learning out-

comes for the gradient algorithms used in this thesis are influenced mainly by how likely

users are to click on documents of different relevance grades. Thus, the ratio of these

probabilities is more important than the actual numbers used to instantiate the model.

We use several instantiations to cover a broad range of scenarios, from very reliable to

very noisy click behavior.

We define four click models for annotated data sets with up to five relevance levels,

ranging from 0 – “non-relevant” to 4 – “highly relevant”. An overview of the resulting

click models is given in Table 3.1.

click probabilities stop probabilities

relevance grade R 0 1 2 3 4 0 1 2 3 4

perfect 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0

navigational 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9

informational 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

almost random 0.4 0.45 0.5 0.55 0.6 0.5 0.5 0.5 0.5 0.5

Table 3.1: Overview of the click models used in our experiments for data sets with five

relevance grades. For data sets with three relevance grades, only the values for R ∈

{0, 2, 4} are used. For data sets with binary relevance, only the values for the lowest

(R = 0, non-relevant) and highest (R = 4, relevant) relevance grades are used.

First, to obtain an upper bound on the performance that could be obtained if feedback

was very reliable, we define a perfect click model. This model simulates a user who clicks

on all highly relevant documents (R = 4), and never clicks on non-relevant documents

(R = 0). Click probabilities for intermediate relevance levels have a linear decay, except

for a higher increase in click probability between relevance levels 2 and 3 (based on pre-

vious work that showed that grouping “good” documents with non-relevant documents

is more effective than grouping them with relevant documents (Chapelle et al., 2009)).

The stop probability for this click model is zero, meaning that there is no position bias

(simulated users examine all top-10 results).

We also implement two realistic models, the navigational and informational models.

These models are based on typical user behavior in web search (Broder, 2002; Guo et al.,

2009a), because most of the data sets we use implement web search tasks (see below,

§3.4).
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The navigational click model simulates the focus on top-ranked and highly relevant

results that are characteristic of navigational searches (Liu et al., 2006; Rose and Levin-

son, 2004). In a navigational task, users look for a specific document they know to exist

in a collection, e.g., a company’s homepage. Typically, it is easy to distinguish relevant

and non-relevant documents and the probability of stopping examination after visiting

a relevant result is high. Therefore, our navigational model is relatively reliable, with

a strong decay in click probabilities with decreasing relevance. In comparison with the

perfect click model, the navigational model results in fewer clicks on result documents,

with a stronger focus on highly relevant and top-ranked results (i.e., position bias is high).

In an informational task, users look for information about a topic, which can be dis-

tributed over several pages. Here, users generally know less about what page(s) they are

looking for and clicks tend to be noisier. Correspondingly, the informational click model

captures the broader interests characteristic for informational searches (Liu et al., 2006;

Rose and Levinson, 2004). In this model, the click and stop probabilities for lower rele-

vance grades are more similar to those for highly relevant documents, resulting in more

clicks, and more noisy click behavior than the previous models.

As a lower bound on click reliability, we also include an almost random click model,

with only a small linear decay in the click probabilities for different relevance grades.

This model has a strong position bias, with stop probability P (S) = 0.5 for all relevance

grades.

3.4 Data Sets

We conduct our experiments using several standard data sets for learning to rank in IR.

In Chapter 4 we use the MSLR-WEB30k data set, and in Chapters 6 and 7 we use the

data sets contained in the LETOR 3.0 and 4.0 collections. All data sets consist of a

set of query-document pairs, represented by up to 136 ranking features, and relevance

judgments provided by professional annotators.

The MSLR-WEB30k Microsoft learning to rank data set3 is used in our online eval-

uation experiments in Chapter 4. This data set was constructed to provide access to

realistic training data as it is used by search engines, such as Bing. It encodes rela-

tions between queries and candidate documents in 136 precomputed features, including

scores for language modeling, BM25, TF-IDF, and other retrieval models computed on

different document fields (title, anchor, etc.), quality indicators, click-based features,

and PageRank and other link-based features. Relevance judgments were obtained from

professional web-search judges, and are provided on a 5-point scale. Our experiments

use the training set of fold 1. This set contains 18, 919 queries, with an average of 9.6
(judged) candidate documents per query.

The online learning to rank experiments in Chapters 6 and 7 use the LETOR 3.0 and

LETOR 4.0 collections (Liu et al., 2007). In total, these two collections comprise nine

data sets.

The following search tasks are implemented: the data set OHSUMED models a lit-

erature search task, based on a query log of a search engine for the MedLine abstract

3http://research.microsoft.com/en-us/projects/mslr/default.aspx,

retrieved on December 29, 2012.
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database. This data set contains 106 queries that implement an informational search task,

and about 150 judged documents per query. The remaining eight data sets are based on

TREC Web track tasks run between 2003 and 2008. The data sets HP2003, HP2004,

NP2003, and NP2004 implement navigational tasks, homepage finding and named-page

finding. TD2003 and TD2004 implement an informational task: topic distillation. All

six data sets are based on the .GOV document collection, a crawl of the .gov domain,

and contain between 50 and 150 queries and approximately 1000 judged documents per

query. A more recent document collection, .GOV2 formed the basis of MQ2007 and

MQ2008. These data sets contain 1700 and 800 queries respectively, but far fewer judged

documents per query than the other LETOR data sets (approximately 40 and 20).

The data sets OHSUMED, MQ2007 and MQ2008 are annotated with graded rele-

vance judgments (3 grades, from 0, not relevant, to 2, highly relevant), while the re-

maining LETOR data sets are labeled using binary assessments. Each data set comes

split up for supervised learning to rank experiments using 5-fold cross-validation. We

use the training sets for training during the learning cycle and for calculating online per-

formance, and the test sets for measuring final performance. This setup replicates the

standard established for the supervised learning setting as much as possible.

3.5 Evaluation Measures

Our assessment of online evaluation and online learning to rank methods is based on

NDCG, as defined in Eq. 2.1. For our online evaluation experiments (Chapters 4 and 5),

we compare the outcomes of interleaved comparison methods to the true NDCG differ-

ence between rankers, following previous work (Radlinski and Craswell, 2010).

To measure online performance in online learning to rank experiments (Chapters 6

and 7), we instantiate reward as the NDCG of the (interleaved) result lists presented to

the user. We then define online performance as the discounted sum of NDCG that the

retrieval system accrues throughout the length of the experiment, as shown in Eq. 2.2.

Because our problem formulation assumes an infinite horizon, online performance is

defined as an infinite sum of discounted rewards (cf. §3.2). Since experiments are neces-

sarily finite, we cannot compute this infinite sum exactly. However, because the sum is

discounted, rewards in the far future have little impact and cumulative performance can

be approximated with a sufficiently long finite experiment.

In our experiments, we set the discount factor γ = 0.995. This choice can be justified

in two ways. First, it is typical of discount factors used when evaluating RL methods

(Sutton and Barto, 1998). Choosing a value close to 1 ensures that future rewards have

significant weight and thus the system must explore in order to perform well. Second, at

this value of γ, cumulative performance can be accurately estimated with the number of

queries in our data sets. Using this discount factor, rewards after 1,000 iterations have a

weight of 1% or less. Therefore, finite runs over 1,000 are good approximations of true

cumulative performance.

While our main metric is online performance, we additionally report final perfor-

mance (after learning) for analysis. We measure final performance as the NDCG on the

held-out test set.

We test for statistically significant differences between baseline and experiment runs
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using a two-sided student’s t-test. Unless noted otherwise, we consider differences be-

tween runs statistically significant if the obtained p-value is less than 0.05. In tables,

we mark significant increases using � (p < 0.05) or � (p < 0.01) and significant de-

creases using � (p < 0.05) or � (p < 0.01). Additionally, best results per table row are

highlighted in bold when applicable.

When results are reported in graphs, we provide 95% confidence intervals. We de-

termine whether differences are statistically significant based on the overlap between

confidence intervals.
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4
Probabilistic Interleaving

Having formulated online learning to rank for IR as a contextual bandit problem (§3.1),

we now turn to one component of this problem, namely how to infer reliable feedback

from user clicks. In contrast to supervised learning approaches, an online learner is

not provided with an appropriate set of training data, but has to elicit feedback useful

for learning by interacting with the user. Because previous work found that relative

interpretations of user actions are most reliable, we focus on such interpretations, in

particular interleaved comparison methods (§ 2.3.1). These methods were found to be

able to accurately compare the quality of competing rankers using click data, and are

applicable beyond online learning to rank, to ranker evaluation in general.

This chapter addresses our research questions RQ 1-RQ 7, as specified in §1.1. We

propose a framework for analyzing interleaved comparison methods, and a new set of in-

terleaved comparison methods based on a probabilistic interpretation of the interleaving

process.

First, we focus on the theoretical foundations of interleaved comparison methods,

and address the following question:

RQ 1 What criteria should an interleaved comparison method satisfy to enable reliable

online learning to rank for IR?

We propose to characterize these methods in terms of fidelity, soundness, and efficiency.

An interleaved comparison method has fidelity if it measures the right quantity, i.e., if the

outcome of each ranker comparison is defined such that the expected outcome properly

corresponds to the true relevance of the ranked documents. It is sound if the estimates

it computes of that expected outcome have two desirable statistical properties: namely

they are unbiased and consistent. It is efficient if the accuracy of those estimates improves

quickly as more comparisons are added.

We use the proposed framework to analyze the existing interleaved comparison meth-

ods: BI (Joachims, 2003), TD (Radlinski et al., 2008b), and DC (He et al., 2009):

RQ 2 Do current interleaved comparison methods satisfy these criteria?

We find that, although sound, none of these methods meet our criteria for fidelity. To

overcome this limitation, we propose a new interleaved comparison method, probabilis-

tic interleave (PI). PI is based on a probabilistic interpretation of the interleaving pro-

cess, which enables it to compute comparison outcomes that are weighted by the rank
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differences of clicked documents. PI in its most naive form can be inefficient, because

the probabilistic approach can introduce more noise than existing interleaving methods.

Therefore, we derive an extension to PI that exploits the insight that probability distri-

butions are known for some of the variables in the graphical model that describes its

interleaving process. This allows us to derive a variant of PI, PI-MA, whose estimator

marginalizes out these known variables, instead of relying on noisy samples of them.

Regarding these new methods, we address the following questions:

RQ 3 Do PI and its extension PI-MA exhibit fidelity and soundness?

RQ 4 Is PI-MA more efficient than previous interleaved comparison methods? Is it

more efficient than PI?

We prove that both PI and PI-MA have fidelity and are statistically sound, and we empir-

ically show that PI-MA is more efficient than previous interleaved comparison methods

and PI.

We also derive a second extension to PI that broadens the applicability of interleaved

comparison methods by enabling them to reuse previously observed, historical, interac-

tion data. Current interleaved comparison methods are limited to settings with access to

live data, i.e., where data is gathered during the evaluation itself. Without the ability to

estimate comparison outcomes using historical data, the practical utility of interleaved

comparison methods is limited. If all comparisons are done with live data, then appli-

cations such as learning to rank, which perform many comparisons, need prohibitive

amounts of data (cf., Chapter 7). Since interleaving result lists may affect the users’

experience of a search engine, collecting live data is complicated by the need to first

control the quality of the compared rankers using alternative evaluation setups. Unlike

existing methods, the probabilistic nature of PI enables the use of importance sampling

to properly incorporate historical data.

RQ 5 Can historical data be reused to compare new ranker pairs?

RQ 6 Does PI-MA-IS maintain fidelity and soundness?

RQ 7 Can PI-MA-IS reuse historical data effectively?

We prove that PI-MA-IS preserves fidelity and soundness, and empirically show that it

can effectively use historical data for new ranker comparisons.

The remainder of this chapter is organized as follows. We detail our criteria for

analyzing interleaved comparison methods and analyze existing methods in §4.1. In

§4.2, we detail our proposed method, PI, and the two extensions PI-MA and PI-MA-IS.

Our experiments for investigating the efficiency of the existing and proposed interleaved

comparison methods are presented in §4.3. We detail and discuss our results in §4.4 and

conclude in §4.5.

4.1 Analysis

We analyze interleaved comparison methods using a probabilistic framework, and three

criteria – fidelity, soundness, and efficiency – that are formulated on the basis of this

framework. In this section, we first introduce our probabilistic framework and show how
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it relates to existing interleaved comparison methods (§4.1.1). Next, we formally define

our criteria for analyzing interleaved comparison methods (§4.1.2). Finally, we use these

criteria to analyze the existing interleaved comparison methods (§4.1.3–§4.1.5). The

interleaved comparison methods analyzed in this section (BI, TD, and DC) have been

reviewed in §2.3.1.

4.1.1 Framework

The framework we propose in this section is designed for the systematic assessment of

interleaved comparison methods. In our framework, interleaved comparison methods

are described probabilistically using graphical models, as shown in Figure 4.1. These

models specify how a retrieval system interacts with its users and how observations from

such interactions are used to compare rankers. Generally, an interleaved comparison

method is completely specified by the components shown in gray, in the “system” part

of the model. Figure 4.1(a) shows one variant of the model, used for BI and DC, and

Figure 4.1(b) shows another, used for TD and PI (PI is introduced in §4.2 below).

Q

C

user system

L

O

(a) Graphical model for BI and DC

Q A

C

user system

L

O

(b) Graphical model for TD and PI

Figure 4.1: Probabilistic model for comparing rankers (a) using BI and DC, and (b) using

TD and PI. Conditional probability tables are known only for the variables in gray.

Both variants include the four random variables Q, L, C, and O. The interaction

begins when the user submits a query q ∼ P (Q) to the system. We assume that P (Q),
though unknown to the system, is static and independent of its actions. Based on q,

a result list l ∼ P (L) is generated and presented to the user. Because we deal with

interleaving methods, we assume that l is an interleaved list that combines documents

obtained from the two rankers l1(q) and l2(q). Thus, given q, an interleaving method

completely defines P (L) (e.g., Algorithm 1, lines 1–12). The interleaved list l is returned

to the user, who examines it and clicks on documents that may be relevant for the given

q, resulting in an observation c ∼ P (C) that is returned to the system. The system then

uses c, and possibly additional information, to infer a comparison outcome o ∼ P (O).
O, which is specified by the comparison step of the method (e.g., Algorithm 1, lines 13–

15), is a deterministic function of the other variables but is modeled as a random variable

to simplify our analysis.

The optional components defined in the model are the dependencies of O on Q and

L for BI and DC (cf., Figure 4.1(a)), and the assignments A for TD and PI (cf., Fig-

ure 4.1(b)). As shown in Algorithms 1 (page 20) and 3 (page 22), BI and DC compute
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4. Probabilistic Interleaving

outcomes using the observed c, l, and q (specifically, the l1 and l2 generated for that q).

In contrast, the comparison function of TD (and of PI, as we will see in §4.2) does not

require l and q, but rather uses assignments a ∼ P (A) that indicate to which original

ranking function the documents in l are assigned (cf., Algorithm 2 on page 21).

The random variables in the model have the following sample spaces. For Q, it is the

(possibly infinite) universe of queries, e.g., q = ‘facebook’. For L it is all permutations of

documents, e.g., l = [d1, d2, d3, d4]. For C it is all possible click vectors, such that c[i] is

a binary value that indicates whether the document l[i] was clicked, e.g., c = [1, 0, 0, 0].
For A it is all possible assignment vectors, such that a[i] is a binary value that indicates

which ranker contributed l[i] , e.g., a = [1, 2, 1, 2].

Within this framework, we are particularly interested in the sign of the expected out-

come E[O]. However, E[O] cannot be determined directly because it depends on the

unknown Q and C. Instead, it is estimated from sample data, using an estimator Ê[O].
The sign of Ê[O] is then interpreted as follows. An Ê[O] < 0 corresponds to inferring a

preference for ranker l1, Ê[O] = 0 is interpreted as a tie, and Ê[O] > 0 is interpreted as

a preference for ranker l2.

The simplest estimator of an expected value is the mean computed from a sample

of i.i.d. observations of that value. Thus, the expected outcome can be estimated by the

mean of n observed outcomes oi:

Ê[O] =
1

n

n
�

i=0

oi. (4.1)

Previous work did not formulate estimated interleaved comparison outcomes in terms of

a probabilistic framework as done here. We show below that a commonly used previous

estimator is equivalent to the sample mean. Chapelle et al. (2012) formulate the following

estimator:

Êwins =
wins(l2) +

1
2 ties(l1,2)

wins(l2) + wins(l1) + ties(l1,2)
− 0.5. (4.2)

Here, wins(li) denotes the number of samples for which li won the comparison, and

ties(·) denotes the number of samples for which the two competing rankers tied. The

following theorem states that this estimator is equal to the rescaled sampled mean.

Theorem 4.1.1. The estimator in Eq. 4.2 is equal to two times the sample mean (Eq. 4.1).

Proof. See Appendix 4.A.

Clearly, this theorem implies that Eq. 4.2 always has the same sign as the sample mean,

and thus the same preferences will be inferred.

Alternative estimators have been proposed and investigated in (Chapelle et al., 2012;

Radlinski and Craswell, 2010; Yue et al., 2010a). Typically, these alternatives are de-

signed to converge faster at the expense of obtaining biased estimates. This introduces a

bias-variance trade-off. A formal analysis of these is beyond the scope of this thesis.
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4.1. Analysis

4.1.2 Definitions of Fidelity, Soundness, and Efficiency

Based on the probabilistic framework introduced in the previous subsection, we define

our criteria for analyzing interleaved comparison methods: fidelity, soundness, and effi-

ciency. These criteria reflect what interleaved comparison outcomes measure, whether an

estimator of that outcome is statistically sound, and how efficiently it uses data samples.

These assessment criteria are not intended to be complete, but are considered minimal

requirements. Nevertheless, they enable a more systematic analysis of interleaved com-

parison methods than was previously attempted.

Our first criterion, fidelity, concerns whether an interleaved comparison method mea-

sures the right quantity, i.e., if E[O|q] properly corresponds to the true quality difference

between l1 and l2 in terms of how they rank relevant documents for a given q. Our

definition uses the following concepts:

• random clicks indicates that, for a given query, clicks are uniformly random, i.e.,

all documents at all ranks are equally likely to be clicked:

random clicks(q) ⇔ ∀di,j ∈ l, P (c[r(di, l)]|q) = P (c[r(dj , l)]|q),

where P (c[r(di, l)]|q) is the probability of a click at the rank r at which document

di is displayed in result list l.

• correlated clicks(q) indicates positive correlation between clicks and document

relevance:

correlated clicks(q) ⇔

∀r ∈ ranks(l), P (c[r]|rel(l[r], q)) > P (c[r]|¬rel(l[r], q)),

where rel(l[r], q) indicates that the document at rank r of list l is relevant to q,

and P (c[r]|rel(l[r], q)) is the probability of a click on the document at r, given

that it is relevant. This means that, for a given query and at equal ranks, a relevant

document is more likely to be clicked than a non-relevant one.

• pareto dominates indicates that ranker l1 Pareto dominates l2 for query q:

pareto dominates(l1, l2, q) ⇔ ∀d ∈ rel(l1 ∪ l2, q), r(d, l1) ≥ r(d, l2)

∧ ∃d ∈ rel(l1 ∪ l2, q), r(d, l1) > r(d, l2),

where rel(l1 ∪ l2, q) denotes the set of documents in l1 and l2 that are relevant

to q. Thus, one ranker Pareto dominates another in terms of how it ranks relevant

documents if and only if it ranks all relevant documents at least as high as, and at

least one relevant document higher than, the other ranker.

Definition 4.1.2 (Fidelity). An interleaved comparison method exhibits fidelity if,

1. under random clicks, the rankers tie in expectation over clicks, i.e.,

∀q(random clicks(q) ⇒ E[O|q] = 0),
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4. Probabilistic Interleaving

2. under correlated clicks, ranker l2 is preferred if it Pareto dominates l1:

∀q(pareto dominates(l2, l1, q) ⇒ E[O|q] > 0).

We formulate fidelity in terms of the expected outcome for a given q because, in

practice, a ranking function can be preferred for some queries and not for others. We

consider the expectation over some population of queries in our definition of soundness

below. In addition, we formulate condition (2) in terms of detecting a preference for

l2. This is without loss of generality, as switching l1 and l2 results in a sign change of

E[O|q].

The first condition of our definition of fidelity has been previously proposed in (Radlin-

ski et al., 2008b) and (Chapelle et al., 2012), and was used to analyze BI. A method

that violates (1) is problematic because noise in click feedback can affect the outcome

inferred by such a method. However, this condition is not sufficient for assessing inter-

leaved comparison methods because a method that picks a preferred ranker at random

would satisfy it, but cannot effectively infer preferences between rankers.

We add the second condition to require that an interleaved comparison method prefers

a ranker that ranks relevant documents higher than its competitor. A method that violates

(2) is problematic because it may fail to detect quality differences between rankers. This

condition includes the assumption that clicks are positively correlated with relevance and

rank. This assumption, which is implicit in previous definitions of interleaved compari-

son methods, is a minimal requirement for using clicks for evaluation.

Our definition of fidelity is stated in terms of binary relevance, as opposed to graded

relevance, because requirements about how ranks of documents with different relevance

grades should be weighted depend on the context in which an IR system is used (e.g.,

is a ranking with one highly relevant document better than one with three moderately

relevant documents?). In addition, our definition imposes no preferences on rankings for

which none dominates the other (e.g., one ranking placed relevant documents at ranks

1 and 7, the other places the same documents at ranks 3 and 4 — which is better again

depends on the search setting). Because it is based on Pareto dominance, the second

condition of our definition imposes only a partial ordering on ranked lists. This partial

ordering is stronger than the requirements posed in previous work, with a minimal set of

additional assumptions. Note that in past and present experimental evaluations, stronger

assumptions are implicitly made, e.g., by using NDCG as a performance measure.

In contrast to fidelity, which focuses on outcomes for individual observations, our

second criterion focuses on the characteristics of interleaved comparison methods when

estimating comparison outcomes from sample data (of size n). Soundness concerns

whether an interleaved comparison method’s estimates of E[O] are statistically sound.

Definition 4.1.3 (Soundness). An interleaved comparison method exhibits soundness for

a given definition of O if its corresponding Ê[O], computed from sample data, is an

unbiased and consistent estimator of E[O].

An estimator is unbiased if its expected value is equal to E[O] (Halmos, 1946). It is

consistent if it converges with probability 1 to E[O] in the limit as n → ∞ (Lehmann,

1999). A simple example of an unbiased and consistent estimator of the expected value
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of a random variable X , distributed according to some distribution P (X), is the mean of

samples drawn i.i.d. from P (X).

Soundness has not been explicitly addressed in previous work on interleaved com-

parison methods. However, as shown above (§4.1.1, Theorem 4.1.1) a typical estimator

proposed in previous work can be reduced to the sample mean, which is trivially sound.

Soundness is more difficult to establish for some variants of our PI method introduced in

§4.2, because they ignore parts of observed samples, marginalizing over known parts of

the distribution in order to reduce variance. We prove in §4.2 that these variants preserve

soundness.

Note that methods can perform well in practice in many cases even if they are biased,

because there usually is a trade-off between bias and variance. However, all else being

equal, an unbiased estimator provides more accurate estimates.

The third criterion, efficiency, concerns the amount of sample data a method requires

to make reliable preference decisions.

Definition 4.1.4 (Efficiency). Let Ê1[O], Ê2[O] be two estimators of expected inter-

leaved comparison outcomes E[O]. Ê1[O] is a more efficient estimator of E[O] than

Ê2[O] if Ê1[O] Pareto dominates Ê2[O] in terms of accuracy for a given sample size,

i.e., Ê1[O] is more efficient than Ê2[O] if and only if

∀n(P (sign(Ên
1 [O]) = sign(E[O])) ≥ P (sign(Ên

2 [O]) = sign(E[O])))

∧ ∃n(P (sign(Ên
1 [O]) = sign(E[O])) > P (sign(Ên

2 [O]) = sign(E[O]))),

where Ên
i [O] is the outcome estimated by Êi given sample data of size n.

Some interleaving methods may be more efficient than others in specific scenarios

(e.g., known-item search (He et al., 2009)). However, more generally, efficiency is af-

fected by the variance of comparison outcomes under a comparison method, and trends

in efficiency can be observed when applying these methods to a large number of ranker

comparisons. Here, we assess the efficiency of interleaved comparison methods experi-

mentally, on a large number of ranker comparisons under various conditions (e.g., noise

in user feedback) in §4.4.

Efficiency (also called cost by He et al. (2009)), has been previously proposed as

an assessment criterion, and has been investigated experimentally on synthetic data (He

et al., 2009) and on large-scale comparisons of individual ranker pairs in real-life web

search traffic (Chapelle et al., 2012).

In addition to improving efficiency by reducing variance, subsequent interleaved

comparisons can be made more efficient by reusing historical data. For methods that

do not reuse historical data, the required amount of live data is necessarily linear in the

number of ranker pairs to be compared. A key result of this chapter is that this require-

ment can be made sub-linear by reusing historical data. In the rest of this section, we

include an analysis in terms of whether historical data reuse and the resulting increase in

efficiency is possible for existing methods.

Below, we analyze the fidelity, soundness, efficiency, and possibility of data reuse of

the existing interleaved comparison methods, BI (§4.1.3), TD (§4.1.4), and DC (§4.1.5).
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4.1.3 Balanced Interleave

Fidelity. BI was previously analyzed by Radlinski et al. (2008b) and Chapelle et al.

(2012). The method was shown to violate requirement (1) of fidelity. Here, we extend

this argument, and provide example cases in which this violation of requirement (1) is

particularly problematic. The identified problem is illustrated in Figure 4.2. Given l1 and

l2 as shown, two interleaved lists can result from interleaving. The first is identical to l1,

the second switches documents d1 and d2. Consider a user that randomly clicks on one

of the result documents, so that each document is equally likely to be clicked. Because

d1 is ranked higher by l1 than by l2, l1 wins the comparison for clicks on d1. However, l2
wins in all other cases, which means that it wins in expectation over possible interleaved

lists and clicks. This argument can easily be extended to all possible click configurations

using truth tables.

BI violates condition (1) of fidelity when, between the compared rankers, individ-

ual documents are moved up or down by more than one rank. In practice, it is possi-

ble that the direction of such ranking changes can be approximately balanced between

rankers when a large number of queries are considered. However, this is unlikely in

settings where the compared lists are systematically similar to each other. For example,

re-ranking approaches such as (Xue et al., 2004) combine two or more ranking features.

Imagine two instances of such an algorithm, where one places a slightly higher weight on

one of the features than the other instance. The two rankings will be similar, except for

individual documents with specific feature values, which will be boosted to higher ranks.

If users were to only click a single document, the new ranker would win BI comparisons

for clicks on all boosted documents (as it ranks them higher), and lose for clicks on all

other documents below the first boosted document (as these are in the original order and

necessarily ranked lower by the new ranker). Thus, under random clicks, the direction of

preference would be determined solely by the number and absolute rank differences of

boosted documents. A similar effect (in the opposite direction) would be observed for al-

gorithms that remove or demote documents, e.g., in (near-)duplicate detection (Radlinski

et al., 2011).

In addition, BI violates condition (2) of fidelity when more than one document is

relevant. The reason is that only the lowest-ranked clicked document (k) is taken into

account when calculating click score differences. If for both original lists the lowest-

ranked clicked document has the same rank, the comparison results in a tie, even if large

ranking differences exist for higher-ranked documents. Condition (2) is not violated

when only one relevant document is present.

Soundness. Soundness of BI has not been explicitly investigated in previous work. How-

ever, as shown in §4.1.1, it is trivially sound because its estimator reduces to the sample

mean.

Efficiency. The efficiency of BI was found to be sufficient for practical applications

in (Chapelle et al., 2012). For example, several thousand impressions were required for

detecting ranker changes that are typical for incremental improvements at commercial

search engines with high confidence.

Data Reuse. Reusing historical data to compare new target rankers using BI is possible

in principle. Given historical result lists and clicks, and a new pair of target rankers,
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Figure 4.2: Interleaving (1) and comparison with BI using live data (2) and historical

data (3).

comparison outcomes can be computed as under live data, following Algorithm 1, lines

13–17. This means that observed clicks would be projected onto the new target lists

to determine k, the rank at which the lowest click would occur for the target rankers.

Then, the number of clicks on the topk results can be counted for the target rankers as

if they had been used in a live comparison. However, such straightforward data reuse

would severely bias the inferred comparison outcomes. In particular, the target ranker

that is more similar to those under which the historical data was originally collected

will be likely to be preferred when data is reused. It is not clear whether and how the

differences between observed interleaved lists and “correct” interleaved lists for the new

target rankers could be compensated for.

4.1.4 Team Draft

Fidelity. TD was designed to address fidelity requirement (1) (Radlinski et al., 2008b).

This is achieved by using assignments as described in §2.3.1. That the requirement is

fulfilled can be seen as follows. Each ranker is assigned the same number of documents in

the interleaved result list in expectation (by design of the interleaving process). Rankers

get credit for clicks if and only if they are assigned to them. Thus, if clicks are randomly

distributed, each ranker is credited with the same number of clicks in expectation.

However, TD violates fidelity requirement (2) when the original lists are similar

to each other. Figure 4.3 illustrates such a case. Consider the original lists l1 and

l2. Also, assume that d3 is the only relevant document, and is therefore more likely

to be clicked than other documents. We can see that l2 ranks d3 higher than l1 (i.e.,

pareto dominates(l2, l1, q) = true; cf. §4.1.2), and therefore l2 should win the com-

parison. When TD is applied, four possible interleaved lists can be generated, as shown

in the figure. All these possible interleaved lists place document d3 at the same rank. In

two interleaved lists, d3 is contributed by l1, and in two cases it is contributed by l2. Thus,

in expectation, both lists obtain the same number of clicks for this document, yielding a

tie. In the example shown, the lists would also tie if d4 was the only relevant document,

while in cases where only d2 is relevant, a preference for l2 would be detected.

In practice, TD’s violation of requirement (2) can result in insensitivity to small rank-

ing changes. As shown above, some changes by one rank may result in a difference being

detected while others are not detected. This is expected to be problematic in cases where

a new ranking-function affects a large number of queries by a small amount, i.e., doc-
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Figure 4.3: Interleaving (1) and comparison with team draft using live data (2) and his-

torical data (3).

uments are moved up or down by one rank, as only some of these changes would be

detected. In addition, it can result in a loss of efficiency, because, when some ranking

differences are not detected, more data is required to reliably detect differences between

rankers.

Soundness. As with BI, the soundness of TD has not been analyzed in practice. However,

as above, typical estimators produce estimates that can easily be rescaled to the sample

mean, which is consistent and unbiased (cf., Theorem 4.1.1). Building on TD, methods

that take additional sources of information into account have been proposed to increase

the efficiency of interleaved comparisons (Chapelle et al., 2012; Yue et al., 2010a). The

resulting increase in efficiency may come at the expense of soundness. A detailed analy-

sis of these extensions is beyond the scope of this thesis.

Efficiency. As with BI, the efficiency of TD was found to be sufficient for practical appli-

cations in web and literature search (Chapelle et al., 2012). The amount of sample data

required was within the same order of magnitude as for BI, with TD requiring slightly

fewer samples in some cases and vice versa in others. In an analysis based on synthetic

data, TD was found to be less efficient than BI on a simulated known-item search task

(i.e., searches with only one relevant document) (He et al., 2009). This result is likely

due to TD’s lack of sensitivity under small ranking changes.

Data Reuse. Reusing historical data under TD is difficult due to the use of assignments.

One option is to use only observed interleaved lists that could have been constructed

under the target rankers for the historical query. If the observed interleaved lists can be

generated with the target rankers, the assignment under which this would be possible can

be used to compute comparison outcomes. If several assignments are possible, one can

be selected at random, or outcomes for all possible assignments can be averaged. An

example is shown in Figure 4.3. Given the observed interleaved lists shown in step (2),

and two target rankers lT1 and lT2, the observed document rankings (b) and (c) could

be reused, as they are identical to lists that can be produced under the target rankers.

However, this approach is extremely inefficient. If we were to obtain historical data under

a ranker that presents uniformly random permutations of candidate documents to users,

of the d! possible orderings of d documents that could be observed, only an expected 2
d
2

could actually be used for a particular pair of target rankers. Even for a shallow pool

of 10 candidate documents per query, these figures differ by five orders of magnitude.
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1) Interleaving 2) Comparison

d1
d2
d3
d4

List l1
d3
d2
d4
d1

List l2

d1         
d3        
d2        
d4        

d3        
d1        
d2        
d4        

xd1       

d4       

inferred constraints
violated by:   l1  l2
d1 ≻ d2      -  x

d3 ≻ d2      x  -

x

x x

l2 wins comparison (a), and loses the one on (b). 

In expectation l2 wins.

inferred constraints
violated by:   l1  l2
d3 ≻ d2      x  -

d1 ≻ d2      -  x

Two possible interleaved lists l:

d3        
d2        
d4        

d3        
d1        
d2        

3) Comparison with hIstorical data

d1
d4
d3
d2

d1
d2
d3
d4

inferred constraints (same for both historical lists)
violated by:   l1  l2
d1 ≻ d2      -  -

d3 ≻ d2      x  -

l2 wins both comparisons using historical data.

Target list lT1 Target list lT2a) b)

Figure 4.4: Interleaving (1) and comparison with document constraints using live data

(2) and historical data (3).

In typical settings, where candidate pools can be large, a prohibitively large amount of

data would have to be collected and only a tiny fraction of it could be reused. Thus, the

effectiveness of applying TD to historical data depends on the similarity of the document

lists under the original and target rankers, but is generally expected to be very low.

Even in cases where data reuse is possible because ranker pairs are similar, TD may

violate requirement (2) of fidelity under historical data. An example that is analogous

to that under live data is shown in Figure 4.3. Here, the lists would tie in the case that

document d3 is relevant, even though lT2 Pareto dominates lT1. In addition, reusing

historical data under TD affects soundness because only some of the interleaved lists

that are possible under the target rankers may be found in observed historical data. For

example, in Figure 4.3, only interleaved lists that place d2 at the top rank match the

observed data and not all possible assignments can be observed. In this example, clicks

on d2 would result in wins for lT2, although the target lists place this document at the

same rank. This problem can be considered a form of sampling bias, but it is not clear

how it can be corrected for.

4.1.5 Document Constraints

Fidelity. DC has not been previously analyzed in terms of fidelity. We find that DC

violates both requirements (1) and (2). An example is provided in Figure 4.4. The

original lists l1 and l2, and the possible interleaved lists are shown. In the example,

l2 wins in expectation, because it is less similar to the possible interleaved lists and

can therefore violate fewer constraints inferred from clicks on these lists. For example,

consider the possible constraints that d1 (ranked higher by l1) and d4 (ranked higher

by l2) can be involved in. Clicks on the possible interleaved lists could result in 14

constraints that prefer other documents over d4, but in 24 constraints that prefer other

documents over d1. As a result, l1 violates more constraints in expectation, and l2 wins

the comparison in expectation under random clicks.

The example above also violates requirement (2). Consider two relevant documents,

d1 and d3 are clicked by the user. In this case, l1 should win the comparison as it Pareto

dominates l2. However, for the interleaved lists generated for this case, each original list

violates exactly one constraint, which results in a tie. The reason for the violation of both

requirements of fidelity is that the number of requirements each list and each document

is involved in is not controlled for. It is not clear whether and how controlling for the
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4. Probabilistic Interleaving

number of constraints is possible when making comparisons using DC.

Soundness. As with BI and TD, soundness of the DC estimator can be easily established,

as it is based on the sample mean (Theorem 4.1.1).

Efficiency. The efficiency of DC was previously studied on synthetic data (He et al.,

2009). On the investigated cases (known-item search, easy and hard high-recall tasks

with perfect click feedback), DC was demonstrated to be more efficient than BC and TD.

DC has not been evaluated in a real live application.

Data Reuse. Finally, we consider applying DC to historical data. Doing this is in prin-

ciple possible, because constraints inferred from previously observed lists can easily be

compared to new target rankers. However, the fidelity of outcomes cannot be guaranteed

(as under live data). An example is shown in part (3) of Figure 4.4. Two new target lists

are compared using the historical data collected in earlier comparisons. Again, two docu-

ments are relevant, d1 and d3. The target lists place these relevant documents at the same

ranks. However, l1 violates more constraints inferred from the historical data than l2, so

that a preference for l2 is detected using either historical observation. As with live data,

the number of constraints that can be violated by each original list is not controlled for.

Depending on how the historical result list was constructed, this can lead to outcomes

that are biased similarly or more strongly than under live data.

4.2 Probabilistic Interleave Methods

In this section, we present a new interleaved comparison method called probabilistic in-

terleave (PI). We first give an overview of the interleaving algorithm and provide a naive

estimator of comparison outcomes (§4.2.1). We show that this approach exhibits fidelity

and soundness, but that its efficiency is expected to be low. Then, we introduce two

extensions of PI, that increase efficiency while maintaining fidelity and soundness. The

first extension, PI-MA, is based on marginalizing over possible comparison outcomes for

observed samples (§4.2.2). The second extension, PI-MA-IS, shows how historical data

can be reused to further increase efficiency (§4.2.3).

4.2.1 Probabilistic Interleave

We propose a probabilistic form of interleaving in which the interleaved document list

l is constructed, not from fixed lists l1 and l2 for a given query q, but from softmax

functions s(l1) and s(l2) that transform fixed result lists into probability distributions

over documents. The use of softmax functions is key to our approach, as it ensures that

every document has a non-zero probability of being selected by each ranker and for each

rank of the interleaved result list. As a result, the distribution of credit accumulated

for clicks is smoothed, based on the relative rank of the document in the original result

lists. If both rankers place a given document at the same rank, then the corresponding

softmax functions have the same probability of selecting it and thus they accumulate

the same number of clicks in expectation. More importantly, rankers that put a given

document at similar ranks receive similar credit in expectation. The difference between

these expectations reflects the magnitude of the difference between the two rankings. In
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4.2. Probabilistic Interleave Methods

Algorithm 7 Probabilistic Interleave.

1: Input: l1, l2, τ

2: l ← []
3: a ← []
4: for i ∈ (1, 2) do

5: initialize s(li) using Eq. 4.3

6: while (∃r : l1[r] �∈ l) ∨ (∃r : l2[r] �∈ l) do

7: a ← 1 if random bit() else 2
8: ā ← 2 if a = 1 else 1
9: append(a, a)

10: dnext ← sample without replacement(s(la))
11: append(l, dnext)
12: remove and renormalize(s(lā), dnext)

// present l to user and observe clicks c

13: compute o, e.g., using Eqs. 4.5–4.8

14: return (o, (l, a, c))

this way, the method becomes sensitive to even small differences between rankings and

can accurately estimate the magnitude of such differences.

The softmax functions s(l1) and s(l2) for given ranked lists l1 and l2 are generated by

applying a monotonically decreasing function over document ranks, so that documents

at higher ranks are assigned higher probabilities. Many softmax functions are possible,

including the sigmoid or normalized exponential functions typically used in neural net-

works and RL (Lippmann, 2002; Sutton and Barto, 1998). Here, we use a function in

which the probability of selecting a document is inversely proportional to a power of the

rank ri(d) of a document d in list li:

s(li) := Pi(d) =

1
ri(d)τ

�

d�∈D
1

ri(d�)τ

, (4.3)

where D is the set of all ranked documents, including d. The denominator is a normaliz-

ing constant that ensures that the probabilities sum to 1. Because this softmax function

has a steep decay at top ranks, it is suitable for an IR setting in which correctly ranking the

top documents is the most important. It also has a slow decay at lower ranks, preventing

underflow in calculations. The parameter τ controls how quickly selection probabilities

decay as rank decreases, similar to the Boltzmann temperature in the normalized expo-

nential function (Sutton and Barto, 1998). In relation to traditional IR metrics, τ can be

interpreted as a discount factor that controls the focus on top ranked documents, similarly

to, e.g., the rank discount in NDCG (Järvelin and Kekäläinen, 2002). In our experiments

(§4.3), we use a default of τ = 3 and explore possible choices of τ and their relation to

traditional evaluation metrics.

After constructing s(l1) and s(l2), l is generated similarly to TD (cf., Algorithm 7).

However, instead of randomizing the ranker to contribute the next document per pair,

one of the softmax functions is randomly selected at each rank (line 7). Doing so is
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4. Probabilistic Interleaving

mathematically convenient, as the only component that changes at each rank is the distri-

bution over documents. More importantly, this change ensures fidelity, as will be shown

shortly. During interleaving, the system records which softmax function was selected to

contribute the next document in assignment a (line 9). Then, a document is randomly

sampled without replacement from the selected softmax function (line 10) and added to

the interleaved list (line 11). The document is also removed from the non-sampled soft-

max function, and this softmax function is renormalized (line 12). This process repeats

until l has the desired length.

The interleaved result list is then shown to the user in response to the query and user

clicks c are observed, where each entry in c indicates whether the corresponding docu-

ment in l has been clicked. The observed clicks are used by the second step, comparison.

Comparison outcomes can be computed as under TD, i.e., by counting the clicks c1 and

c2 assigned to each softmax function and returning o = (−1 if c1 > c2 else 1 if c1 < c2
else 0). An alternative method for computing comparison outcomes more efficiently is

developed in §4.2.2. Finally, the algorithm returns both the computed outcome, and, in

case the observed sample is to be reused as historical data, the generated (l, a, c).

PI exhibits fidelity for the following reasons. To verify condition (1), consider that

each softmax function is assigned the same number of documents to each rank in expec-

tation (by design of the interleaving process). Clicks are credited to the assigned softmax

function only, which means that in expectation the softmax functions tie under random

user clicks. To verify condition (2), consider that each softmax function has a non-zero

probability of contributing each document to each rank of the interleaved list. This prob-

ability is strictly higher for documents that are ranked higher in the result list underlying

the softmax function, because the softmax functions are monotonically decreasing and

depend on the document rank only. The softmax function that assigns a higher proba-

bility to a particular document dx has a higher probability of contributing that document

to l, which gives it a higher probability of being assigned clicks on dx. Thus, in expec-

tation, the softmax function that ranks relevant documents higher obtains more clicks,

and therefore has higher expected outcomes if clicks are correlated with relevance. In

cases where l1 and l2 place dx at the same rank, the softmax functions assign the same

probability to that document, because the softmax functions have the same shape. Thus,

for documents placed at the same rank, clicks tie in expectation.

An issue related to fidelity that has not been addressed previously is what the mag-

nitude of differences in outcomes should be if, for example, a ranker moves a relevant

document from rank 3 to 1, or from rank 7 to 5. In our definition of fidelity, this question

is left open, as it requires additional assumptions about user expectations and behavior.

In PI, this magnitude can be determined by the choice of softmax function. For example,

when using the formulation in Eq. 4.3, rank discounts decrease as τ → 0. Rank discounts

increase as τ → ∞, and probabilistic interleaving with deterministic ranking functions

is the limiting case (this case is identical to changing TD so that rankers are randomized

per rank instead of per pair of ranks). Interpreted in this way, we see that PI defines a

class of interleaved comparison metrics that can be adapted to different scenarios.

As discussed in §4.1.2, the simplest estimator of E[O] is the mean of the sample

outcomes (Eq. 4.1). Since the sample mean is unbiased and consistent, soundness is triv-

ially established. A limitation of this naive estimator is that its efficiency is expected to

be low. In comparison to existing interleaved comparison methods, additional noise is
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4.2. Probabilistic Interleave Methods

introduced by the higher amount of randomization when selecting softmax functions per

rank, and by using softmax functions instead of selecting documents from the contribut-

ing lists deterministically. In the next sections, we show how probabilistic interleaving

allows us to derive more efficient estimators while maintaining fidelity and soundness.

4.2.2 Probabilistic Comparisons with Marginalization

In the previous subsection, we described PI and showed that it has fidelity and sound-

ness. In this section, we introduce a more efficient estimator, PI-MA, that is derived by

exploiting known parts of the probabilistic interleaving process, and show that under this

more efficient estimator fidelity and soundness are maintained.

To derive PI-MA, we start by modeling PI using the graphical model in Figure 4.1(b).1

This allows us to rewrite Eq. 4.1 as:

Ê[O] =
1

n

n
�

i=0

oi =
1

n

n
�

i=1

�

o∈O

oP (o|ai, ci, li, qi), (4.4)

where ai, ci and li, and qi are the observed assignment, clicks, interleaved list, and query

for the i-th sample. This formulation is equivalent to Eq., 4.1 because o is deterministic

given a and c.

In Eq. 4.4, the expected outcome is estimated directly from the observed samples.

However, the distributions for A and L are known given q. As a result, we need not con-

sider only the observed assignments. Instead, we can consider all possible assignments

that could have co-occurred with each observed interleaved list l, i.e., we can marginalize

over all possible values of A for a given li and qi. This method reduces the noise that

results from randomized assignments, making it more efficient than methods that directly

use observed assignments. Marginalizing over A leads to the alternative estimator:

Ê[O] =
1

n

n
�

i=1

�

a∈A

�

o∈O

oP (o|a, ci)P (a|li, qi). (4.5)

The estimator in Eq. 4.5 marginalizes over all possible assignments that could have led to

observing l by making use of the fact that this distribution is fully known. The probability

of an assignment given observed lists and queries is computed using Bayes’ rule:

P (a|l, q) =
P (l|a, q)P (a|q)

P (l|q)
. (4.6)

Note that P (a|q) = P (a) = 1
|A| , because a and q are independent. P (l|a, q) is fully

specified by the probabilistic interleaving process and can be obtained using:

P (l|a, q) = P (l, a|q)P (a|q) =

len(l)
�

r=1

P (l[r] | a[r], l[1, r − 1], q)P (a|q). (4.7)

Here, len(l) is the length of the document list, l[r] denotes the document placed at rank r
in the interleaved list l, l[1, r − 1] contains the documents added to the list before r, and

1In contrast to (Hofmann et al., 2011c), we treat the outcome O as a random variable. This leads to an

equivalent estimator that is more convenient for the proof in Appendix 4.B.
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4.2. Probabilistic Interleave Methods

a[r] denotes the assignment at r, i.e., which list contributed the document at that rank.

Finally, P (l|q) can be computed as follows:

P (l|q) =
�

a∈A

P (l|a, q)P (a). (4.8)

An example comparison using PI-MA is shown in Figure 4.5. In it, an interleaved

list is generated using the process shown in Algorithm 7, in this case l = [d1, d2, d3, d4]
(with the observed assignment a = [1, 2, 1, 2]), as marked in red. After observing clicks

on d2 and d3, the naive estimator detects a tie (o = 0), as both original lists obtain one

click. In contrast, the probabilistic comparison shown in step 2 marginalizes over all

possible assignments, and detects a preference for l2.

Next, we establish the soundness of PI-MA by showing that it is an unbiased and

consistent estimator of the target outcome E[O]. Because PI exhibits fidelity (cf. §4.2.1),

showing that PI-MA is a consistent and unbiased estimator of the same quantity estab-

lishes fidelity as well.

Theorem 4.2.1. The following estimator is unbiased and consistent given samples from

an interleaving experiment conducted according to the graphical model in Figure 4.1(b)

(Eq. 4.5):

Ê[O] =
1

n

n
�

i=1

�

a∈A

�

o∈O

oP (o|a, ci)P (a|li, qi).

Proof. See Appendix 4.B.

Theorem 4.2.1 establishes soundness for PI-MA (Eq. 4.5), which is designed to be

more efficient than the naive estimator (Eq. 4.4). We report on an empirical evaluation of

the effectiveness of these estimators in §4.4.

4.2.3 Probabilistic Comparisons with Historical Data

In the previous subsections, we derived two estimators for inferring preferences between

rankers using live data. We now turn to the historical data setting, where previously

collected data (e.g., from an earlier comparison of different rankers) is used to compare a

new ranker pair. As shown above (cf., §4.1), none of the existing interleaved comparison

methods can reuse data while maintaining fidelity and soundness. Here, we show that

this is possible for a new estimator, PI-MA-IS, that we derive from PI-MA.

In principle, PI-MA, as defined in Eq. 4.5 could be directly applied to historical

data. Note that, for a ranker pair that re-ranks the same set of candidate documents D
as the method used to collect the historical data, P (a|l, q) is known and non-zero for all

possible assignments. Such an application of the method designed for live data could

be efficient because it marginalizes over possible assignments. However, the soundness

of the estimator designed for live data would be violated because the use of historical

data would introduce bias, i.e., the expected outcome under historical data would not

necessarily equal the expected value under live data. Similarly, the estimator would not

be consistent.
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4.2. Probabilistic Interleave Methods

To see why bias and inconsistency would be introduced, consider two pairs of rankers.

Pair S is the source ranker pair, which was compared in a live experiment using inter-

leaved result lists from which the comparison outcome was computed using the resulting

clicks. All data from this past experiment were recorded, and we want to compare a new

ranker pair T using this historical data. Observations for pair S occur under the original

distribution PS , while observations for pair T occur under the target distribution PT . The

difference between PS and PT is that the two ranker pairs result in different distributions

over L. For example, interleaved lists that place documents ranked highly by the rankers

in S at the top are more likely under PS , while they may be much less likely under PT .

Bias and inconsistency would be introduced if, e.g., one of the rankers in T would be

more likely to win comparisons on lists that are more likely to be observed under PS

than under PT .

Our goal is to estimate ET [O], the expected outcome of comparing T , given data

from the earlier experiment of comparing S, by compensating for the difference between

PT and PS . To derive an unbiased and consistent estimator, note that PT and PS can be

seen as two different instantiations of the graphical model in Figure 4.1(b). Also note

that both instantiations have the same event spaces (i.e., the same queries, lists, click and

assignment vectors are possible), and, more importantly, only the distributions over L

change for different ranker pairs. Between those instantiations, the distributions over A

are the same by design of the interleaving process. Distributions over C (conditioned

on L) and Q are the same for different ranker pairs, because we assume that clicks and

queries are drawn from the same static distribution, independently of the ranker pair used

to generate the presented list.

A naive estimator of the expected outcome ET [O] from sample data observed under

PS can be obtained from the definition of the importance sampling estimator in Eq. 2.3

with f(a, c) =
�

o∈O oP (o|a, c):

ÊT [O] =
1

n

n
�

i=1

�

o∈O

oPT (o|ai, ci)
PT (ai, ci)

PS(ai, ci)
(4.9)

We refer to this estimator as PI-IS. It simply applies importance sampling to reweight

observations by the ratio of their probability under the source and target distributions.

Importance sampling has been shown to produce unbiased and consistent estimates of the

expected outcome under the target distribution, ET [O], as long as PS and PT have the

same event space, and PS is non-zero for all events that have a non-zero probability under

PT (this is given by our definition of probabilistic interleaving, as long as the softmax

functions under PS are non-zero all documents that have non-zero probabilities under

PT ) (MacKay, 1998). Although this estimator is unbiased and consistent, it is expected

to be inefficient, because it merely reweights the original, noisy, estimates, which can

lead to high overall variance.

To derive an efficient estimator of ET [O], we need to marginalize over all possible

assignments, as in §4.2.2. Building on Eq. 4.9, we marginalize over the possible assign-

ments (so the assignments ai observed with the sample data are not used) and obtain the

estimator PI-MA-IS:

ÊT [O] =
1

n

n
�

i=1

�

a∈A

�

o∈O

oPT (o|a, ci)PT (a|li, qi)
PT (li|qi)

PS(li|qi)
. (4.10)
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4. Probabilistic Interleaving

As in the previous section, P (a|l, q) is computed using Eq. 4.7, and P (l|q) is obtained

from Eq. 4.8. An example is given in Figure 4.6. In this example, the target lists are very

different from the original lists, which is reflected in the low probability of the observed

interleaved list under the target distribution (PT (l|q) = 0.0009). Although lT2 performs

much better for the observed query, the small importance weight results in only a small

win for this target list.

The following theorem establishes the soundness of PI-MA-IS. By showing that

Eq. 4.10 is an unbiased and consistent estimator of ET [O] under historical data, we also

show that it maintains fidelity.

Theorem 4.2.2. The following estimator is unbiased and consistent given samples from

an interleaving experiment conducted according to the graphical model in Figure 4.1(b)

under PS:

ÊT [O] =
1

n

n
�

i=1

�

a∈A

�

o∈O

oPT (o|a, ci)PT (a|li, qi)
PT (li|qi)

PS(li|qi)
.

Proof. See Appendix 4.C.

The efficiency of PI-MA-IS depends on the similarity between PS and PT . It is easy

to see that importance weights can become very large when there are large differences

between these distributions, leading to high variance. As observed by Chen (2005), this

variance can be quantified as the ratio between the variance of outcomes under the source

distribution and under the target distribution. We empirically assess the efficiency of the

estimator under a wide range of source and target distributions in (§4.4).

Note that PI-MA-IS does not depend on the assignments observed in the original data

(cf., Eq. 4.10). This means that it can be applied not just to historical data collected using

probabilistic interleaving, but to data collected under any arbitrary distribution, as long

as the distribution over result lists is known and non-zero for all lists that are possible

under the target distribution. This makes it possible to develop new sampling algorithms

that can make interleaved comparisons even more efficient. For example, data could be

sampled in a way that allows optimal comparisons of a set of more than two rankers, or

with the combined goal of maximizing both the quality of the lists presented to users, and

the reusability of the collected data. While doing so is beyond the scope of this thesis, it

is an important direction for future research.

4.3 Experiments

Our experiments are designed to assess the efficiency of the existing and proposed in-

terleaved comparison methods. All our experiments rely on the simulation framework

detailed in Chapter 3. In comparison to previous work, this setup allows evaluating in-

terleaved comparison methods on a large set of ranker pairs in a controlled experiment.

Previous work validated interleaved comparisons on real usage data (Chapelle et al.,

2012; Radlinski and Craswell, 2010; Radlinski et al., 2008b), which allowed assessment

of these methods in a realistic setting but limited the number of possible ranker compar-

isons. On the other hand, He et al. (2009) used a small number of hand-constructed test
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4.3. Experiments

cases for their analysis. Our setup falls in between these as it is more controlled than the

former, but has fewer assumptions than the latter.

The following subsections detail the experimental procedures used to simulate inter-

leaved comparisons using live data (§4.3.1) and historical data (§4.3.2). In both settings,

we run experiments on the 18, 919 queries of the training set of fold 1 of the MSLR-

WEB30k Microsoft learning to rank data set (cf., 3.4), and use the click models for

5-point graded relevance judgments as shown in Table 3.1.

To allow comparisons of many ranker pairs, we generate rankers from the 136 indi-

vidual features provided with the learning to rank data set. This means that our experi-

ments simulate the task of comparing the effectiveness of individual features for retrieval

using varying amounts of historical data, or a combination of historical and live data.

As specified in Definition 4.1.4, we compare the efficiency of rankers by comparing the

accuracy they obtain after observing a sample of a given size. We measure accuracy after

observing m queries as the portion of ranker pairs for which an interleaved comparison

method correctly predicts the direction of the difference in NDCG. To compute NDCG

difference, we use the manual relevance judgments provided with the learning to rank

data set. Then, an interleaved comparison method is deemed more efficient than another

if it Pareto dominates it (i.e., its accuracy is at least not significantly lower for all sample

sizes, and significantly higher for at least one sample size).

4.3.1 Interleaved Comparisons using Live Data

The main goal of our first experiment is to compare the efficiency of interleaved com-

parison methods in the live data setting. In this setting, we assume that click data can

be collected for any interleaved lists generated by an interleaving algorithm. This means

that data is collected directly for the target ranker pair being compared. Our experiments

for the live data setting are detailed in Algorithm 8.

Algorithm 8 Experiment 1: Interleaved comparisons using live data.

1: Input: interleave(·), compare(·), Q, R, δNDCG(·, ·), m, n
2: correct[1..m] = zeros(m)
3: for i = 1..n do

4: O = []
5: q = random(Q)
6: Sample target rankers (r1, r2) from R without replacement

7: for (j = 1..m) do

8: (a, c, l) = interleave(q, r1, r2)
9: append(O, compare(r1, r2,a, c, l, q))

10: if sign(
�

O) = sign(δNDCG(r1, r2)) then

11: correct[j] + +
12: return correct[1..m]/n

The experiment receives as input two functions interleave and compare, which to-

gether specify an interleaving method, such as BI in Algorithm 1 (interleave in lines

1–12, compare in lines 13–17). It also takes as input a set of queries Q, a set of rankers

59



4. Probabilistic Interleaving

R, a method δNDCG which computes the true NDCG difference between two rankers, the

maximum number of impressions per run m, and the number of runs n. The experiment

starts by initializing a result vector correct which keeps track of the number of correct

decisions of the interleaving method after each impression (line 2). Then, for each run,

a query and target ranker pair are sampled from Q and R (lines 5–6). The target ranker

pair is sampled without replacement, i.e., a ranker cannot be compared to itself (we also

exclude cases for which the rankers have the same NDCG, so that there is a preference

between rankers in all cases). Then, m impressions are collected by generating inter-

leaved lists (line 8) and comparing the target rankers using the observed data (line 9).

Comparison outcomes are aggregated over impressions to determine if a run would iden-

tify the preferred ranker correctly (line 10 and 11). Finally, the accuracy after up to m
impressions is obtained by dividing correct by the number of runs n. An efficient ranker

obtains a high accuracy after observing few impressions. The results of our experiments

for the live data setting are reported in §4.4.1.

4.3.2 Interleaved Comparisons using Historical Data

The goal of our second experiment is to assess the efficiency of interleaved compari-

son method under historical data. This setting assumes that interleaved lists cannot be

directly observed for the target rankers being compared. Instead, interleaving data previ-

ously collected using a different but known original ranker pair is available. We simulate

this setting by generating original ranker pairs, and collecting data for these original

ranker pairs, which is then used to estimate comparison outcomes for the target pair. The

detailed procedure is shown in Algorithm 9.

Algorithm 9 Experiment 2: Interleaved comparisons using historical data.

1: Input: interleave(·), compare(·), Q, R, δNDCG(·, ·), m, n
2: correct[1..m] = zeros(m)
3: for i = 1..n do

4: O = []
5: q = random(Q)
6: Sample original pair (ro1 , ro2) and target pair (rt1 , rt2) from R without replace-

ment

7: for j = 1..m do

8: (a, c, l) = interleave(q, ro1 , ro2)
9: O[i] = compare(rt1 , rt2 , ro1 , ro2 ,a, c, l, q)

10: if sign(
�

O) = sign(δNDCG(rt1 , rt2)) then

11: correct[j] + +
12: return correct[1..m]/n

The arguments passed to Algorithm 9, as well as its initialization and overall struc-

ture, are identical to those for the live data experiments shown in Algorithm 8. The main

differences are in lines 6 to 9. In addition to the target ranker pair, an original ranker

pair is randomly sampled, again without replacement so that there is no overlap between

the rankers used in a given run (line 6). Then, for each impression, the interleaving data
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4.4. Results and Discussion

is collected for the original ranker pair (line 8). The target rankers are compared using

this data (line 9). Experiment outcomes are computed in terms of accuracy for the target

rankers as before. An efficient ranker obtains high accuracy with few historical samples.

The results of our experiments for the historical data setting are reported in §4.4.2.

4.4 Results and Discussion

In this section we detail our two experiments and present and analyze the obtained re-

sults. Our first experiment examines the efficiency of interleaved comparison methods

when comparing rankers using live data (§4.4.1). Our second experiment evaluates inter-

leaved comparison methods using historical data (§4.4.2). In addition to presenting our

main results, we analyze the interleaved comparison methods’ robustness to noise in user

feedback and to varying parameter settings.

4.4.1 Interleaved Comparisons using Live Data

In this section, we present the results of our evaluation of interleaved comparison meth-

ods in a live data setting, where interleaving methods interact directly with users. We

compare the baseline methods BI, TD, and DC and our proposed method PI-MA, de-

fined as follows:

• BI: the balanced interleave method as detailed in Algorithm 1 (§2.3.1), follow-

ing Chapelle et al. (2012).

• TD: the team draft method as detailed in Algorithm 2 (§2.3.1), following Chapelle

et al. (2012).

• DC: the document constraints method as detailed in Algorithm 3 (§2.3.1), follow-

ing He et al. (2009).

• PI-MA: probabilistic interleaving with marginalization over assignments as de-

fined in Eq. 4.5-4.8 (cf. §4.2.2).

We run experiments for m = 10,000 impressions, n = 1,000 times. The experiments

use the experimental setup described in §4.3.1.

The results obtained for our four user models are shown in Figure 4.7. Each plot

shows the accuracy achieved by each interleaved comparison method over the number of

impressions seen for a given user model. The performance of a random baseline would

be 0.5, and is marked in grey. Note that the performance of an interleaving method can

be below the random baseline in cases where no decision is possible (e.g., the method

infers a tie when not enough data has been observed to infer a preference for one of the

rankers; the rankers are sampled in such a way that there always is a difference according

to the NDCG ground truth). When comparing the efficiency of interleaved comparison

methods, we consider both how many impressions are needed before a specific accuracy

level is achieved, and what final accuracy is achieved after e.g., 10,000 impressions.

For the perfect click model (cf., Figure 4.7(a)) we find that the baseline methods BI,

TD and DC achieve close to identical performance throughout the experiment. The final

accuracies of these methods after observing 10,000 impressions are 0.78, 0.77, and 0.78
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Figure 4.7: Results, accuracy of interleaved comparison methods when comparing

rankers under live data. Accuracy is computed over 1,000 randomly selected ranker

pairs and queries, after 1–10,000 user impressions with varying click models.

respectively, and there is no significant difference between the methods. We conclude

that these methods are similarly efficient when comparing rankers on highly reliable live

data. Our proposed method PI-MA outperforms all baseline methods on live data under

the perfect click model by a large and statistically significant margin. After observing

only 50 impressions, PI-MA can more accurately distinguish between rankers than either

of the other methods after observing 10,000 impressions. Its final accuracy of 0.87 is

significantly higher than that of all baselines. Compared to the best-performing baseline

(here, BI), PI-MA can correctly detect a preference on 11.5% more ranker pairs after

observing 10,000 impressions.

Results for the navigational click model are shown in Figure 4.7(b). In comparison to

the perfect click model, this model has a higher position bias (higher stop probabilities),

and a steeper decay of click probabilities (quadratic, so that the difference between the

highest relevance grades is relatively bigger than under the perfect click model). The

increase in position bias is expected to lead to a decrease in efficiency (this effect was

identified for BI, TD, and DC in He et al. (2009)). This effect is confirmed by our results,

which can be seen in the slower increase in accuracy as compared to the perfect click

model. For example, under the navigational click model, approximately 50 impressions

are needed before all interleaved comparison methods achieve an accuracy of at least

0.7, while for the perfect model, only about 20 impressions need to be observed for the

same level of accuracy. The steeper decay in click probabilities is expected to lead to
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4.4. Results and Discussion

click data that better corresponds to the implementation of gain values in NDCG than

the linear decay implemented in the perfect click model. We find that the accuracy of

all methods after 10,000 iterations is slightly higher under the navigational model (the

accuracy for BI is 0.79, for TD 0.80, for DC 0.78, and for PI-MA 0.88), but none of

the differences is statistically significant. We can conclude that under the navigational

model, interleaving methods have lower efficiency (due to increased position bias), but

they converge to at least the same level of accuracy (possibly slightly higher, due to

the better match with NDCG gain values) as under the perfect click model. Comparing

the individual methods, we again find that PI-MA performs significantly better than all

baseline methods. The increase in accuracy after 10,000 impressions is 10%.

The informational click model has a level of position bias that is similar to that of the

navigational click model, but a higher level of noise. Thus, users consider more docu-

ments per query, but their click behavior makes documents more difficult to distinguish.

Figure 4.7(c) shows the results for this click model. The interleaving methods’ efficiency

is similar to that under the navigational model for small sample sizes, with all methods

achieving an accuracy of 0.7 within 50 samples. However, the increase in noise affects

efficiency for bigger samples. After 10,000 impressions, BI achieves an accuracy of 0.72
(TD - 0.81, DC - 0.77, and PI-MA - 0.84). The performance of BI and of PI-MA is

significantly lower than under the navigational model. The performance of PI-MA is

significantly higher than that of BI and DC under the informational model, and higher

(but not significantly so) than that of TD. The performance of BI appears to be particu-

larly strongly affected by noise. This method performs significantly worse than all other

interleaved comparison methods in this setting. Outcomes computed under this method

rely on rank-differences at the lowest-clicked document. As individual clicks become

less reliable, so do the comparison outcomes.

Results for the almost random click model reflect the performance of interleaved

comparison methods under high noise and high position bias (Figure 4.7(d)). As ex-

pected, we find that efficiency decreases substantially for all methods. For example, TD

is the first method to achieve an accuracy of 0.7 after 500 impressions. After 10,000
impressions, BI achieves an accuracy of only 0.67 and the accuracy of DC is 0.71. TD

appears to be the most robust against this form of noise, maintaining an accuracy of

0.79. PI-MA performs better than the baseline methods on small sample sizes, because

marginalization helps avoid noisy inferences. Its performance after 10,000 impressions is

the same as for TD. In general, PI-MA is expected to converge to the same results as TD

in settings with high noise and high position bias, such as the one simulated here. In these

settings, the method cannot accurately trade-off between clicks at different positions.

Our results for the different user models indicate that PI-MA Pareto dominates the

baseline methods in terms of performance. Under reliable click feedback, the baseline

methods perform similarly well, while PI-MA is substantially more efficient at all sample

sizes. The reason is that PI-MA can trade off differences between ranks more accurately.

For all methods, efficiency decreases as position bias increases, which is in line with

earlier work. Increasing noise affects the interleaving methods differently. BI appears to

be affected the most strongly, followed by DC. TD is relatively robust to noise. PI-MA

reduces to TD under high levels of noise. None of the baseline methods was found to be

significantly more accurate than PI-MA at any sample size or level of click noise. We

conclude that PI-MA is more efficient than the baseline methods.
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Figure 4.8: Results, accuracy of variants of PI-MA in the live data setting and under

the perfect click model. Accuracy is computed on 1,000 randomly selected ranker pairs

and queries, after 1–10,000 user impressions using PI-MA with varying τ , and without

softmax functions / marginalization.

After comparing PI-MA to the baseline methods, we now turn to analyzing PI-MA

in more detail. PI-MA has one parameter τ . This parameter affects the trade-off between

clicked documents at different ranks, similar to the position discount in NDCG. Low

values of τ result in slightly more randomization in the constructed interleaved result

lists, which means that documents at lower ranks have a higher chance of being placed in

the top of the result list and are more likely to be clicked. When comparing interleaving

outcomes to NDCG difference, we expect more accurate results for smaller values of τ ,

as NDCG uses a relatively weak position discount (namely log(r)).

Our analysis is confirmed by our results in Figure 4.8(a) (here: perfect click model).

For settings of τ that are smaller than the default value τ = 3 (i.e., τ ∈ (1, 2), accuracy

is higher than for the default settings. Increasing the parameter value to τ = 10 de-

creases accuracy. While all parameter settings τ > 0 result in an interleaved comparison

method that exhibits fidelity as defined in Definition 4.1.2, an appropriate value needs to

be chosen when applying this method. Higher values place more emphasis on even small

differences between rankings, which may be important in settings where users are typ-

ically impatient (e.g., for navigational queries). In settings where users are expected to

be more patient, or tend to explore results more broadly, a lower value should be chosen.

In comparison, the baseline methods BI, TD, and DC make implicit assumptions about

how clicked documents at lower ranks should be weighted, but do not allow the designer

of the retrieval system to make this decision explicit.

Finally, we analyze PI-MA in more detail by evaluating its performance after remov-

ing individual components of the method. Figure 4.8(b) shows PI-MA (τ = 3), com-

pared to PI-MA without marginalization, and without softmax functions. We find that

the complete method has the highest efficiency, as expected. Without marginalization,

comparisons are less reliable, leading to lower initial efficiency. The performance differ-

ence is compensated for with additional data, confirming that PI and PI-MA converge to

the same comparison outcomes. When deterministic ranking functions are used instead

of softmax functions, we observe lower efficiency. Without softmax functions, PI-MA

does not trade off between differences at different ranks, leading to lower agreement with
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NDCG. We conclude that PI-MA is more efficient than variants of the method without

marginalization, and without softmax functions. This result confirms the results of our

analysis in §4.2.

4.4.2 Interleaved Comparisons using Historical Data

In this section, we evaluate interleaved comparison methods in a historical data setting,

where only previously observed interaction data is available. Our experiments do not

focus on how to collect such data, but rather assumes that data is available from previ-

ous experiments and the task is to use this data effectively. We compare the following

methods for interleaved comparisons using historical data:

• BI: directly applies BI to historical data, as discussed in §4.1.3.

• TD: applies TD to all assignments that match historical data, as discussed in §4.1.4.

• DC: directly applies DC to historical data, as discussed in §4.1.5.

• PI-MA-IS: our full importance sampling estimator with marginalization over as-

signments, as defined in Eq. 4.10 (cf., §4.2.3). Note that unless specified otherwise,

we use a setting of τ = 1 for both the source and the target distribution.

We use the experimental setup described in §3, and the procedure detailed in §4.3.2.

Each run is repeated n = 1,000 times and has a length of m = 10,000 impressions. Also,

for each run, we collect historical data using a randomly selected source ranker pair, and

use the collected data to infer information about relative performance of a randomly

selected target ranker pair.

In comparison to the live data setting, we expect interleaved comparison methods to

have lower efficiency. This is particularly the case for this setting where source and target

distributions can be very different from each other. When source and target distributions

are more similar to each other (such as learning to rank settings), efficiency under histor-

ical data is expected to be much higher, so the results presented here constitute a lower

bound on performance.

Figure 4.9 shows the results obtained in the historical data setting. For the perfect

click model (Figure 4.9(a)), we see the following performance. BI shows close to random

performance, and its performance after 10,000 impressions is not statistically different

from the random baseline. DC stays significantly below random performance. These

results suggest that the two methods cannot use historical data effectively, even under

very reliable feedback. The reason is that differences between the observed interleaved

lists and the lists that would be generated by the target rankers cannot be compensated

for. TD shows very low accuracy, close to zero. This result confirms our analysis that

indicated that this method cannot reuse a large portion of the historical data. Since few

lists are useable by this method, most comparisons result in a tie between the compared

target rankers.

The results in Figure 4.9(a) confirm that PI-MA makes it possible to effectively reuse

previously collected data. After 10,000 impressions, this method achieves an accuracy of

0.78. Following the trend of this experiment, accuracy is expected to continue to increase

as more impressions are added.
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Figure 4.9: Results, accuracy of interleaved comparison methods when comparing

rankers under historical data. Accuracy is computed over 1,000 randomly selected ranker

pairs and queries, after 1–10,000 user impressions with varying click models.

The relative performance of the interleaved comparison methods is the same for all

investigated click models. In comparison to the perfect click model, the efficiency of

PI-MA-IS decreases with increasing click noise as expected. However, the method per-

forms significantly better than the baseline methods under all levels of noise. For the

navigational model, performance after 10,000 impressions is 0.68 (Figure 4.9(b)), for

the informational model it is 0.61 (Figure 4.9(c)), and for the almost random model 0.57
(Figure 4.9(d)). This shows that efficiency degrades gracefully with increases in noise.

For high levels of noise (such as under the almost random click model) the required

amount of data can be several orders of magnitude higher than under the perfect click

model to obtain the same level of accuracy. Performance of the baseline methods in the

historical data setting does not appear to be substantially affected by noise.

After comparing interleaved comparison methods in the historical feedback setting,

we turn to analyzing the characteristics of PI-IS-MA in more detail. First, we inves-

tigate the effect of choosing different values of τ during data collection and inference

(Figure 4.10(a)).

Under historical data, τ has several effects. For the source rankers (τS), it determines

the level of exploration during data collection. As τS → ∞, the level of exploration

approaches random exploration. A high level of exploration ensures that result lists that

are likely under the target rankers are sufficiently well covered during data collection,

which reduces variance in the later comparison stage. This is confirmed by comparing
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Figure 4.10: Results, accuracy of variants of PI-MA-IS in the historical data setting and

under the perfect click model. Accuracy is computed on 1,000 randomly selected ranker

pairs and queries, after 1–10,000 user impressions using PI-MA-IS (a) with varying τS
and τT , and (b) compared to PI-IS (without marginalization) and PI-MA (without impor-

tance sampling).

our results for PI-MA-IS with the parameter setting τS = 1, τT = 3 to those for the

setting τS = 3, τT = 3. Data collection in the first setting is more exploratory, which

leads to a significant increase in efficiency.

Changing τ for the target distribution (τT ) also has an effect on variance, although

it is weaker than that observed for the source distribution. Two factors play a role here.

First, smaller values of τT lead to comparisons that more accurately correspond to NDCG

position discounts (cf., §4.4.1, Figure 4.8(a)). Second, smaller values of τT make the tar-

get distribution slightly broader, resulting in smaller differences between the source and

target distributions and therefore smaller importance weights. The relative importance of

these two effects can be estimated with the help of our results obtained in the live set-

ting. There, the accuracy for τ = 1 after 10,000 impressions is substantially (7.5%) and

significantly higher than for τ = 3. Under historical data, performance for the setting

τS = 1, τT = 1 is also significantly higher than for the setting τS = 1, τT = 3. Here,

the increase is 17.6%, more than twice as high as in the live setting. We conclude that

a large portion of this increase is due to the reduced distance between source and target

distribution and the resulting reduction in variance. Finally, when comparing settings

with low exploration under the source distribution (τS = 3), performance differs only

marginally. This suggests that a high amount of exploration during data collection is

crucial for achieving high efficiency of PI-IS-MA.

Finally, we examine how different components of PI-IS-MA contribute to the perfor-

mance of this method under historical data. Figure 4.10(b) shows our previous results for

PI-IS-MA and for the following additional runs:

• PI-IS: PI that uses the naive importance sampling estimator in Eq. 4.9 to compen-

sate for differences between source and target distribution (cf., §4.2.3).

• PI-MA: directly applies PI-MA as defined in Eq. 4.5-4.8 (cf. §4.2.2), without com-

pensating for differences between source and target distributions.
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Our results confirm the outcomes of our analysis and derivation of PI-MA-IS (cf., 4.2.3).

The variant PI-IS (i.e., without marginalization) is significantly less efficient than the full

method PI-IS-MA. This confirms that marginalization is an effective way to compensate

for noise. The effect is much stronger than in the live data setting because, under histori-

cal data, the level of noise is much higher (due to the variance introduced by importance

sampling). In the limit, we expect that the performance of PI-IS converges to the same

value as PI-IS-MA, but after 10,000 impressions its accuracy is 0.639, 17.5% lower. If

PI-MA is applied without importance sampling, it performs as well as PI-IS-MA for

small sample sizes. However, we also observe the bias introduced under this method, as

it converges to a lower accuracy after processing approximately 200 impressions, making

it less efficient in the long run. Performance of PI-MA when applied to historical data

is found to be 0.68 after 10,000 impressions, 12% lower than that of PI-MA-IS. These

results demonstrate that PI-MA-IS successfully compensates for bias while maintaining

high efficiency.

To summarize, our experiments in the historical data setting confirm that PI-MA-

IS can effectively reuse historical data for inferring interleaved comparison outcomes.

Alternatives based on existing interleaved comparison methods are not able to do this ef-

fectively, due to data sparsity and bias. The efficiency of PI-MA-IS under historical data

is found to decrease as click noise increases, as expected. More detailed analysis shows

that choosing a sufficiently exploratory source distribution is crucial for obtaining good

performance. Finally, our results show that marginalization and importance sampling

contribute to the effectiveness of PI-MA-IS as suggested by our analysis.

4.5 Conclusion

In this chapter, we introduced a framework for analyzing interleaved comparisons meth-

ods, analyzed existing methods, and proposed a probabilistic interleaved comparison

method that addresses some of the challenges raised in our analysis. The proposed frame-

work characterizes interleaved comparison methods in terms of fidelity, soundness, and

efficiency. Fidelity reflects whether a method measures what it is intended to measure,

soundness refers to its statistical properties, and efficiency reflects how much sample

data a method requires to make comparisons. This framework is a step towards formal-

izing the requirements for interleaved comparison methods. It allows us to make more

concrete statements about how interleaved comparison methods should behave than pre-

viously possible.

We analyzed existing interleaved comparison methods using the proposed frame-

work, and found that none exhibit a minimal requirement of fidelity, namely that the

method prefers rankers that rank clicked documents higher. We then proposed a new

interleaved comparison method, probabilistic interleave, and showed that it does exhibit

fidelity. Next, we devised several estimators for probabilistic interleave, and proved their

statistical soundness. These estimators included a naive estimator (PI), a marginalized

estimator designed to improve efficiency by reducing variance (PI-MA), and an estimator

based on marginalization and importance sampling (PI-MA-IS) that makes it possible to

reuse previously collected (historical) data.

We empirically confirmed the results of our analysis through a series of experiments
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that simulate user interactions with a retrieval system using a fully annotated learning

to rank data set and click models. Our experiments in the live data setting showed that

PI-MA is more efficient than all existing interleaved comparison methods. Further, ex-

periments on different variants of PI-MA confirmed that PI-MA with marginalization

and softmax functions is more efficient than variants without either component. In our

experiments with simulated historical click data, we found that PI-MA-IS can effectively

reuse historical data. Due to the increase in noise due to importance sampling, efficiency

is lower than under live data, as expected. We also experimentally confirmed that the dif-

ference between the source and target distributions has a strong effect on the efficiency

of PI-MA-IS.

This chapter focused primarily on interleaved comparison methods’ theoretical prop-

erties and on investigating their effectiveness in a controlled experimental setup. Our

analysis and experiments explicitly made a number of assumptions about the relation-

ship between relevance and user click behavior. These assumptions were based on earlier

work on click models, but there is still a large gap between the current models and the

very noisy observations of user behavior in real (web) search environments. As a step

towards testing these assumptions, we investigate interleaved comparison methods in a

real-world (web) search setting in the next chapter (Chapter 5). In particular, we inves-

tigate whether and how search result presentation affects users’ click behavior (caption

bias), and how these effects influence interleaved comparison outcomes.

We further follow-up on the work presented in this chapter by integrating our method

for estimating interleaved comparison outcomes from historical data, PI-MA-IS, with

an online learning to rank approach (in Chapter 7). In the present chapter, PI-MA-IS

was assessed theoretically, and in an online evaluation setting where source and target

distribution could be very different from another, and we were able to show that the

method can effectively reuse historical data. We expect higher efficiency in online learn-

ing to rank settings, where the differences between source and target rankers are typically

small, resulting in low variance of the estimated comparison outcomes. This hypothesis

is tested in Chapter 7, where we devise the first two methods for learning with historical

data reuse, based on PI-MA and PI-MA-IS.
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4.A Proof of Theorem 4.1.1

Theorem 4.1.1. The estimator in Eq. 4.2 is equal to two times the sample mean (Eq. 4.1).

Proof. Below, we use the fact that 1
n

�n

i=0 oi =
1
n
wins(l2)−wins(l1) (following from

the definition of wins(li) (o = −1 and o = +1 for l1 and l2 respectively) and ties(l1,2)
(o = 0) (cf., Chapter 2), and that the number of samples is n = wins(l1) + wins(l2) +
ties(l1,2).

2Êwins = 2

�

wins(l2) +
1
2 ties(l1,2)

wins(l2) + wins(l1) + ties(l1,2)
− 0.5

�

= 2

�

wins(l2) +
1
2 ties(l1,2)

n
−

1
2n

n

�

=
1

n
(2 ∼ wins(l2) + ties(l1,2)− (wins(l2) + wins(l1) + ties(l1,2)))

=
1

n
(wins(l2)− wins(l1)) =

1

n

n
�

i=0

oi.

4.B Proof of Theorem 4.2.1

Theorem 4.2.1. The following estimator is unbiased and consistent given samples from

an interleaving experiment conducted according to the graphical model in Figure 4.1(b)

(Eq. 4.5):

Ê[O] =
1

n

n
�

i=1

�

a∈A

�

o∈O

oP (o|a, ci)P (a|li, qi).

Proof. We start by defining a new function f :

f(C,L, Q) =
�

a∈A

�

o∈O

oP (o|C, a)P (a|L, Q).

Note that Eq. 4.5 is just the sample mean of f(C,L, Q) and is thus an unbiased and con-

sistent estimator of E[f(C,L, Q)]. Therefore, if we can show that E[O] = E[f(C,L, Q)],
that will imply that Eq. 4.5 is also an unbiased and consistent estimator of E[O].

We start with the definition of E[O]:

E[O] =
�

o∈O

oP (o).

P (O) can be obtained by marginalizing out the other variables:

P (O) =
�

a∈A

�

c∈C

�

l∈L

�

q∈Q

P (a, c, l, q, O),
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where, according to the graphical model in Figure 4.1(b), P (A, C, L, Q, O) = P (O|C,A)
P (C|L, Q) P (L|A, Q) P (A)P (Q). Thus, we can rewrite E[O] as

E[O] =
�

a∈A

�

c∈C

�

l∈L

�

q∈Q

�

o∈O

oP (o|a, c)P (c|l, q)P (l|a, q)P (a)P (q).

Observing that P (L|A, Q) = P (A|L,Q)P (L|Q)
P (A|Q) (Bayes rule) and P (A|Q) = P (A) (A

and Q are independent) gives us

E[O] =
�

a∈A

�

c∈C

�

l∈L

�

q∈Q

�

o∈O

oP (o|a, c)P (a|l, q)P (c|l, q)p(l|q)P (q).

Figure 4.1(b) implies P (C,L, Q) = P (C|L, Q)P (L|Q)P (Q), yielding:

E[O] =
�

a∈A

�

c∈C

�

l∈L

�

q∈Q

�

o∈O

oP (o|a, c)P (a|l, q)P (c, l, q).

From the definition of f(C,L, Q) this gives us:

E[O] =
�

c∈C

�

l∈L

�

q∈Q

f(c, l, q)P (c, l, q),

which is the definition of E[f(C,L, Q)], so that:

E[O] = E[f(C,L, Q)].

4.C Proof of Theorem 4.2.2

Theorem 4.2.2. The following estimator is unbiased and consistent given samples from

an interleaving experiment conducted according to the graphical model in Figure 4.1(b)

under PS:

ÊT [O] =
1

n

n
�

i=1

�

a∈A

�

o∈O

oPT (o|a, ci)PT (a|li, qi)
PT (li|qi)

PS(li|qi)
.

Proof. As in Theorem 4.2.1, we start by defining f :

f(C,L,Q) =
�

a∈A

�

o∈O

oPT (o|a,C)PT (a|L, Q).

Plugging this into the importance sampling estimator in Eq. 2.3 gives:

ÊT [O] =
1

n

n
�

i=1

f(ci, li, qi)
PT (ci, li, qi)

PS(ci, li, qi)
,
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which is unbiased and consistent if PS(C,L, Q) is non-zero at all points at which PT (C,L, Q)
is non-zero. Figure 4.1(b) implies that P (C,L, Q) = P (C|L, Q)P (L|Q)P (Q), yield-

ing:

ÊT [O] =
1

n

n
�

i=1

f(ci, li, qi)
PT (ci|li, qi)PT (li|qi)PT (qi)

PS(ci|li, qi)PS(li|qi)PS(qi)
.

Because we assume that clicks and queries are drawn from the same static distribution,

independent of the ranker pair used to generate the presented list, we know that PT (Q) =
PS(Q) and PT (C|L, Q) = PS(C|L, Q), giving us:

ÊT [O] =
1

n

n
�

i=1

f(ci, li, qi)
PT (li|qi)

PS(li|qi)
.

From the definition of f(C,L, Q) we obtain:

ÊT [O] =
1

n

n
�

i=1

�

a∈A

�

o∈O

oPT (o|a, ci)PT (a|li, qi)
PT (li|qi)

PS(li|qi)
.

To show that PS(C,L, Q) is non-zero whenever PT (C,L, Q) is non-zero, we need only

show that PS(L|Q) is non-zero at all points at which PT (L|Q) is non-zero. This follows

from three facts already mentioned above: 1) P (C,L, Q) = P (C|L, Q)P (L|Q)P (Q),
2) PT (Q) = PS(Q), and 3) PT (C|L, Q) = PS(C|L, Q). Figure 4.1(b) implies that

P (L|Q) =
�

a∈A
P (L|a, Q) (Eq. 4.8), which is non-zero if P (L|A, Q) is non-zero for

at least one assignment. From the definition of the interleaving process (Eq. 4.7) we have

that PS(L|A, Q) is non-zero for all assignments.
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Caption Bias in Interleaving Experiments

In the previous chapter we focused on the theoretical properties of interleaved compari-

son methods. Here, we focus on applying these methods to obtain feedback in a real-live

setting, web search. When we apply interleaved comparison methods for online eval-

uation, or online learning to rank in a search setting, we typically expect to obtain an

estimate of the relative quality of rankers in terms of how they rank relevant results. In-

terleaved comparison methods have been developed to obtain such estimates in the face

of position bias. Beyond compensating for position bias, these methods assume that user

clicks reflect relevance, although this relation may be noisy.

While interleaved comparison methods promise to reflect true user preferences, their

reliance on user clicks makes them susceptible to click bias1 (cf., §2.3.2) when the as-

sumptions that these methods are based on are violated. For example, users have been

previously shown to be more likely to click on results with attractive titles and snip-

pets (Clarke et al., 2007; Yue et al., 2010b). An interleaved comparison where one ranker

tends to generate results that attract more clicks (without being more relevant) may thus

detect a preference for the wrong ranker.

This is the problem that we address in this chapter: How are interleaving outcomes

affected by differences in result presentation in practice? On the one hand, as previous

work has assumed, caption bias may affect rankers equally. This would increase variance

when computing interleaved comparison outcomes but not introduce bias. On the other

hand, typical ranker optimization changes may affect captions (for example, by favoring

titles with more highlighting), thereby creating a systematic effect on click behavior.

When interleaving methods are applied to measure preferences between rankers, it is

important to identify when caption bias may be occurring, and to be able to avoid it or

compensate for it. Specifically, we address the following three research questions:

RQ 8 (How) does result presentation affect user clicks (caption bias)?

RQ 9 Can we model caption bias, and compensate for it in interleaving experiments?

RQ 10 (How) does caption bias affect interleaving experiments?

1We use click bias to refer to any characteristic of a search result that systematically influences click behav-

ior in such a way that a result receives more or fewer clicks than would be warranted by the item’s content-based

relevance to the query alone. We use caption bias to refer to forms of click bias related to the visual presentation

of results on a search result page.
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5. Caption Bias in Interleaving Experiments

We address these questions as follows. First, we introduce a general probabilistic,

feature-based approach for modeling caption bias in user clicks. We propose two types

of features to instantiate this model based on (1) an assumption that caption bias indepen-

dently affects clicks on each document, and (2) modeling interactions between caption

effects on nearby documents. Next, we show that the developed caption-bias models

can be integrated with existing interleaved comparison methods, by devising alternative

estimators for TD and PI-MA. Finally, we apply this approach to real interleaving ex-

periments, finding that the method identifies caption bias when expected and produces

de-biased interleaving outcomes.

The results of our analysis have implications for how and in what cases interleaving

methods can be applied in practice. In particular, the work presented in this chapter

contributes to a better understanding of IR evaluation using interleaving methods, and to

making them more reliable and robust.

The remainder of this chapter is organized as follows. We detail our approach for

modeling and compensating for caption bias in §5.1. Our experiments give insights into

the types of features that are most effective for modeling caption bias, the effectiveness

of our models for predicting click behavior and user preferences, and the effect of caption

bias on interleaved comparisons. They are presented and discussed in §5.2. We conclude

in §5.3.

5.1 Method

Our method is based on the following idea: when assigning credit for clicks to rankers

in an interleaving experiment, the credit can be reweighted to reflect the likelihood of

the user clicking on the result based on just caption bias. This is similar to the ideas

by (Chapelle et al., 2012; Yue et al., 2010b), although here we focus on improving the

fidelity rather than the sensitivity of interleaving experiments.

We reweight clicks by the inverse of their caption-based click odds. This means

that results that are very likely to be clicked due simply to their visual characteristics

receive a low weight, while higher weights are assigned to results whose representation

is less likely to attract clicks. Thus, clicks on relatively less “clickable” results are taken

to provide a more reliable indication of relevance, while more “clickable” results are

considered prone to attracting clicks unwarranted by their relevance and receive a lower

weight. This principle is implemented in the following 3-step approach: (1) model the

probability of a click as a combination of position, relevance and caption bias, (2) learn

the weights of this model using observations of past user behavior, and (3) factor out

the caption bias component from interleaving evaluations to make clicks better reflect

relevance. Below, we detail our caption bias model (§5.1.1) and features (§5.1.2), as well

as our approach for reweighting clicks in interleaved comparison methods (§5.1.3).

5.1.1 Modeling Caption Bias

Goal of our model is to relate a set of observations x (here: features that encode charac-

teristics of a document in a result list) to the probability of that document being clicked

by a user. A natural model of such a relation, with minimal assumptions, is the logistic
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regression model (Friedman et al., 2001). Such a model ensures that predictions are in the

form of a probability distribution, and it allows a straightforward interpretation of trained

regression weights in terms of their effect on the likelihood of an outcome. Because our

hypothesis is that a model that includes caption bias features can more accurately pre-

dict click probabilities than one with only relevance and position features, we explicitly

formulate our model in terms of relevance features xr, position features xp, and caption

features xc. This results in the following model:

P (C|xr,xp,xc) =
1

1 + e−β0−βrxr−βpxp−βcxc
. (5.1)

Here, P (C|xr,xp,xc) denotes the probability of a click on a result document, that is

characterized by relevance features xr, position features xp, and caption features xc.

The parameters of the model — the intercept β0, and the coefficients βr, βp, and βc —

are estimated from training data using maximum likelihood estimation. While a model

that takes into account nonlinear combinations of bias features may produce more accu-

rate results, this model is easy to interpret, less prone to overfitting than more complex

models, and we find it to perform well when validated on the task of predicting clicks

(cf., §5.2.2).

The weights obtained after training the model in Eq. 5.1 can be interpreted in terms

of the effect of the corresponding feature on the click odds, a characteristic we make

use of when applying the trained model to reweight clicks as shown in §5.1.3. Note

that only caption features xc are used for reweighting, to compensate for caption bias.

The remaining features are included during model training only, to remove effects of

document relevance and position. In this way we obtain a model of a document’s click

likelihood given its presentation. The caption features used in this study are detailed

in §5.1.2. Relevance and position features are described below.

The relevance level of a document d to a query q is modeled by xr = φr(d|q) as

a vector of five binary features. They represent 5-point relevance judgments that range

from “not relevant” to “highly relevant”. Our position features xp = φp(d|q) follow the

formulation in (Yue et al., 2010b). Specifically, we use six binary indicator features that

indicate whether each document was presented at rank 1, 2, 3, 4 to 5, 6 to 9, or 10 and

below.

In a preliminary study, we also considered two alternatives to the model described

above. First, we assessed document-wise models that do not take into account relevance

information, but simply model caption bias using visual and position features. However,

we found that models that do take relevance into account model click behavior more ac-

curately. Second, we evaluated a pairwise model that predicted which of two documents

was more likely to be clicked, based on features that captured visual differences between

them (i.e., predicting which of two documents is more likely to be clicked, similarly to

the approaches by Clarke et al. (2007) and Yue et al. (2010b)). Here, we found the per-

document formulation in Eq. 5.1 to be much more effective in explaining click behavior.

Therefore, we focus on this model in the rest of this chapter. Nevertheless, we found that

pairwise features, that capture the relationship between the document for which clicks

are predicted and its neighboring documents, can be combined with our per-document

model to further improve performance (implemented as pairwise features, cf., §5.1.2).
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5.1.2 Caption Bias Features

We use two types of visual features to model caption bias: per-document features and

pairwise features (both are encoded in the caption feature vector xc = φc(d|q)). Both

types of features are detailed below. For all features, we assume a standard result page

of a web search engine, where results are displayed with their title, URL, and a snippet

that shows how each document relates to the user’s query.

Per-Document Caption Features

Our per-document features are designed to capture characteristics of individual search

result captions, and model aspects that may make them likely to attract (or discourage)

clicks. We started with the features investigated in Clarke et al. (2007), such as short

snippet, term matches in the title, and URL length.

From the initial set of features, we restricted our features to those that we believe may

capture visual characteristics relevant to our task, yet are not likely to be strongly affected

by document relevance. In an initial study, we found a statistically significant effect of

e.g., the number of query term matches with the document title, and the number of phrase

matches with the snippet on click behavior. However, we think that these observations

were strongly affected by the rankers used to collect our training data. E.g., a ranker

may over- or under-emphasize the importance of matches in the document title, while

the 5-point relevance judgments (cf., §5.1.1) used to remove major effects of relevance

may not be sufficiently fine-grained to compensate for these ranker effects. To avoid

contamination of our caption bias model with such ranker effects, we removed features

for which these were a concern.

We binarized all per-document features to avoid cases where our caption bias model

would be dominated by individual unbounded values. For each “raw” feature (e.g., title

length), we started with natural thresholds, such as the first and third quartile, the mean,

and points identified by visual inspection of the feature’s histogram. Next, binary fea-

tures representing these bins were added to a model of document relevance and position,

which was then trained using logistic regression. The thresholds were then manually

tuned to maximize the model’s fit to the training data (i.e., thresholds were increased and

decreased and the model re-trained, until the magnitude of the residuals from the fitted

model did not decrease further).

Finally, all constructed binary features were combined in one model, and features

that did not have a significant effect on the models’ prediction (measured using a χ2 test,

and p < 0.001) were removed from the model. In this step we reduced the number of

features from 25 to the final set of 10 per-document features.

Our per-document features are presented in Table 5.1. The feature deep links refers

to links to subsections of a website that are grouped under a main title result as illustrated

in Figure 5.1. We included this feature because a strong relation with click behavior was

found, and this type of presentation is common to most major web search engines. The

length-related features short URL, short title, long title, short snippet, and long snippet

were converted to binary values as described above. For longer URLs, the number of

slashes was found more informative than the number of characters. Similarly, for title

length, the number of words was more informative than the number of characters. For
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Feature Description

Deep links The result is presented with deep links

Short URL The length of the displayed URL is 30 or less characters

URL slashes The URL of the presented result contains more than 5 slashes

URL bold The presented URL has more than 1 highlighted section

Short title The presented title consists of less than 3 words

Long title The presented title consists of more than 7 words

Title start The title begins with an exact match of the query

Title bold The title contains more than 2 highlighted sections

Short snippet The displayed snippet is shorter than 40 characters

Long snippet The displayed snippet is longer than 170 characters

Table 5.1: Per-document features for capturing visual characteristics of individual result

captions.

Figure 5.1: Example search results of two commercial web search engines, with deep

links included in addition to the title link.

snippet length, the threshold for short snippets corresponds to roughly half a line of text,

while the threshold for long snippets corresponds to a length where the text would flow

onto a third line.

Here, we list only the final features and exclude features where no significant effect on

click behavior was detected (e.g., highlighting in the snippet). In addition to those listed,

we initially tested the following features proposed in earlier studies (Clarke et al., 2007):

the number of query term matches with the title, snippet, and URL respectively, and the

respective number of phrase matches. However, because our models were developed to

specifically capture changes in click behavior due to visual characteristics, we removed

these features that may be more strongly affected by document content.

Pairwise Caption Features

Our second set of features considers not individual documents, but pairs of documents.

The intuition behind these features is that documents presented in response to a query
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Feature Description

∆ URL length above / below The difference between the length of the URL of

the current document and of the document ranked

immediately above it / immediately below it

∆ URL slashes above / below The difference in the number of slashes in the URL

∆ URL bold above / below The difference in the number of words highlighted

in the URL

∆ title length above / below The difference in title length (in characters or

words)

∆ title bold above / below The difference in the number of highlighted words

or sections in the title

∆ snippet length above / below The difference in the length of the snippet (in char-

acters or words)

∆ snippet bold above / below The difference in the number of highlighted words

or sections in the snippet

Table 5.2: Pairwise visual features for capturing caption bias.

attract clicks not only based on their own representations, but also depending on other,

surrounding documents. For example, a somewhat attractive result may attract clicks

when placed next to a poorly presented result, but may not get much attention when

placed next to a result with a better presentation. Although we found per-document

models to perform better individually, we hypothesized that click behavior could best be

captured by a combination of characteristics of a document’s own representation, and

those of surrounding documents.

As for our per-document features, we avoided unbounded features to prevent individ-

ual features from dominating the model (this may happen when e.g., directly including

the difference in URL length). We achieved this by encoding all pairwise features as

ternary values (i.e., with possible values (−1, 0, 1). Thus, e.g., the feature ∆ URL length

above would be −1 if the URL length of the current document is less than that of the

document ranked immediately above it, 0 if there was no difference, and 1 if the URL

was longer than that of the document ranked above it.

A complete list of the investigated pairwise features is provided in Table 5.2. The

features ∆ title bold above / below (in words) and ∆ snippet bold above / below (in

words) are designed to capture relationships between neighboring documents that are as

close as possible to those explored in (Yue et al., 2010b), so that effects found here can be

compared to this earlier work. In addition, we include features that capture differences in

highlighting of the URL, and consider the number of highlighted sections (e.g., phrases)

in addition to that of individual words. Finally, we add features that capture the length

differences of URL, title, and snippet. As for the document-wise features, we exclude

features based on term matches, to focus on visual aspects of the search result captions.
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5.1.3 Reweighting Clicks

In this section we detail how we apply the caption bias models developed in §5.1.1 to

interleaved comparison methods to compensate for caption bias. The key idea is to

reweight observed clicks on result documents by the change in click odds for that doc-

ument that is due to caption bias. We base our method on two interleaved comparison

methods, TD (Radlinski et al., 2008b) (cf., §2.3.1) and PI-MA (Chapter 4). Extensions to

other interleaved comparison methods are straightforward following the same procedure.

We start from the interleaved comparison outcomes TD and PI-MA, and their esti-

mators of comparison outcomes (the sample mean as defined in Eq. 4.1 for TD, and our

estimator in Eq. 4.5 for PI-MA). To make explicit how comparison outcomes are com-

puted given an observed interleaved result list l, clicks c, and assignments a by these

estimators we rewrite comparison outcomes o as2

o =

len(l)
�

r=1

c[r]a[r]−

len(l)
�

r=1

c[r]ā[r], (5.2)

where len(l) is the length of l, r is the rank of a document in l, and c[r] ∈ {0, 1} indicates

whether the document l[r] was clicked. For brevity of notation, we take a[r] ∈ {0, 1}
to indicate whether l[r] was contributed by ranker l1, with its complement ā[r] ∈ {0, 1}
indicating whether it was contributed by ranker l2. Thus c[r]a[r] evaluates to 1 iff l[r] was

clicked, and contributed by ranker l1, and to compute o, we simply take the difference in

the number of clicks that were contributed by l1 and l2.

Based on the formulation of o in Eq. 5.2 we correct for caption bias using the coeffi-

cients βc obtained from the trained model in Eq. 5.1. The exponential of the coefficient

for a feature can be interpreted as the change in the click odds of a document, given that

the feature is present (for binary features; coefficients for real-valued features are inter-

preted as the change in click odds ratio for one unit change). It is an approximation of

the change in click probability attributed to that feature.3 We exploit this relationship by

reweighting each observed click on a document by the effect of the documents’ caption

features on its click odds, eβc·xc , where xc = φc(d, q) is the caption feature vector for

the clicked document.

For an example of how click reweighting is applied, consider a result with a very

short URL (i.e., short URL is true), and 3 highlighted sections in the displayed result title

(title bold). Also, assume that the estimated weights for these features, obtained from the

trained caption bias model, are 0.4 and 0.7. Then, due to how the result was presented,

it was e1.1 ≈ 3 times as likely to be clicked than an equally relevant document presented

at the same rank and average presentation (i.e., with medium-length URL and less high-

lighting). Then, the observed click is reweighted with the inverse of this change in click

2In contrast to previous chapters, we define the outcome in terms of the click difference, instead of the sign

of the click difference. This formulation makes it easier to see how individual clicks are reweighted below. The

resulting TD estimator (without bias compensation) is equivalent to the aggregation method called ∆click in

(Chapelle et al., 2012).
3While the change in click odds only approximates the change in click probability (relative risk) under

caption bias, it has the advantage that it can be estimated from non-random samples using logistic regression.

It is considered a good approximation of relative risk under the “rare disease assumption,” in particular when

the relative risk is small (Schmidt and Kohlmann, 2008). Because clicks are relatively rare and the odds ratios

we observe are small, we consider these assumptions reasonable.
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odds, to correct for the attractive presentation and decrease the click’s contribution to the

outcome of the interleaving experiment.

Applying the resulting click weights to the estimator for TD, and after substituting

Eq. 5.2 in Eq. 4.1, we obtain the following alternative estimator, which reweights clicks

to compensate for caption bias:

ÊW−TD[O] =
1

n

n
�

i=1





len(l)
�

r=1

c[r]

eβcφc(l[r],q)
a[r]−

len(l)
�

r=1

c[r]

eβcφc(l[r],q)
ā[r]



 . (5.3)

Thus, instead of weighting each observed click equally, this estimator for weighted TD

weights each observed click by its change in click odds due to caption bias.

The corresponding estimator for PI-MA is obtained by substituting Eq. 5.2 in Eq. 4.5

and again applying click reweighting:

ÊW−PI [O] =
1

n

n
�

i=1

�

a∈A





len(l)
�

r=1

c[r]

eβcφc(l[r],q)
a[r]−

len(l)
�

r=1

c[r]

eβcφc(l[r],q)
ā[r]



P (a|li, q).

(5.4)

Our method for modeling caption bias is experimentally validated in the next section,

and we apply the resulting model to interleaving experiments in §5.2.4.

5.2 Experiments and Results

In this section we detail our experimental setup and results in three parts. First, we

focus on training caption bias models (5.2.1). Results of this step give insights into

the features that were found to be useful for explaining click behavior and their relative

importance. Second, we assess the quality of the trained models, by comparing their

predictions to observed click behavior (5.2.2). Third, we show how our caption bias

models can be applied to infer user preferences from clicks (5.2.3). Finally, we apply our

best-performing caption-bias model to interleaving experiments and analyze its effect on

experiment outcomes (5.2.4).

5.2.1 Modeling Caption Bias

In our first experiment, we train several instantiations of our caption bias model as defined

in Equation 5.1. Analyzing which visual features contribute to explaining click behavior,

and what their relative importance is in each of the models, allows us to better understand

the observed caption bias. In this experiment, we consider the following instantiations of

our model:

• highlighting - uses only pairwise highlighting features, similar to Yue et al. (2010b)

• document-wise - uses the per-document features in Table 5.1

• pairwise - uses only the pairwise features listed in Table 5.2

• combined - considers all visual features in Tables 5.1 and 5.2
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5.2. Experiments and Results

All four models were trained using standard logistic regression (with the function

glm) in R.4 The training data was obtained from a large commercial web search engine.

The data is a random sample of queries and result pages collected on February 16, 2012.

To account for the effect of relevance, the log data was intersected with a large set of

previously collected relevance judgments. This intersection resulted in approximately

420,000 (non-unique) query–URL pairs.

A limitation of our setup is that, because we use query–URL pairs for which relevance

assessments were available, our training data set does not constitute a random sample.

Rather, the use of previously collected judgments introduces bias, as more judgments

were available for, e.g., frequent queries, and for documents that were previously ranked

highly by the search engine. However, this bias only affects our training data, and not the

data sets used for evaluation and analysis.

The weights for our trained models are shown in Table 5.3. Recall that when we

apply our model of caption features to reweighting clicks, we only use the weights of

the caption features to determine the relative change in click attractiveness, and ignore

position and relevance features (cf., §5.2.1). Therefore, we only report and analyze the

regression weights for these visual features.

For the highlighting model, we find a relatively weak effect for all included features.

URL bolding has a positive effect (i.e., more bold increases the click likelihood of a re-

sult), but only when compared to the document ranked below. Increased highlighting

in the title always increases click probabilities, and this effect is stronger than that of

highlighting in the snippet (in agreement with (Yue et al., 2010b)). For increased high-

lighting in the snippet, a small negative effect is detected, which may be caused by easily

identifiable caption spam.

For the document-wise model we identify several features that have a strong corre-

lation with click behavior. The highest regression weight is obtained for our deep links

feature. This result matches our observation that results with deep links tend to attract

more clicks (even on the title link), perhaps because they take up more space on the result

page. For highlighting in the result title, a much stronger effect is observed than for the

pairwise version of this feature. Finally, click probability is found to decrease for URLs

with many slashes, and for short snippets, as expected.

Results for the pairwise model are similar, although the trained weights are smaller

in magnitude. For URL length, a negative impact is detected when the current result has

a longer URL than the document above, however this effect is reversed when the URL is

compared to the result below.

Finally, in our combined model we find that all per-document features found to be

statistically significant previously again have a statistically significant impact, even when

combined with pairwise features. However, significant effects are also found for addi-

tional pairwise features, suggesting that the click behavior observed in our training data

can best be explained when document-wise and pairwise features are combined. The

pairwise features that had a statistically significant effect when included in the combined

model are ∆ URL slashes below, ∆ title length below, as well as all highlighting features

for result title and snippet.

4Obtained from http://www.r-project.org/.
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To summarize, per-document features were found to be the most useful for predicting

click behavior from visual characteristics. A weaker impact was identified for pairwise

features, but a combined model best explains observed click behavior.

5.2.2 Evaluating Caption Bias Models

Above, we presented four models of caption bias given visual features. Here, we compare

the performance of these models by applying the models to predict user clicks on a new

data set.

The data for this experiment was again obtained from a commercial web search

engine, but was collected several days after the training data. We obtained three non-

overlapping random samples (by user), from February 23 to 26, 2012. Each data set

consists of queries, the presented search results, and the observed clicks. Below, we refer

to these evaluation sets as A, B, and C.

The task on which we evaluate the trained models of caption bias is to predict whether

a given document will be clicked or not, based on its visual characteristics and its position

in the result list. As ground truth, we use the actually observed clicks.

We measure performance in terms of perplexity, a measure that is typically used

to compare the quality of the predictions of a probabilistic model to observed outcomes,

e.g., to evaluate click prediction methods (Dupret and Piwowarski, 2008). It is formulated

as 2−
�

n
i=1

1

n
log

2
P (ci), where ci are observed events (here, whether a document was

clicked or not), P (ci) is the probability of an observed event predicted by our model, and

n is the number of observations. Intuitively, perplexity captures the degree of “surprise”

that remains after a predictive model is applied. When applying an ideal model that

can accurately predict all observed events, no surprise remains, and perplexity is 1. A

uniformly random model would obtain a perplexity of 2, indicating that the model would

not provide any information as to whether or not a result document is clicked.

In addition to the four models discussed in the previous section, we add a baseline

model, that does not take any visual features into account (but is trained using relevance

and position features, and predicts click behavior using document position alone). Our

results are presented in Table 5.4.

data set baseline highlighting document-wise pairwise combined

A 1.664� 1.675� 1.578� 1.650� 1.552

B 1.627� 1.640� 1.540� 1.627� 1.521

C 1.646� 1.656� 1.565 1.633� 1.540

Table 5.4: Results (evaluating caption bias models): Perplexity of all caption bias mod-

els when predicting clicks. Statistical significance is indicated in comparison with the

combined model.

Surprisingly, we find that the least predictive model is not the baseline (without any

visual features), but the highlighting model. It performs worse than the baseline in all

cases, even though it better explained click behavior on the training data. This suggests

that the highlighting model may be overfitting the training data. The pairwise model is

83



5. Caption Bias in Interleaving Experiments

little better than the baseline, suggesting that pairwise features alone may not be able

to accurately represent users’ click decisions. Better performance is achieved by our

document-wise model. The best performance (lowest perplexity) over all data sets is

obtained by our combined model. Apart from data set C, where the document-wise model

is not statistically different from the combined model, all other models on all other data

sets perform significantly worse than our best-performing model. Our results suggest

that a combined model of visual features, that takes both document-wise and pairwise

features into account, is the most successful at modeling users’ click decisions.

To better understand how well our combined model captures caption bias, we conduct

a more detailed analysis of its performance on different segments of queries drawn from

data set B. We analyze prediction performance by (1) query frequency, and (2) the type

of the information need expressed by the query.

Table 5.5 shows the perplexity of the baseline and combined models, split by query

frequency. We divide queries into three groups: head, which consists of the 20% most

frequent queries, body, which consists of queries between the 20th and 80th frequency

percentile, and tail, which consists of the 20% least frequent queries.

Segment baseline combined

Head 1.105� 1.111

Body 1.400� 1.347

Tail 2.057� 1.855

Table 5.5: Perplexity of the baseline and combined models, split by query frequency

segment. Statistical significance is indicated in comparison with the combined model.

We find that on head queries, perplexity is best for both models, and that the per-

formance of the combined model is lower than that of the baseline. The reason is that

these very frequent queries are typically “easy”, because many users search for the same

things, usually with a clearly identifiable goal. For this type of query, users are likely to

recognize target result pages, e.g., by the URL. Thus, caption bias is low for this type of

query, as reflected in our results. For the less frequent body queries, perplexity is higher

for both models. Here, the performance of the combined model is significantly better

than that of the baseline model, indicating that caption characteristics play a role here.

The trend continues for the tail query segment. For this segment, the baseline performs

worse than random, which indicates that result position is not a good predictor of clicks

for these queries. The performance of the combined model is significantly better. The

large improvement of 10% suggests that users’ click decisions on this most difficult query

segment are particularly strongly affected by caption characteristics.

Table 5.6 shows the results obtained when splitting queries by the type of informa-

tion need. Here, we use two sources of information to categorize queries. First, we use

information provided by the search engine used for data collection. For queries with

one predominantly clicked result, this top result is given more space on the result page.

Our log data provides information on which queries were treated with such “enhanced

navigational” results, and we use queries marked as such as our first category. For the re-

maining queries, a simple click-entropy based classifier divides queries into navigational
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and non-navigational.

Segment baseline combined

Enhanced Navigational 1.143 � 1.149

Navigational 1.357 1.339

Non-navigational 1.924 � 1.744

Table 5.6: Perplexity of the baseline and combined models, split by the type of informa-

tion need. Statistical significance is indicated in comparison with the combined model.

We observe a similar pattern to that obtained using query frequency. For enhanced

navigational queries, perplexity is lowest, and the baseline model performs better than

the combined model. As for the head queries above, results for these queries are the least

likely to suffer from caption bias. These queries have one main target result, and this

result is easy to identify on the result page, so caption bias is expected to play a small

role here. For both navigational and non-navigational queries perplexity is higher for

both models but the combined model performs significantly better in both cases. Again,

the performance improvement of the combined over the baseline model is largest for

non-navigational queries, where caption bias is expected to be strongest.

To summarize, we validated our models of caption bias on the task of predicting

clicks on interleaved result lists. Our combined model, which includes both document-

wise and pairwise features to model caption bias, performed best overall. We also found

that our model worked best on queries where caption bias is expected to affect clicks the

most, namely infrequent, non-navigational queries.

5.2.3 Predicting Preferences

In the previous subsections, we presented our results for training and evaluating caption

bias models, and found that our combined model predicted observed click behavior best.

In this section, we show how applying this model to reweight clicks affects interleaving

scores on individual results, and show how such a reweighting can be used to predict user

preferences.

To show how compensating for caption bias affects interleaved comparisons in detail,

consider Table 5.7. For the query “today in two minutes”, four search results are shown.

The first has a visual representation that results in a weight of 1.003, which is close

to the average (i.e., the result is about as likely to be clicked as a result for which all

visual features are false / zero). Click probability increases, e.g., due to the short title,

and highlighting in the URL, but decreases due to the missing snippet and the lack of

highlighting in the title. Overall, the result is relatively unlikely to be clicked based

on attractiveness alone. In contrast, the lower-ranked results look more attractive, and

consequently receive lower click weights. In this result list, the two results with the

lowest weights (i.e., the most attractive visually) were clicked by the user. This suggests

that click behavior may have been affected by caption bias.

We can now compare the outcomes that would be obtained in the above example

when inferring a TD outcome with and without applying our model of caption bias.
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We observe that both clicked results were contributed by ranker A, leading to a win of

2 clicks over B. When applying the caption bias model, the low click weights of the

clicked results are taken into account, leading to a much smaller win of 0.617. This

example shows how the caption bias model decreases the impact of clicks that may have

been biased towards more attractive results.

As an additional proof-of-concept, we applied our caption-bias weighting scheme to a

small sample of search result impressions for which two different URLs had been clicked

by different users. When a model predicted a lower weight for one of the clicked URLs,

this URL would be inferred to be more likely to be clicked due to its presentation, and

the URL with the higher click weight would be inferred to be preferred due to its content.

For this small data set, we asked human annotators to judge which of two landing pages

(for the two competing URLs) they would prefer for a given query.

Table 5.8 shows how often our model predictions agree with the human preference

judgments. For the baseline model, no preferences can be inferred, as both URLs were

clicked for the given query. Prediction quality of the pairwise model is the same as

a random model would achieve, while accuracy for the document-wise and highlighting

models are slightly higher. The best preference predictions are obtained by our combined

model.

baseline highlighting document-wise pairwise combined

0 / 86 / 0 44 / 1 / 41 43 / 11 / 32 43 / 0 / 43 47 / 0 / 39

Table 5.8: Preference predictions by caption bias models. For each model we include the

number of correct / no preference / incorrect predictions.

5.2.4 Interleaving Outcomes

In this section, we investigate whether and how interleaving outcomes can be affected

by differences in result presentation in practice. To this end, we apply our best caption

bias model (the combined model, as shown in Table 5.3) to interleaved comparisons

conducted on live web search traffic using the reweighting schemes introduced in §5.1.3,

and analyze how the inferred interleaving outcomes are affected by bias compensation.

We conducted six interleaving experiments (referred to as E1-E6 below), selecting

experiments that represented small changes in ranking quality that are typical of incre-

mental ranker improvements at major web search engines. We also selected pairs such

that the competing rankers used methods for applying previously collected clickthrough

data, and different weights to make the influence of clicks weaker or stronger. Select-

ing ranker pairs in this way increased our chances of detecting changes in interleaving

outcomes due to caption bias. If caption bias affects interleaving outcomes beyond in-

creasing noise, then we expect that compensating for caption bias results in outcome

changes of different magnitudes for these experiments. On the other hand, if caption

bias affects all rankers equally, then all experiment outcomes should be affected by bias

compensation equally. The direction of all experiments is chosen such that a baseline
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ranker (l1) is compared to a treatment ranker (l2). The hypothesis for all six interleaving

experiments is that the treatment ranker improves over the baseline ranker.

The interleaving experiments were run on a sample of live traffic from the same web

search engine as used in the previous two sections. These experiments were run within

three weeks of collecting the data sets for model training and evaluation, so that no ma-

jor changes in click behavior are expected. Interleaved result lists were generated using

TD.5 After observing user clicks, four different scoring methods were applied to compute

interleaved comparison outcomes using the original TD (Eq. 4.1) and PI-MA (Eq. 4.5)

scoring schemes (without compensating for caption bias) and our caption-bias reweight-

ing schemes (Eqs. 5.3–5.4) (with the combined caption bias model). Note that in earlier

work, click preferences were recentered to let a value of 0.5 denote “no preference”

(i.e., the rankers are inferred to perform equally well), as shown in Eq., 4.2 (defined on

page 42). Then, the treatment ranker is detected to win the comparison if the estimated

outcome is statistically significantly higher than 0.5. Here we follow the same conven-

tion, and report all scores centered around 0.5.

Table 5.9 gives an overview of the interleaved comparison outcomes obtained with

TD and PI-MA, before and after caption bias reweighting. We can see that scores are gen-

erally close to 0.5. These scores reflect the incremental ranker changes typically tested

at major web search engines (e.g., changes that affect a small percentage of queries).

Despite the relatively small changes in ranking, most experiments detect a statistically

significant difference between the rankers.

Experiment TD PI-MA

Unweighted Weighted Unweighted Weighted

E1 0.5033� 0.5017� 0.5018� 0.5011�

E2 0.5040� 0.5020� 0.5024� 0.5016�

E3 0.5017� 0.5010� 0.5008� 0.5006�

E4 0.5031� 0.5005� 0.5010� 0.5000

E5 0.5018� 0.5014� 0.5008� 0.5008�

E6 0.4999 0.4998� 0.5000 0.4999�

Table 5.9: Results (interleaving): Interleaving scores using TD (PI-MA) before (un-

weighted, Eqs. 4.1 and 4.5) and after (weighted, Eqs. 5.3 and 5.4) applying caption-bias

models to six interleaved comparison experiments. Outcomes marked with � or � de-

tected significant gains or losses of the treatment ranker in comparison with the original

ranker.

We first compare the outcomes obtained under TD and PI-MA (cf., the “unweighted”

columns in Table 5.9). Outcomes for all experiments agree in direction and in whether the

5As a result, the implementation of PI-MA used here is a variant of the method described in §4.2.2. In par-

ticular, we use the same interleaving process as TD (that is, we do not interleave probabilistically) to minimize

effects on user experience. However, we compute comparison outcomes as if PI had been used for interleaving.

This results in comparisons that weight clicks by the magnitude of the difference in position between rankers.

For example, a ranker would gain a small win (in terms of weighted click) for moving a document up by one

rank, and a large win when the clicked document was moved up from a much lower rank.
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difference is statistically significant. However, the magnitude of outcomes differs. E.g.,

the change in comparison outcomes between TD and PI-MA smaller for E1 than for E4.

The reason is that, under TD, individual comparison outcomes are binary, independent of

the magnitude of the difference between rankers. Under PI-MA, outcomes are weighted

by the rank distance of clicked documents. E.g., if a click was observed on a document

placed at ranks 3 and 4 by the competing rankers, the magnitude of the interleaving

outcome would be much smaller than if one ranker had placed the document at rank 1

and the other at rank 10. Thus, for experiments where there is a large absolute difference

between TD and PI-MA outcomes, a large portion of the differences detected under TD

is expected to be caused by relatively small differences between rankings (e.g., E4).

After applying reweighting (cf., the “weighted” columns in Table 5.9), we find that

the detected interleaving gains are generally smaller than under the original scoring meth-

ods. This suggests that a portion of the observed clicks was on results with low weights

(i.e., with high click probability). In most cases, experiments for which significant differ-

ences between rankers were detected before reweighting, are still significantly different

after reweighting (E1, E2, E3, E5). However, most importantly, we see differences in the

strength of the effects of reweighting.

One example where comparison outcomes appear to be strongly affected by caption

bias is ranker pair E4. For this pair, the original comparison using TD results in a sta-

tistically significant gain for the treatment ranker (0.5031, a relatively big difference in

typical ranker evaluations). After reweighting, a much smaller (but still significant) im-

provement of 0.5005 is observed, indicating that most of the gain observed under TD

may be due to caption bias. Comparing to the outcome obtained under the probabilistic

method, we find that another portion of observed improvements is due to only small rank-

ing changes. After our model of caption bias is applied to PI-MA, no difference between

the rankers can be detected. This suggests that the initially detected improvement was

due to small ranking changes and caption bias, and that there is no true improvement in

ranker quality. We further analyzed the ranker pairs used in our interleaving experiments,

and found that the treatment ranker in E4 relied on click data the most. This suggests that

this experiment is particularly likely to be affected by caption bias.

For experiment E6, the comparison outcome changes from non-significant to signif-

icantly worse when caption bias reweighting is applied. Here, the original comparison

would support the conclusion that the compared rankers are equivalent. However, the

reweighted outcome indicates that the treatment ranker was really significantly worse

than the baseline ranker, when rank distances and caption bias are taken into account.

Our results support the hypothesis that caption bias can affect the outcomes of inter-

leaving experiments. The assumption that caption bias may affect both rankers equally,

leading to a mere increase in noise, is not supported, because our experiments showed

different behaviors when caption bias was compensated for. In experiments E1, E2, E3,

and E5 the direction of the interleaving outcomes and their statistical significance were

maintained after applying caption bias reweighting. In E4 and E6 the inferred outcomes

changed, in E4 (where the treatment ranker strongly relied on click signals) from a signif-

icant improvement to a tie, in E6 from a tie to a significant loss for the treatment ranker.

We conclude that caption bias can affect the outcomes of interleaved comparison experi-

ments, and that, if caption bias is not compensated for, it can lead to drawing the wrong

conclusions about the relative quality of result rankings.
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5.3 Conclusion

In this chapter, we addressed the problem of caption bias in interleaving experiments.

Interleaved comparison methods promise to capture user preferences, because they rely

on interactions of actual users. However, when click behavior is systematically biased

by, e.g., the visual appearance of search results, interleaved comparison methods may

detect differences between rankers that are not related to true ranker quality in terms of

document relevance, or they may fail to detect true differences between rankers. Here,

we presented models of caption bias, and investigated how caption bias can affect click

behavior and interleaving outcomes.

We started our investigation of caption bias by introducing a set of models designed

to model bias using per-document features that capture visual characteristics of individ-

ual result documents, and pairwise features that capture relationships with neighboring

documents. We evaluated these models by using them to predict clicks. We found that

overall, per-document features were more successful in capturing click behavior than

pairwise features. However, best results were achieved using a combined model that

uses both feature sets. We also found that the combined caption bias model was the

most successful at predicting click behavior in cases where caption bias is expected to

be strongest (such as non-navigational queries). Finally, the combined model was the

most accurate in predicting judged preferences between pairs of documents. We con-

clude that the appearance of document captions and neighboring captions significantly

affects users’ click behavior.

We derived two extensions of the interleaved comparison methods TD and PI-MA

to integrate probabilistic caption bias models such as the one devised in this chapter to

compensate for caption bias. We showed that, when caption bias can be modeled accu-

rately, integrating the resulting model with interleaved comparison methods is possible

and leads to unbiased estimates of comparison outcomes.

Finally, we applied our best (combined) caption bias model to six interleaving ex-

periments conducted on live search traffic of a major commercial web search engine.

We found that compensating for caption bias led to small changes in all experiment out-

comes. Most importantly, there were differences in the magnitude of the effects. In one

experiment, an originally large and statistically significant difference between rankers

was nullified after rank differences and caption bias were taken into account. The out-

come of a second interleaving experiment changed from “not significant” to detecting

a significant loss for the treatment ranker. Our results show that the outcomes of inter-

leaving experiments can be affected by caption bias, and that without compensating for

caption bias wrong conclusions can be drawn.

The results of this chapter impact the research in online evaluation and online learn-

ing to rank as follows. While work on interleaved comparison methods was based on the

assumption that caption bias would affect rankers in an interleaving experiment equally,

thus leading to noise but not bias, we found that this is not always the case. With only

a small number of interleaving experiments we were able to identify cases where inter-

leaved comparison outcomes changed when caption bias was compensated for. However,

we also showed that probabilistic models of caption bias can be integrated with inter-

leaved comparison methods to compensate for caption bias. This means that in practice,

unbiased interleaved comparisons are possible and can be used for online evaluation and
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learning to rank for IR.

The models of caption bias developed in this chapter were shown to predict click

behavior more accurately than models without caption features. However, they consti-

tute only a first step towards capturing the complex effects that visual aspects of search

engine result pages may have on click behavior. An important direction for future work

is to develop more accurate models of caption bias, possibly taking into account recent

work on click modeling (Dupret and Piwowarski, 2008). Particularly, models that can

generalize across queries (Zhu et al., 2010), and that separate perceived relevance from

judged relevance (Zhong et al., 2010) are promising in this context.

In this and the previous chapters we focused on interleaved comparison methods as

a way of inferring feedback from natural user interactions in an online setting. These

methods are important by themselves, for online evaluation experiments, e.g., to evaluate

new retrieval technologies. However, in this thesis we are mainly interested in these

methods as a component of online learning to rank for IR systems. In Chapter 6, we

will focus on the principles that allow learning from interleaved comparisons. We also

compare them to approaches that learn from document-pairwise feedback.
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Balancing Exploration and Exploitation

In the previous two chapters we developed and investigated interleaved comparison meth-

ods as a promising solution for inferring information about rankers from implicit user

feedback. In this and the next chapter, we focus on the question of how to learn reliably

and efficiently from the inferred feedback.1

Methods for online learning to rank for IR need to address a number of challenges.

First, the most robust methods for inferring feedback provide only relative information,

e.g., about the relative quality of documents (§2.3) or rankers (see the interleaved com-

parison approaches discussed in previous chapters). Algorithms for learning from such

relative feedback have been proposed (§2.5), and these form our baseline algorithms.

Second, even relative feedback can be noisy and biased. Our empirical results in this

chapter provide first insights into how algorithms for learning to rank from pairwise and

listwise relative feedback perform under noise.

A challenge in online learning to rank for IR that has not been addressed previously

is that algorithms for this setting need to take into account the effect of learning on users.

In contrast to offline approaches, where the goal is to learn as effectively as possible

from the available training data, online learning affects, and is affected by, how user

feedback is collected. Ideally, the learning algorithm should not interfere with the user

experience, observing user behavior and learning in the background, so as to present

search results that meet the user’s information needs as well as possible at all times. This

would imply passively observing, e.g., clicks on result documents. However, passively

observed feedback can be biased towards the top results displayed to the user (Silverstein

et al., 1999). Learning from this biased feedback may be suboptimal, thereby reducing

the system’s performance later on. Consequently, an online learning to rank approach

should take into account both the quality of current search results, and the potential to

improve that quality in the future, if feedback suitable for learning can be observed.

In this chapter, we frame this fundamental trade-off as an exploration–exploitation

1This chapter is based on work presented in Hofmann et al. (2011a, 2013b). However, the empirical results

presented here differ from our previous work as follows. First, the navigational click model is instantiated

differently (as shown in §3.3) to match the model used in Chapter 4. Second, we previously applied our

algorithms to the documents provided by the LETOR data sets in their original order. Because this order is non-

randomized, learners started from high-quality lists, which could result in higher absolute performance. In the

experiments presented here, we address this problem by breaking ties randomly (so that a result list generated

from a zero weight vector is completely randomized). Despite these changes, the results are qualitatively

identical to those presented earlier and support the same conclusions.
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dilemma. If the system presents only document lists that it expects will satisfy the user,

it cannot obtain feedback on other, potentially better, solutions. However, if it focuses

too much on document lists from which it can gain a lot of new information, it risks

presenting bad results to the user during learning. Therefore, to perform optimally, the

system must explore new solutions, while also maintaining satisfactory performance by

exploiting existing solutions. Making online learning to rank for IR work in realistic

settings requires effective ways to balance exploration and exploitation.

We investigate mechanisms for achieving a balance between exploration and ex-

ploitation when using pairwise and listwise methods, the two most successful approaches

for learning to rank in IR (§2.2). The pairwise approach takes as input pairs of documents

with labels identifying which is preferred and learns a classifier that predicts these labels.

In principle, pairwise approaches can be directly applied online, as preference relations

can be inferred from clicks. However, as we demonstrate in this chapter, balancing ex-

ploration and exploitation is crucial to achieving good performance.

Listwise approaches aim to directly optimize an evaluation measure, such as NDCG,

that concerns the entire document list. Since such evaluation measures cannot be com-

puted online, new approaches that work with implicit feedback have been developed (Yue

and Joachims, 2009). The existing algorithm learns directly from the relative feedback

that can be obtained from interleaved comparison methods, but we show that it over-

explores without a suitable balance of exploration and exploitation.

We present the first two algorithms that can balance exploration and exploitation

in settings where only relative feedback is available. First, we start from a pairwise

approach that is initially purely exploitative (§2.5.1). Second, we start from a recently

developed listwise algorithm that is initially purely exploratory (Yue and Joachims, 2009)

(§2.5.2). We assess the resulting algorithms using the evaluation framework described in

Chapter 3 to answer the following questions:

RQ 11 Can balancing exploration and exploitation improve online performance in on-

line learning to rank for IR?

RQ 12 How are exploration and exploitation affected by noise in user feedback?

RQ 13 How does the online performance of different types (pairwise and listwise) of

online learning to rank for IR approaches relate to balancing exploration and ex-

ploitation?

Our main result is that finding a proper balance between exploration and exploitation

can substantially and significantly improve the online retrieval performance in pairwise

and listwise online learning to rank for IR. In addition, our results are the first to shed

light on the strengths and weaknesses of pairwise and listwise learning in an online set-

ting, as these types of approaches have previously only been compared offline. We find

that learning from document-pairwise feedback can be effective when this feedback is

reliable. However, when feedback is noisy, a high amount of exploration is required to

obtain reasonable performance. When clicks are interpreted as listwise feedback, learn-

ing is similarly effective as under the pairwise interpretation, but it is much more robust

to noise. However, online performance under the original listwise learning approach

is suboptimal, as it over-explores. Dramatically reducing exploration allows learning

rankers equally well, but at much lower cost. Consequently, balancing exploration and
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exploitation in the listwise setting results in significantly improved online performance

under all levels of noise. We discuss in detail the effects on each approach of balancing

exploration and exploitation, the amount of noise in user feedback, and characteristics

of the data sets. Finally, we describe the implications of our results for making these

approaches work effectively in practice.

The remainder of this chapter is organized as follows. We present our methods for

balancing exploration and exploitation in the pairwise and listwise setting in §6.1. Our

experiments are described in §6.2, followed by results and analysis in §6.3. We conclude

in §6.4.

6.1 Approaches

In this section, we describe our approaches for balancing exploration and exploitation

for learning to rank in IR. These build on the pairwise and listwise baseline learning

algorithms shown in §2.5. Our approaches are based on the problem formulation of

online learning to rank for IR as a contextual bandit problem, as shown in §3.1.

6.1.1 Balancing Exploration and Exploitation in
Pairwise Learning to Rank

Our first approach builds off a pairwise formulation of learning to rank (Herbrich et al.,

1999; Joachims, 2002), in particular the stochastic gradient descent algorithm presented

in Sculley (2009). As detailed in §2.5.1, this algorithm optimizes a weight vector w for

linear combinations of ranking features x = φ(d, q) to minimize a loss function formu-

lated in terms of the pairwise ranking loss (see Algorithm 4 on page 29). As shown by

Joachims (2002), the required pairwise feedback can be inferred from implicit feedback,

such as click data.

In previous applications of pairwise learning to implicit feedback scenarios, learning

was performed in a batch setting. First, implicit feedback was collected given an initial

ranking function. Then, the algorithm was trained on all collected implicit feedback.

Finally, this trained system was deployed and evaluated (Joachims, 2002). In this setting,

data collection is naturally exploitative. Users are shown results that are most likely to

be relevant according to a current best ranking function. In the online setting, such an

exploitative strategy is expected to result in the highest possible short-term performance.

However, it is also expected to introduce bias, as some documents may never be shown

to the user, which may result in sub-optimal learning and lower long-term performance.

This is confirmed in our experiments, as we will see below.

In supervised applications of pairwise learning to rank methods, the learning algo-

rithm is typically trained on the complete data set. Sculley (2009) developed a sampling

scheme that allows the training of a stochastic gradient descent learner on a random sub-

set of the data without a noticeable loss in performance. Document pairs are sampled

randomly such that at each learning step one relevant and one non-relevant document

were selected to form a training pair. In the online setting, we expect such a fully ex-

ploratory strategy to result in minimal training bias and best long-term learning.
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Algorithm 10 Balancing exploration and exploitation in the pairwise setting.

1: Input: D, η, λ, w0, �

2: for query qt (t = 1..∞) do

3: X = φ(D|qt) // extract features

// generate exploitative result list

4: S = wT
t−1X

5: l1 = sort descending by score(D, s)[1 : 10]
6: l[r] ← first element of l1 /∈ l with probability �; element randomly sampled with-

out replacement from D \ l with probability 1− �

7: Display l and observe clicked elements c.

8: Construct all labeled pairs P = (x1,x2, y) for qt from l and c.

9: for (x1,x2, y) in P do

10: if ywT
t−1(x1 − x2) < 1.0 and y �= 0.0 then

11: wt = wt−1 + ηy(x1 − x2)− ηλwt−1 // update wt

In the online setting where we learn from implicit feedback, we cannot directly deter-

mine for which document pairs we obtain feedback from the user. Any document list that

is presented in response to a query may result in zero or more clicks on documents, such

that zero or more pairwise constraints can be extracted. Due to position bias (Silverstein

et al., 1999), the higher a document is ranked in the result list presented to the user, the

more likely it is to be inspected and clicked.

Here, we ignore explicit dependencies between displayed documents, and define two

document lists, one exploratory and one exploitative, that are then combined to balance

exploration and exploitation. The exploitative list is generated by applying the learned

weights to compute document scores and then sorting by score, as in the baseline algo-

rithm. The exploratory list is generated by uniform random sampling of the documents

associated with a query.2

We employ a method for balancing exploration and exploitation that is inspired by

�-greedy, a commonly used exploration strategy in RL (§2.4.2).3 The difference between

our approach and �-greedy is that we do not pick a single action at each timestep, but

rather select a number of actions that are presented simultaneously. This results in Algo-

rithm 10, which differs from our baseline algorithm in how the result list is constructed

(line 6).

We vary the relative number of documents from the exploratory and exploitative lists

as determined by � ∈ [0, 1]. For each rank, an exploitative action (a document from the

exploitative list) is selected with probability 1− �. A document from the exploratory list

2In practice, candidate documents are typically collected based on some feature-based criteria, such as a

minimum score. Here, we use the candidate documents provided with the learning to rank data sets used in our

experiment, where candidate selection may have been biased (Minka and Robertson, 2008). However, bias in

terms of feature values can be neglected here, as the specifics of the learned ranker are not the subject of this

study, and all learning methods are affected equally.
3More complex schemes of balancing exploration and exploitation are of course possible, but our focus

here is on demonstrating the benefit of such a balance over purely exploratory and purely exploitative forms of

soliciting feedback. A simple scheme is sufficient for this goal. We also experimented with a more complex

softmax-like algorithm and obtained qualitatively similar results. However, such an algorithm is more difficult

to tune than the �-greedy-like algorithm used here (Sutton and Barto, 1998; Whiteson and Stone, 2006a).
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is selected with probability �. Thus, values of � close to 0 mean that little exploration

is taking place, making the algorithm collect feedback in an exploitative way (� = 0
corresponds to the purely exploitative baseline setting). Values close to 1 mean more

exploration.

6.1.2 Balancing Exploration and Exploitation in
Listwise Learning to Rank

Our second online learning to rank approach builds off DBGD (Yue and Joachims, 2009).

This algorithm has been specifically developed for learning to rank in an online setting,

and it requires only relative evaluations of the quality of two document lists and in-

fers such comparisons from implicit feedback (Radlinski et al., 2008b). An overview of

DBGD is given in §2.5.2.

Given an appropriate function for comparing document lists, DBGD learns effec-

tively from implicit feedback. However, the algorithm always explores, i.e., it constructs

the result list in a way that minimizes bias between the exploratory and exploitative doc-

ument lists, which is assumed to produce the best feedback for learning. We now present

a comparison function f(l1, l2) that does allow balancing exploration and exploitation.

We base our comparison method f(l1, l2) on BI (Joachims, 2003; Radlinski et al.,

2008b), as detailed in §2.3.1 (in particular, Algorithm 1 on page 20). Extending this al-

gorithm to balance exploration and exploitation is easiest compared to other interleaved

comparison methods, and this is sufficient to test our hypothesis that balancing explo-

ration and exploitation in online learning to rank for IR can improve online performance.

Algorithms for balancing exploration and exploitation based on other interleaved com-

parison methods are possible and will be investigated in the future. A related approach,

which is based on PI-MA and PI-MA-IS (Chapter 4) and improves online performance by

reusing previously collected interaction data for more effective exploration, is presented

in Chapter 7.

In contrast to previous work, we alter BI to randomize not only the starting list and

then interleaving documents deterministically, but instead we randomly select the list to

contribute the document at each rank of the result list. In expectation, each list contributes

documents to each rank equally often. We call this altered version of BI stochastic BI.

Constructing result lists using stochastic BI allows us to apply a method similar to �-

greedy. The resulting algorithm, which supplies the comparison method that is required

by DBGD, is shown in Algorithm 11. The algorithm takes as input two document lists l1
and l2, and an exploration rate k. For each rank of the result list to be filled, the algorithm

randomly picks one of the two result lists (biased by the exploration rate k). From the

selected list, the highest-ranked document that is not yet in the combined result list is

added at this rank. The result list is displayed to the user and clicks c are observed. Then,

for each clicked document, a click is attributed to list li (i ∈ {1, 2}) if the document is in

the top v of li, where v is the lowest-ranked click (as in Algorithm 1).

The exploration rate k ∈ [0.0, 0.5] controls the relative amount of exploration and

exploitation, similar to �. It determines the probability with which a list is selected to

contribute a document to the interleaved result list at each rank. When k = 0.5, an

97



6. Balancing Exploration and Exploitation

Algorithm 11 f(l1, l2) – k-greedy comparison of document lists using stochastic BI.

1: Input: l1, l2, k
2: l = [], n1 = 0; n2 = 0
3: while (len(l) < len(l1)) ∧ (len(l) < len(l2)) do

4: a ← 1 with probability k else 2
5: j = min {i : la[i] �∈ l}
6: append(l, la[j])
7: na = na + 1

// present l to user and observe clicks c, then infer outcome (if at least one click was observed)

8: dmax = lowest-ranked clicked document in l

9: v = min {j : (dmax = l1[j]) ∨ (dmax = l2[j])}
10: c1 = len {i : c[i] = true ∧ l[i] ∈ l1[1..v]}
11: c2 = len {i : c[i] = true ∧ l[i] ∈ l2[1..v]}

// compensate for bias (Eq. 6.1)

12: c2 = n1

n2

∗ c2
13: return −1 if c1 > c2 else 1 if c1 < c2 else 0

equal number of documents are presented to the user in expectation.4 As k decreases,

more documents are contributed by the exploitative list, which is expected to improve the

quality of the result list but produce noisier feedback.

As k decreases, more documents from the exploitative list are presented, which in-

troduces bias for inferring feedback. The bias linearly increases the expected number

of clicks on the exploitative list and reduces the expected number of clicks on the ex-

ploratory list. We can partially compensate for this bias since

E[c2] =
n1

n2
∗ E[c1], (6.1)

where E[ci] is the expected number of clicks within the top v of list li, and ni is the

number of documents that li contributed to the interleaved result list. This compensates

for the expected number of clicks, but some bias remains, because the observed clicks

are converted to binary preference decisions before they are aggregated over queries.

While perfectly compensating for bias is possible, it would require making probabilistic

updates based on the observed result. This would introduce additional noise, creating

a bias-variance trade-off. Preliminary experiments show that the learning algorithm is

less susceptible to increased bias than to increased noise. Therefore we use this rela-

tively simple, robust bias correction. More complex, unbiased sampling schemes can be

developed using PI-MA and PI-MA-IS (Chapter 4), but this is beyond the scope of this

thesis.

4Note that the setting k = 0.5 corresponds to the fully exploratory baseline algorithm. Setting k > 0.5

would typically not increase the amount of information that can be gained from a comparison, but would hurt

the expected reward, because fewer exploitative documents would be shown.
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6.2 Experiments

In this section, we describe the experiments that evaluate the algorithms presented in §6.1.

All experiments use the experimental setup detailed in Chapter 3. Here, we provide

further details and give an overview of the experimental runs we evaluate in the pairwise

and listwise setting.

For the experiments in this chapter we use the 9 LETOR 3.0 and 4.0 data sets (§3.4).

Click data is generated using the perfect, navigational, informational, and almost random

click models as shown in Table 3.1.5 As detailed in §3.5, we use the training folds of each

data set for training during the learning cycle and for calculating online performance

(in terms of discounted cumulative NDCG, with γ = 0.995). We use the test sets for

measuring final performance (in terms of NDCG).

For each data set we repeat all runs 25 times and report results averaged over folds and

repetitions. We test for significant differences with the baseline runs (purely exploitative

for the pairwise approach (� = 0.0), purely exploratory for the listwise approach (k =
0.5)) using a two-sided student’s t-test (§3.5).

6.2.1 Pairwise Approach

In all pairwise experiments, we initialize the starting weight vector w0 to zero. In prelim-

inary experiments we evaluated offline performance for η ∈ {0.0001, 0.001, 0.01, 0.1},

and selected the setting that performed best over all data sets (η = 0.001). Our baseline

is the pairwise formulation of learning to rank with stochastic gradient descent as de-

scribed in §6.1.1, in the fully exploitative setting (� = 0; equivalent to Algorithm 4).

Against this baseline we compare increasingly exploratory versions of the algorithm

(� ∈ {0.2, 0.4, 0.6, 0.8, 1.0}). All experiments are run for 1,000 iterations.

6.2.2 Listwise Approach

In all listwise experiments, we initialize the starting weight vector w0 to zero. We use the

best performing parameter settings from (Yue and Joachims, 2009): δ = 1 and α = 0.01
(these settings resulted in good performance over all data sets in our preliminary ex-

periments). Our baseline is Algorithm 5, based on (Yue and Joachims, 2009), which

corresponds to a purely exploratory setting of k = 0.5 in our extended method.6 Against

this baseline we compare exploit runs that balance exploration and exploitation by vary-

ing the exploration rate k between 0.4 and 0.1 as shown in Algorithm 11. Again, we run

all experiments for 1,000 iterations.

6.3 Results and Discussion

In this section, we present the results of our experiments, designed to test our main hy-

pothesis — that balancing exploration and exploitation can improve the online perfor-

5Results for the almost random click model are omitted, as they did not result in any new insights beyond

those obtained from the other three click models.
6In the listwise approach, the highest level of exploration is reached when the two candidate lists are inter-

leaved in equal parts, i.e., k = 0.5.
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mance of online learning to rank for IR systems. We first address this hypothesis for the

pairwise learning algorithm (§6.3.1), and then for the listwise learning algorithm (§6.3.2).

For both approaches we further analyze online and offline performance to identify factors

that affect online performance. Finally, we compare the two approaches under the novel

perspective of balancing exploration and exploitation (§6.3.3).

6.3.1 Pairwise Learning

We present our results for the experiments on the pairwise approach, described in §6.2.1,

in Table 6.1. It shows the online performance of the baseline approach (exploitative,

� = 0) and increasingly more exploratory runs (� > 0.0) for the 9 LETOR 3.0 and 4.0

data sets and the perfect, navigational, and informational click models.

We expect good online performance for the exploitative baseline if the algorithm can

learn well despite any bias introduced due to the high level of exploitation. Generally,

an online learning to rank approach should exploit as much as possible, as it ensures that

users see the best possible result lists given what has been learned. However, if increased

exploration results in sufficiently high gains in offline performance, its short-term cost

may be outweighed by its long-term benefits, as it increases the quality of result lists

later on.

For the perfect click model, the best online performance is achieved in the baseline

setting for four out of nine data sets, ranging from 87.38 (NP2004, row 4) to 108.06
(HP2003, row 1). For these data sets, the exploitative baseline algorithm appears to

learn well enough, so that additional exploration does not lead to high gains in offline

performance that would outweigh its cost. For the three data sets TD2003 (row 5), TD-

2004 (row 6), and MQ2008 (row 9), online performance is higher at � = 0.2 than in the

baseline setting, but the difference is not statistically significant. For the remaining data

sets, we see statistically significant improvements over the baseline at � = 0.4. Online

performance improves by 58% for the data set OHSUMED, and by 6% for the data set

MQ2007 (rows 7–8).

In the navigational click model, optimal online performance is achieved at higher

exploration rates than for the perfect click model. For five data sets, the best setting is

� = 0.2, and for four data sets it is � = 0.4. For all but one data set (MQ2008, row 18)

the improvements in online performance over the baseline are statistically significant.

Under noisier feedback, learning becomes more difficult, meaning that the quality of the

learned weight vectors that can be exploited is lower than under perfect feedback. This

reduces the benefit of exploitation, and lowers the cost of exploration, increasing the rel-

ative benefit of exploration. The biggest performance gains under increased exploration

are observed for NP2004 (row 13) and TD2003 (row 14), where the online performance

obtained in the best exploratory setting is 2.5 and 1.2 times that of the baseline set-

ting. High performance gains are also observed for HP2003 (81% improvement over the

baseline, row 10), HP2004 (98% improvement, row 11), NP2003 (72.8%, row 12), and

TD2004 (81.97%, row 15). The improvement for OHSUMED is 51% (row 16). Small

improvements are observed for MQ2007 (6%, row 17) and MQ2008 (1%, not statistically

significant, row 18).

Compared to the perfect click model, online performance with the navigational model

is much lower, as expected. The performance loss due to noise is between 2.7% (NP-
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� 0.0 0.2 0.4 0.6 0.8 1.0

perfect click model

1 HP2003 108.06 99.96� 87.58� 76.04� 50.75� 1.00�

2 HP2004 101.75 84.38� 73.88� 60.47� 42.22� 0.89�

3 NP2003 104.51 98.67 89.72� 72.00� 46.31� 1.57�

4 NP2004 87.38 84.33 75.76� 65.25� 44.62� 0.98�

5 TD2003 50.18 50.54 39.69� 28.55� 16.15� 1.94�

6 TD2004 47.49 48.82 34.00� 23.77� 13.57� 3.29�

7 OHSUMED 49.31 78.07� 69.94� 60.51� 49.94 37.76�

8 MQ2007 64.59 67.56� 68.35� 63.99 57.88� 51.14�

9 MQ2008 89.20 89.67 85.74� 80.58� 73.78� 66.70�

navigational click model

10 HP2003 50.01 90.34� 88.31� 80.38� 51.38 0.99�

11 HP2004 41.80 82.76� 76.73� 65.72� 46.23 0.92�

12 NP2003 49.21 78.67� 85.03� 74.73� 49.90 1.68�

13 NP2004 24.75 73.31� 86.53� 75.96� 53.16� 0.89�

14 TD2003 16.65 36.53� 34.26� 25.99� 15.37 2.01�

15 TD2004 22.07 40.16� 32.05� 22.85 13.31� 3.30�

16 OHSUMED 46.16 69.63� 66.28� 58.58� 48.77� 37.83�

17 MQ2007 58.66 60.74� 62.08� 60.39� 56.68� 51.21�

18 MQ2008 79.53 79.60 80.38 77.70� 72.85� 66.23�

informational click model

19 HP2003 4.26 12.47� 38.36� 46.37� 39.11� 0.97�

20 HP2004 2.54 16.01� 30.98� 39.85� 28.09� 0.93�

21 NP2003 3.87 9.44� 25.48� 41.97� 38.29� 1.60�

22 NP2004 2.28 10.97� 31.76� 49.12� 37.71� 0.95�

23 TD2003 1.66 7.28� 14.17� 16.03� 10.62� 1.96�

24 TD2004 4.71 14.09� 20.03� 17.45� 10.85� 3.25�

25 OHSUMED 36.77 49.75� 59.85� 55.79� 48.00� 37.81

26 MQ2007 55.02 56.33� 56.42� 56.87� 55.06 51.14�

27 MQ2008 72.68 72.22 72.36 72.15 70.85� 66.33�

Table 6.1: Results for the pairwise approach. Online performance (in terms of cumu-

lative NDCG) over 1,000 iterations for the exploitative baseline � = 0 and increasingly

exploratory runs (� > 0).

2004) and 27.7% (TD2003), when comparing the best settings for each click model and

data set.

In the noisier informational click model, the trends observed for the navigational

click model continue. Performance in the purely exploitative setting is substantially

lower than for the other click models, as the increase in noise makes learning more dif-

ficult. Compared to the navigational click model, online performance drops by another

8% (MQ2007) to 51% (HP2004).
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Under this click model, the cost of exploration further decreases relative to its ben-

efit, so optimal performance is again seen at higher exploration rates. For six data sets,

the best online performance is achieved at � = 0.6; for two data sets the best setting is

� = 0.4. All improvements are statistically significant when compared to the purely ex-

ploitative baseline. For the HP, NP, and TD data sets, online performance improves by as

much as an order of magnitude (rows 19–24). For the remaining data sets, improvements

are lower, at 63% (OHSUMED, row 25) and 3% (MQ2007, row 26). An exception is

MQ2008, for which there are no significant differences in online performance for runs

with � ∈ [0.0, 0.6] (row 27).

Overall, we conclude that balancing exploration and exploitation for the pairwise

approach can lead to significant and substantial improvements in online performance.

This balance appears to be strongly affected by noise, with highest relative improvements

observed under the noisiest informational click model. Also, as click noise increases,

the amount of exploration required for good online performance increases. Best values

are � ∈ [0.0, 0.2] for the perfect click model, � ∈ [0.2, 0.4] for the navigational click

model, and � = [0.4, 0.6] for the informational click model. These findings confirm our

hypothesis that balancing exploration and exploitation in the pairwise approach improves

online performance.

Besides overall trends in online performance under different exploration rates, we

find performance differences between data sets. One such difference is that for the HP

and NP data sets online performance tends to be higher than the remaining data sets,

especially under the perfect and navigational click models. This suggests that these data

sets are easier, i.e., that click feedback can be used effectively to learn linear weight

vectors that generalize well. We can confirm this analysis by comparing the offline per-

formance that the pairwise approach achieves on these data sets. For the perfect click

model, an overview is included in Table 6.3 (on page 109). Indeed, offline NDCG@10

ranges from 0.704 (HP2004) to 0.760 (HP2003) for the “easy” data sets, and is substan-

tially lower for the more difficult data sets (from 0.272 for TD2003 to 486 for MQ2008).

While our NDCG scores are not directly comparable with those reported by Liu (2009)

(only NDCG@1 scores are equivalent, cf., §2.1), they show the same trend in terms of

relative difficulty.

Under the perfect click model we found differences between most data sets and OH-

SUMED and MQ2007. For these two data sets, online performance increased signifi-

cantly at � = 0.2, while for the remaining data sets, no significant improvements over

the purely exploitative baseline were observed. The significant improvements at an in-

creased exploration rate suggest that either big learning gains were realized for these data

sets with increased exploration (outweighing the cost of exploraiton), or that exploration

for these data sets is relatively low. As we detail below, both effects play a role here.

To analyze performance differences between the data sets, we study the learning

curves of these data sets at different levels of exploration. Figure 6.1 shows the offline

performance in terms of NDCG (on the whole result list) plotted over time (up to 1,000
iterations) for the data sets MQ2007, OHSUMED, NP2003, and HP2004. For the data

sets MQ2007 (Figure 6.1(a)) and OHSUMED (Figure 6.1(b)) we see that the best offline

performance is achieved at high exploration rates (the dark, dashed and dotted lines; the

difference between settings � = 0.8 and � = 1.0 is negligible). For MQ2007, offline

performance at � = 1.0 is 0.533, 3% higher than in the baseline setting. The biggest

102



6.3. Results and Discussion

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

! = 0.0 ! = 0.8 ! = 1.0

(a) MQ2007

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

(b) OHSUMED

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

(c) NP2003

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

(d) HP2004

Figure 6.1: Final performance for the pairwise approach over time for the data sets

MQ2007, OHSUMED, NP2003, and HP2004, under the perfect click model and � ∈

{0.0, 0.8, 1.0}.

difference between the final performance of the exploitative baseline and higher levels

of exploration under the perfect click model is observed for the data set OHSUMED

(Figure 6.1(b), offline performance is 0.657 for � = 1.0, 9% higher than in the baseline

setting). For this data set, the pairwise algorithm learns very poorly without at least some

exploration. Not shown is the learning curve for MQ2008. It follows the same trend,

with a final difference in offline performance of 4% (offline performance is 0.497 when

� = 1.0).

Different behavior is observed for the remaining data sets. For the data sets NP2003

(Figure 6.1(c)), HP2003, TD2003, and TD2004 (not shown) there is no significant dif-

ference in offline performance between less and more exploratory settings under perfect

feedback. This is contrary to the expected behavior that the highest level of exploration

should result in best learning, as pure exploration corresponds to randomly sampling

document pairs for preference detection. Most likely, this unexpected behavior under

the perfect click model results from an effect similar to that observed in active learn-

ing. Because the current top results are shown, feedback is focused on the part of the

document space that is most informative for learning. The data set for which this effect
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is observed has only few relevant documents, so that focusing feedback on a promising

region can have a substantial benefit. The strongest effect is seen for data set HP2004

(Figure 6.1(d)), where offline performance improves when implicit feedback is collected

on exploitative result lists (� = 0, light and solid line) as opposed to more exploratory

settings.

Besides the gains in offline performance realized under the perfect click model for

OHSUMED and MQ2007 under increased exploration rates, we can also confirm the rel-

atively low risk of exploration for these data sets. In Table 6.1 we see that under pure

exploration, the drop in online performance for these two data sets and MQ2008 is much

smaller than for the remaining data sets. For example, online performance for MQ2008

at � = 1.0 is 66.7 (row 9), which corresponds to an NDCG of 0.3–0.4 for the average

result list presented to the user during learning. In contrast, online performance at this

level of exploration is 0.89 for data set HP2004 (row 2), which corresponds to an average

NDCG of less than 0.005. These differences are a result of the number of candidate doc-

uments per query, and the relative ratio of relevant to non-relevant documents provided

per query. As described in §3.4, OHSUMED and the MQ data sets have much fewer

candidate documents per query (approximately a factor of 10, compared to the other data

sets), and a much higher ratio of relevant to non-relevant documents. Under these con-

ditions, randomizing candidate documents has a much smaller negative effect on online

performance than for data sets with many (non-relevant) candidate documents. This re-

sults in the low cost of exploration observed for these data sets. For the HP, NP, and TD

data sets, the low ratio of relevant to non-relevant documents results in a much higher

cost of exploration.

While the low number of candidate documents for OHSUMED and the MQ data sets

results in a low cost of exploration, they also reduce its benefit. Comparing the learn-

ing curves in Figure 6.1(a)–6.1(b) to those in Figure 6.1(c)–6.1(d), we see that a much

smaller gain in offline performance is realized (the increase in offline performance over,

e.g., the first 100 iterations is much smaller). Thus, for data sets with a high ratio of

relevant documents, exploration is cheap, but its benefit is limited. An extreme case is

MQ2008, where the benefit of improving offline performance through increased explo-

ration is so small that it does not lead to significant improvements in online performance

(rows 9, 18, and 27 in Table 6.1). More generally, we find that the balance of explo-

ration and exploitation is affected by the magnitude of the learning gains (in terms of

offline performance) that can be realized under increased exploration, and the cost of the

exploration.

For all data sets, the absolute difference in final performance at varying exploration

rates is relatively small under the perfect click model. Much higher variance is observed

when we simulate noisy feedback. Figure 6.2 shows learning curves for the data set NP-

2003 at different settings of � for the navigational and informational click models. For

the navigational click model (Figure 6.2(a)) final performance improves over time for all

� > 0.0.

For the informational click model, final performance degrades dramatically in the

purely exploitative baseline settings (� = 0, 0.102). In this setting, performance de-

creases over time. The purely exploratory setting (� = 1.0) leads to reasonable final

performance, while the best performance is achieved with high exploration and some

exploitation (� = 0.8, 0.724). This finding also confirms our earlier observation that
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Figure 6.2: Final performance for the pairwise approach over time for the data set NP-

2003 for navigational, and informational click models and � ∈ {0.0, 0.8, 1.0}.

best offline performance is not always achieved in the most exploratory setting (possibly

because feedback under increased exploitation focuses on promising documents).

Our analysis of offline performance results in a number of observations. We hypoth-

esized that the best learning would occur with perfect feedback and pure exploration

because this setting minimizes variance and bias in user feedback. As expected, learning

outcomes were best for perfect feedback and degraded with noisier feedback. However,

the effect of the exploration rate changed with the amount of noise in user feedback and

characteristics of the data set. For perfect feedback, little to no exploration sometimes

produced the best learning outcomes because exploitative result lists focused feedback

on more informative parts of the solution space. For data sets with a low ratio of relevant

to non-relevant documents, the low cost of exploration resulted in significant gains in

online performance under reliable feedback. Under noisy feedback, higher exploration

rates generally improved learning, though the best performance occurred with moderate

amounts of exploitation. Overall, our results confirmed that balancing exploration and

exploitation can significantly and substantially improve online performance in pairwise

online learning to rank for IR.

6.3.2 Listwise Learning

Our main results for the listwise approach are shown in Table 6.2. The experiments

described in §6.2.2 measure online performance of the exploratory baseline approach

(k = 0.5) and increasingly exploitative (k < 0.5) experimental runs on the 9 LETOR 3.0

and 4.0 data sets on the perfect, navigational, and informational click models.

In the listwise setting, we expect best learning (in terms of offline performance) for

the exploratory baseline approach. However, the online performance of the baseline

approach is expected to be low, as it does not sufficiently exploit what has been learned.

We hypothesize that increasing exploitation can improve online performance as long as

its benefits outweigh the resulting loss in offline performance.

For the perfect click model, all data sets except MQ2008 (row 9) improve over the
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k 0.5 0.4 0.3 0.2. 0.1

perfect click model

1 HP2003 102.89 113.60� 116.82� 122.38� 122.36�

2 HP2004 95.81 103.38� 108.87� 112.76� 109.71�

3 NP2003 95.41 101.24� 107.35� 110.24� 108.66�

4 NP2004 99.67 108.41� 114.83� 118.01� 117.87�

5 TD2003 38.97 41.19� 43.86� 44.59� 42.72�

6 TD2004 35.32 37.99� 39.75� 42.01� 40.49�

7 OHSUMED 69.03 71.78� 74.47� 75.08� 75.02�

8 MQ2007 59.66 61.50� 61.81� 61.86� 61.86�

9 MQ2008 77.90 78.05 79.17 78.98 77.86

navigational click model

10 HP2003 84.07 98.98� 103.77� 108.43� 106.28�

11 HP2004 73.83 85.14� 88.74� 91.22� 95.74�

12 NP2003 76.23 87.38� 92.50� 96.94� 93.71�

13 NP2004 83.75 95.93� 97.89� 106.28� 107.36�

14 TD2003 31.41 34.04� 35.39� 37.26� 37.61�

15 TD2004 30.72 33.17� 34.62� 33.29� 33.18�

16 OHSUMED 67.06 69.13� 70.45� 71.72� 70.47�

17 MQ2007 56.46 57.20 58.30� 58.63� 57.73

18 MQ2008 74.84 74.70 76.79� 76.04 76.01

informational click model

19 HP2003 49.82 60.39� 65.60� 71.91� 75.68�

20 HP2004 44.76 48.39 55.69� 61.14� 60.41�

21 NP2003 47.72 58.31� 64.14� 66.42� 77.17�

22 NP2004 48.64 63.44� 66.43� 79.94� 78.74�

23 TD2003 21.81 22.67 24.73� 26.53� 25.83�

24 TD2004 22.02 22.68 24.50� 21.36 21.99

25 OHSUMED 62.83 63.47 65.17 63.81 61.02

26 MQ2007 54.89 54.79 55.45 54.66 55.12

27 MQ2008 71.38 72.43 72.77 71.93 73.17

Table 6.2: Results for the listwise approach. Online performance over 1,000 iterations

for baseline (k = 0.5) and exploit (k ∈ [0.1, 0.4]) runs.

purely exploratory baseline for all settings of k < 0.5. For all these data sets, the best

online performance is obtained at a relatively low setting of k = 0.2. Increases in online

performance over the baseline range from 4% (MQ2007, row 8) to 19% (HP2003, row 1,

and TD2004, row 6). The data set MQ2008 is an exception. Although online performance

is highest for k = 0.3, none of the exploitative settings perform significantly differently

from the exploratory baseline. As discussed in the previous chapter, this data set has

fewer candidate documents than other data sets, leading to a relatively low benefit of
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increased exploitation.

Results for the navigational click model are similar. For all data sets, online perfor-

mance is significantly higher under higher exploitation than in the baseline setting. Best

performance is achieved for k ∈ [0.1, 0.3]. For two data sets, k = 0.3 performs best.

For four of the remaining data sets, best performance is achieved at k = 0.2, and for

three data sets, best online performance is achieved at k = 0.1. Improvements of the best

setting of k over the baseline range from 3% (MQ2008, row 18) to 30% (HP2004, row

11). As expected, performance under the navigational click model is lower than under

perfect feedback.

The trend continues for the informational click model. Again, more exploitative

settings of k outperform the purely exploratory baseline in all cases. For six out of nine

cases, the improvements are statistically significant. These improvements range from

11% (TD2004, row 24) to 64% for the data set NP2004 (row 22). For the remaining three

data sets, no statistically significant differences between baseline and exploitative runs

are observed, but small increases over the exploratory baseline are observed at smaller k.

Together, these results demonstrate that, for all click models and all data sets, bal-

ancing exploration and exploitation in listwise learning to rank for IR can significantly

improve online performance over the purely exploratory baseline, which confirms our hy-

pothesis. The best overall setting for the exploration rate is k = 0.2. This means that by

injecting, on average, only two documents from an exploratory list, the algorithm learns

effectively and achieves good online performance for all levels of noise. We conclude

that the original listwise algorithm explores too much and surprisingly little exploration

is sufficient for good performance.

Online performance is affected by noise in click feedback, as observed in the results

obtained for the different click models. Performance is highest with perfect feedback,

and decreases as feedback becomes noisier. Performance on some data sets is more

strongly affected by noisy feedback. For the HP, NP, and TD data sets, performance

for the informational model drops substantially. This may again be related to the large

number of non-relevant documents in these data sets. Because finding a good ranking

is harder, noise has a stronger effect. Despite this drop in performance, balancing ex-

ploration and exploitation consistently leads to better cumulative performance than the

purely exploratory baseline for all levels of noise.

As for the pairwise approach, we analyze the relationship between online and of-

fline performance by examining the learning curves for different levels of exploration.

Figure 6.3 shows the learning curves for the data sets MQ2007 and NP2003 at different

settings of k and the perfect click model. In contrast to the pairwise approach, there is

no significant difference in performance after 1,000 iterations. We find the same behav-

ior for all data sets. For NP2003, learning in the fully exploratory setting (k = 0.5) is

slightly faster than in other settings. This is expected, as the best feedback is available at

maximal exploration. However, learning at lower exploration rates quickly catches up.

Thus, for the listwise approach, the exploration rate does not appear to have a significant

effect on offline performance when feedback is perfect.

Learning curves for the navigational and informational click models for the data set

NP2003 are shown in Figure 6.4. As expected, learning is faster when feedback is more

reliable. For the idealized perfect click model, offline performance after 1,000 iterations

ranges between 0.719 (k = 0.1) and 0.727 (k = 0.5) for different settings of k. For
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Figure 6.3: Offline performance (computed on the test set after each learning step)

over time for the data sets MQ2007 and NP2003 for the perfect click model and

k ∈ {0.1, 0.2, 0.5}.
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Figure 6.4: Final performance (with 5% confidence intervals) over time for the data set

NP2003 for navigational, and informational click models and k ∈ {0.1, 0.2, 0.5}.

the noisy informational click model, final performance is between 0.477 (k = 0.5) and

0.649 (k = 0.5). Although final performance drops substantially as implicit feedback

becomes extremely noisy, performance improves over time for all data sets as there is

still a signal to learn from, i.e., relevant documents are more likely to be clicked than

non-relevant ones.

Once again there is an interaction effect between click model and exploration rate,

although it is different from that observed under the pairwise approach. Here, there is no

significant difference between the final performance at different settings of k under the

perfect click model. Under the navigational click model, the effect of noise is small, and

offline performance is similar to the perfect click model. However, in the informational

click model, variance increases and there is a large difference between offline perfor-

mance at different settings of k. This is a direct and expected consequence of the noise

in inferred feedback. More surprising is that final performance improves for smaller k,

108



6.3. Results and Discussion

since we expected feedback to be most reliable for the fully exploratory setting k = 0.5.

Instead, it appears that, since bias is only partially compensated for (cf., §6.1), the bias

that remains at lower values of k smoothes over some of the noise in the click model.

At lower exploration rates, fewer results from the exploratory list are presented and it

becomes harder for the exploratory list to win the comparison. Thus, instead of nois-

ier updates, the algorithm makes fewer, more reliable updates that, on average, result in

greater performance gains.

6.3.3 Comparing the Pairwise and Listwise Approach

For both the pairwise and the listwise approaches, our results show that a balance be-

tween exploration and exploitation is needed to optimize online performance. The mech-

anisms of how such a balance affects online performance, however, differ between the

two learning approaches. Below, we first compare the online and offline performance

of both approaches. Then, we discuss how exploration impacts the performance of both

approaches, and conclude with implications for putting them in practice.

Table 6.3 gives an overview of the offline performance of the pairwise and listwise

approaches in their best-performing setting under perfect click feedback. Like the online

performance, these are computed after 1,000 iterations (consisting of one query, result

list, and learning step each), which means that learning may not have converged and

higher results are possible. These results should therefore be interpreted as a rough in-

dication of what performance can typically be achieved by this approach in an online

learning setting with relative feedback.

pairwise listwise

N@1 N@3 N@10 N@1 N@3 N@10

HP2003 0.687 0.727 0.760 0.684 0.730 0.761

HP2004 0.559 0.650 0.704 0.582� 0.673� 0.725�

NP2003 0.531 0.649 0.705 0.531 0.650 0.704

NP2004 0.529 0.658 0.714 0.521 0.656 0.710

TD2003 0.247 0.271 0.272 0.318� 0.300� 0.295�

TD2004 0.315 0.307 0.275 0.385� 0.343� 0.300�

OHSUMED 0.515 0.474 0.444 0.510 0.470 0.441

MQ2007 0.352 0.359 0.400 0.329� 0.338� 0.381�

MQ2008 0.347 0.390 0.486 0.333� 0.376� 0.475�

Table 6.3: Offline performance (in terms of NDCG@N) for the pairwise (� = 1.0) and

listwise (k = 0.5) online learning to rank algorithms under the perfect click model.

In terms of offline performance, the pairwise and listwise approaches perform simi-

larly. The pairwise approach outperforms the listwise approach on five out of nine data

sets (in terms of NDCG@10), but the performance differences are significant for only

two data sets (MQ2007 and MQ2008). The listwise approach outperforms the pairwise

approach on four data sets, in three cases significantly (HP2004, TD2003, and TD2004).
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We note that the performance of the listwise approach is competitive, despite the limited

information available to the algorithm (relative feedback per ranker instead of per doc-

ument), and the weak information about the gradient that is inferred from this feedback

(based on random exploration of the gradient instead of computing a gradient, as for the

pairwise approach).

We compare the online performance of the pairwise and listwise approaches by com-

paring Tables 6.1 (page 101) and 6.2 (page 106). Under the perfect click model, and in

the purely exploratory baseline setting, the listwise approach performs worse than the

purely exploitative pairwise approach, as expected. However, at their optimal settings,

the two approaches perform similarly, with the listwise approach beating the pairwise

approach on four out of the nine data sets. We conclude that, under reliable feedback, the

pairwise and listwise approaches perform similarly well when used with an appropriate

balance of exploration and exploitation.

When click feedback is noisy, the listwise approach performs better than the pair-

wise approach. Under the navigational click model, the listwise approach outperforms

the pairwise approach in terms of online performance on six data sets. Under the in-

formational click model, this number increases to seven out of the nine data sets (at the

optimal levels of exploration). The reason is that the approaches react to noise differently.

For the pairwise approach in its exploitative baseline setting, increases in noise lead to

dramatically reduced offline performance. However, balancing exploration and exploita-

tion allows the algorithm to recover its performance. As a result, the optimal balance

between exploration and exploitation shifts towards increased exploration as feedback

becomes noisier. A relatively high amount of exploration, with about half the result list

constructed from exploratory documents, is needed to achieve good learning outcomes.

This relatively high amount of exploration, in turn, has a negative effect on online per-

formance.

The drop in performance due to noise is much less pronounced for the listwise

method. Online performance of the algorithm in its original, fully exploratory, version

is often an order of magnitude higher than for the original version of the pairwise ap-

proach when feedback is noisy. A possible reason is that, by aggregating feedback over

document lists, the algorithm becomes inherently robust to noise. Increasing exploitation

can further improve online performance. While increases in exploitation introduce some

amount of bias, this bias does not result in lower offline performance. Instead, it acts as

a safeguard against too frequent updates based on noisy data. This leads to less frequent

but more reliable updates of the weight vector, thereby improving offline performance.

Thus, as noise in click feedback increases, a moderate level of exploitation can improve

learning under the listwise approach.

Another advantage of the listwise approach is that the cost of exploration can be small

if the exploratory document list is similar to the exploitative one, which is more likely as

learning progresses. For the pairwise approach, the cost of exploration is generally high,

so the approach has a disadvantage when a similar level of exploration is required for

reasonable learning gains. Thus, at similar final performance and exploration rates, the

listwise approach tends to achieve higher online performance than the pairwise approach.

Our analysis suggests that the pairwise and listwise approaches are appropriate for

learning from relative feedback in different settings. When user feedback is reliable, the

pairwise approach should be preferred as it results in good offline performance. Also, in
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this setting, the pairwise approach requires little to no exploration for good offline perfor-

mance. It can exploit aggressively, leading to high online performance. However, when

feedback is noisy, the listwise approach should be preferred. In contrast to the pairwise

approach, it safeguards against dramatic loss in offline performance, as long as there is

some signal in the feedback that prefers truly relevant documents. In addition, under

noisy feedback, the listwise approach requires much less exploration than the pairwise

approach, and the cost of exploration is lower.

6.4 Conclusion

In this chapter, we studied the effect of balancing exploration and exploitation on online

learning to rank for IR. We introduced two methods for balancing exploration and ex-

ploitation in this setting, based on one pairwise and one listwise learning approach. To

the best of our knowledge, these are the first algorithms that can achieve such a balance

in a setting where only relative feedback is available.

Regarding the main research question addressed in this chapter, we found that bal-

ancing exploration and exploitation can substantially and significantly improve online

performance in pairwise and listwise online learning to rank for IR. The effect of bal-

ancing exploration and exploitation is complex and there is an interaction between the

amount of exploitation and the amount of noise in user feedback. When feedback is reli-

able, both pairwise and listwise approaches learn well and a high amount of exploitation

can be tolerated, which leads to high online performance. As feedback becomes noisier,

learning under high exploitation becomes unreliable for the pairwise approach. A higher

amount of exploration is required to maintain reasonable performance. For the listwise

approach, however, a smoothing effect occurs under high exploitation, so that learn well

despite a high level of exploitation. This allows the listwise approach to maintain good

performance under noisy feedback with a surprisingly small amount of exploration.

Our results also shed new light on the relative performance of online learning to rank

methods. The pairwise approach makes effective use of implicit feedback when there

is little noise, leading to high offline performance. However, it is strongly affected by

noise in user feedback. Our results demonstrated that a balance of exploration and ex-

ploitation is crucial in such a setting, with more exploration needed as feedback becomes

noisier. The offline performance of the listwise approach is similar to that of the pairwise

approach under perfect feedback, but it is much more robust to noise, due to the aggrega-

tion of feedback over result lists. The listwise approach shows lower online performance

than the pairwise approach in its purely exploratory baseline setting, but it performs well

when exploration and exploitation are properly balanced. This first comparison of pair-

wise and listwise learning to rank in an online setting suggests that listwise approaches

are a promising avenue of future development, because performance is competitive, ro-

bustness to noise is high, and only few approaches have been developed for the online

setting (for learning with relative feedback).

The results of this chapter show that it is important to consider the effects of online

learning to rank approaches on online performance. It is not sufficient to learn effectively,

but by explicitly addressing online performance users can be provided with significantly

better results throughout learning. We showed that balancing exploration and exploitation
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is one way in which online performance can be improved.

Our approach to balancing exploration and exploitation for listwise online learning

to rank were based on a simple stochastic extension of BI. Bias introduced by increased

exploitation could only be compensated for approximately, and had a complex effect of

online and offline performance. A similar solution can be devised for TD. Using the

probabilistic interleaving methods developed in Chapter 4, comparison outcomes can

be inferred from a much larger family of distributions over result lists. This opens up

a range of possibilities for constructing exploratory and exploitative result lists without

introducing bias. The basic mechanisms of balancing exploration and exploitation, e.g.,

that increased exploitation at the same offline performance increases online performance,

are expected to hold under all alternative approaches. However, more complex solutions,

e.g., enabled by PI-MA-IS, are expected to lead to further gains in online performance in

online learning to rank for IR.

In Chapter 4, we focused on methods for inferring accurate feedback through in-

terleaved comparisons, but did not consider the effects of the developed evaluation ap-

proaches on online performance. In the next chapter (Chapter 7), we investigate how

online performance is affected by existing interleaved comparison methods and the prob-

abilistic approach developed in the earlier chapter. In particular, we investigate how to

learn quickly and reliably from noisy user feedback in an online learning to rank setting.

112



7
Reusing Historical Interaction Data for

Faster Learning

In our final research chapter, we investigate whether and how historical interaction data

can be reused to speed up online learning to rank for IR. This chapter builds on the results

of Chapter 4, in particular our interleaved comparison method for historical data reuse,

PI-MA-IS.

Learning quickly from the limited quality and quantity of feedback that can be in-

ferred from user interaction is a main challenge in learning to rank for IR. Learning

speed is particularly important in terms of the number of user interactions. The better

the system’s performance is after a smaller number of interactions, the more likely users

are to be satisfied with the system. Also, the more effective an online learning to rank

algorithm is, the more feasible it is to adapt to smaller groups of users, or even individual

users. Furthermore, user feedback is limited because the learning algorithm should be

invisible to system users, i.e., feedback is inferred from natural (noisy) user interactions.

A limitation of current online learning to rank approaches for IR is that they utilize

each observed data sample (consisting of a query, the displayed results, and observed

user clicks on the result list) only once. This was necessary because it was not clear

how feedback from previous user interactions (that were collected with different rankers)

could be reused. The interleaved comparison method PI-MA-IS that we developed in

Chapter 4 allows data reuse for ranker evaluation. It was found to be effective for making

ranker comparisons more reliable, especially when large amounts of historical data were

available. In this chapter, we investigate whether and how this evaluation method can

be integrated with online learning to rank approaches, and whether and in what way

these additional (historical, and possibly noisier or biased) evaluations can lead to faster

learning.

The central research question addressed in this chapter is:

RQ 14 Can previously observed (historical) interaction data be used to speed up online

learning to rank?

To answer this question, we develop the first two learning approaches for reusing

historical data in online learning to rank for IR: reliable historical comparisons (RHC),

which uses historical data directly to make feedback more reliable, and candidate pre-

selection (CPS), which uses historical data to preselect candidate rankers. In extensive
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experiments, we investigate whether and how historical data reuse can speed up online

learning to rank and lead to higher online performance. In addition, we analyze our

results to answer the following more detailed questions:

RQ 15 Is historical data more effective when used to make comparisons more reliable

(as in RHC), or when used to increase local exploration (as in CPS)?

RQ 16 How does noise in user feedback affect the reuse of historical interaction data for

online learning to rank?

We find that historical data can be effectively reused to speed up online learning to rank

for IR. Particularly effective is the CPS approach, which reuses historical data to preselect

candidate rankers, and can thereby compensate for noise in user feedback. Our results

directly impact the effectiveness of online learning to rank approaches, especially in

settings where feedback may be noisy.

The remainder of this chapter is organized as follows. We detail our two approaches

for reusing historical data in online learning to rank for IR in §7.1. We present our ex-

periments and results in §7.2 and §7.3, and provide further analysis in §7.4. We conclude

in §7.5.

7.1 Method

In this section, we detail our two approaches for online learning to rank for IR with reuse

of historical data. Both are based on our problem formulation of online learning to rank

as a contextual bandit problem (§3.1). Our methods are based on the listwise learning

algorithm DBGD (§2.5.2), and on our probabilistic interleave methods PI-MA and PI-

MA-IS (Chapter 4). Below, we detail our RHC method for reusing historical data for

reliable comparisons (§7.1.1) and our CPS method for candidate preselection (§7.1.2).

7.1.1 Reliable Historical Comparison

Our first method is based on the idea of using historical interaction data to supplement

live comparisons. This can improve the quality of interleaved comparisons in two ways.

When a live comparison resulted in a tie (e.g., because no clicks were observed, or all

clicks were on documents that were placed at the same ranks by both rankers), a ranker

difference may still be detected on the historical interactions. In cases where live compar-

isons are noisy, they can be compared with comparisons on historical interaction data to

improve reliability. The main challenge of such an approach is how to properly combine

live and historical estimates. Here, we present an approach that combines estimates ob-

tained using PI-MA and PI-MA-IS. We call this approach reliable historical comparison

(RHC).

We define RHC as an extension to a listwise linear learner, such as DBGD (see Algo-

rithm 5 on page 30) that uses PI-MA for ranker comparisons (Algorithm 7 on page 51).

To enable historical data reuse in DBDG, we set λ > 0 (Algorithm 5, lines 1 and 11–14).

Then, we use the collected historical data h to supplement the interleaved comparisons

based on live data as shown in Algorithm 12. This algorithm replaces line 13 (computing

live comparison outcomes) in Algorithm 7.
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Algorithm 12 (RHC) Probabilistic interleaved comparison with reuse of historical data

for use in DBDG (Algorithm 5). This algorithm computes combined comparison out-

comes, e.g., as a replacement of line 13 in Algorithm 7.

1: Input: oL(l, a, c), oH(l1, l2, l
�,a�, c�), l1, l2, l, a, c, h = n× (l�i,a

�

i, c
�

i)
2: oL ← oL(l, a, c) // compute live outcome following Eq. 4.5

// compute historical outcome, biased (Eq. 4.5) or unbiased (Eq. 4.10)

3: oH ← []
4: for (l�i,a

�

i, c
�

i) ∈ h do

5: append(oH , oH(l1, l2, l
�,a�, c�))

6: βL ← 1
7: βH ← var(oH)
8: oC ← (βL ∗mean(oH) + βH ∗mean(oL))/(βL + βH)
9: return oC

RHC takes as input two functions for computing outcomes: oL(·), which accepts

data from one live observation, and oH(·), which accepts as input the current target lists

as well as one historical observation. Furthermore, RHC takes as input the target lists l1
and l2 to be compared, one live observation, i.e., the interleaved list l, assignments a, and

clicks c observed on the interleaved list. In addition, it accepts n historical data points

that were observed in previous comparisons of other, original, result lists l�1 and l�2. The

algorithm first generates the live outcome oL as in the live setting, using the live outcome

method oL(·) (line 2). Then, additional outcome estimates oH are computed using the

historical data and oH(·) (lines 4–5).

In this chapter, we instantiate oH(·) in two ways to explore the effects of bias and

variance on this approach. In Chapter 4, we showed that applying PI-MA directly to his-

torical data results in biased estimates of comparison outcomes. The alternative method

PI-MA-IS, which compensates for bias using importance sampling, is unbiased but can

suffer from high variance when only little data is available. In the online evaluation set-

ting we investigated in Chapter 4, we found that both methods are similarly effective for

relatively small amounts of data, while for large amounts of data the unbiased method is

more reliable. In contrast, in the online learning to rank task addressed here, we expect

the effect of bias and variance to be relatively small, because the amounts of historical

data are small, and because subsequent ranker pairs are more similar to those used to

obtain the historical samples than in the evaluation setting addressed previously.

Our first (biased) instantiation of oH(·) uses PI-MA to estimate outcomes for the

target lists l1 and l2 given historical data (Eq. 4.5). It uses the historical l� and c� to com-

pute comparison outcomes (and marginalizes over all possible assignments a ∈ A), but

uses the target distribution PT (based on the current target lists) to compute P (a|li, qi)
(Eqs. 4.6–4.8).

The resulting comparison method computes outcomes based on historical data but

may be biased. Under the current target rankers, document distributions may be differ-

ent from those under which the historical data was collected. This means that it is not

guaranteed that each target ranker has an equal chance of contributing its highly ranked

documents to the interleaved list, and to obtain clicks on these documents. As a result,
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the target list that is more similar to the historical lists has an advantage over the less

similar one.

Our second instantiation of oH(·) uses PI-MA-IS to compensate for bias using im-

portance sampling (Eq. 4.10). As in the biased scoring method, it uses the historical l�

and c� to compute comparison outcomes. In contrast to the biased method, each outcome

is then weighted by its probability of occurring under the target distribution (PT ) versus

the original (historical) distribution (PS). Intuitively, this means that observations that are

more likely under the target distribution, and less likely under the original distribution,

obtain a high weight and vice versa. As shown in Theorem 4.2.2, PI-MA-IS produces

unbiased estimates of the comparison outcomes under the target distribution from his-

torical data (collected under the source distribution). While this approach is unbiased, it

may suffer from high variance when the target and source distributions are very different

from each other, which may lead to unreliable outcome estimates.

After computing the live and historical estimates oL and oH , they are combined into a

final estimate oC using the Graybill-Deal estimator (Graybill and Deal, 1959) (line 6–8).

This combined estimator weights the two estimates by the ratio of their sample variances.

It was shown to result in a minimal variance combined estimate when the variances of the

individual estimators are known, and to have strictly lower variance than either individual

estimate when their variances are estimated on samples of size n > 10 (Graybill and

Deal, 1959). Here, the true variance of the estimators are unknown. For the historical

estimator, we can use the sample variance as an estimate of the true variance (line 7).

A limitation of combining historical and live estimates according to Algorithm 12

is that for any given comparison we only have one live data point collected under the

current target rankers, so that the variance of the live outcome(s) cannot be estimated.

Here, we set the weight of the live outcomes to βL = 1 (line 6).1 Our experiments in

§7.2 investigate whether this approximation is sufficient for improved performance. We

hypothesize that the reliability of comparisons can be improved using RHC, leading to

faster learning.

7.1.2 Candidate Preselection

Our second approach for reusing historical data to speed up online learning to rank for

IR uses historical data to improve candidate generation. Instead of randomly generating

a candidate ranker to test in each comparison, it generates a pool of candidate rankers

and selects the most promising one using historical data. We hypothesize that historical

data can be used to identify promising rankers and that the increased quality of candidate

rankers can speed up learning. We call this second approach candidate preselection

(CPS).

Like RHC, CPS is designed as an extension to DBGD (Algorithm 5). Again, we set

λ > 0 to collect historical data. However, CPS uses the collected historical data, not

during the comparison step, but for selecting candidate rankers.

Our implementation of CPS is shown in Algorithm 13, which replaces the method

generate candidate(·) in DBGD. As input, it takes a comparison function oH(·) that

1We also experimented with batches of comparisons where the same original pair was used for several

subsequent comparisons. However, the performance loss due to the resulting smaller number of updates out-

weighed the gain due to improved variance estimates.
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Algorithm 13 (CPS) Generating candidate rankers with preselection, for use as g(δ,wt)
in Algorithm 5.

1: Input: oH(l1, l2, l
�,a�, c�), wt, δ, η, ζ, h = n× (l�i,a

�

i, c
�

i)
2: e = []

// generate candidate pool

3: for i in (i = 1..η) do

4: append(e, generate candidate(δ,wt))
// compare and eliminate candidates using historical data

5: while len(e) > 1 do

6: p ← sample(e, 2)
7: oH ← []
8: for i (i = 1..ζ) do

9: (l�i,a
�

i, c
�

i) ← sample(h, 1)
10: append(oH , oH(l(p[1].w), l(p[2].w), l�,a�, c�))
11: if mean(oH) < 0 then

12: remove(e,p[2])
13: else if mean(oH) > 0 then

14: remove(e,p[1])
15: else

16: remove(e, sample(p, 1))
17: return e[0] // return remaining candidate

estimates comparison outcomes using historical data, a current weight vector wt, the step

size δ, arguments η and ζ that determine the size of candidate pools and the number of

historical comparisons to conduct per ranker pair, and a vector of historical observations

h.

The algorithm is called when a new candidate ranker is requested. It first generates

a pool of η candidate rankers by calling the original generate candidate(·) function

(Algorithm 6) (lines 3–4). The most promising ranker is determined in rounds, where

in each round a randomly selected pair of rankers (line 6) competes. For each pair,

ζ comparisons are performed on historical data points randomly sampled from h with

replacement (8–10). After the individual historical estimates are obtained, their mean

is used to determine which ranker to eliminate from the pool. If there is a winner (i.e.,

oH �= 0), the losing ranker is removed. Otherwise, one of the rankers is selected to be

removed at random. When only one element remains in the candidate pool, it is returned

as the most promising candidate.

Our candidate selection approach ensures that a single candidate is selected after a

finite ((η− 1)× ζ) number of comparisons. Because only the best candidate needs to be

selected, the randomized approach is expected to provide a good balance of effectiveness

and efficiency. In cases where the compared candidates perform equally well, only one

candidate needs to be retained (chosen randomly).

Like in §7.1.1 above, we investigate the effect of bias and variance on this approach

by implementing the comparison method oH(·) in two different ways. First, we instanti-

ate oH(·) as PI-MA (Eq. 4.5), which has low variance but may result in biased estimates
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7. Reusing Historical Interaction Data for Faster Learning

of comparison outcomes under historical data. Second, we instantiate oH(·) as PI-MA-

IS (Eq. 4.10), which removes bias using importance sampling, but may be affected by

variance more strongly.

We hypothesize that CPS can substantially improve the quality of candidate rankers

available for online learning, leading to faster learning than using live data only. Regard-

ing the biased and unbiased version of CPS, we expect only small performance differ-

ences, as the amount of historical data reused per live comparison is small.

7.2 Experiments

Our experiments are designed to investigate whether online learning to rank for IR can

be sped up by using historical data. We use the same experimental setup as in Chapter 6,

detailed in Chapter 3. Again, we run our experiments on the 9 LETOR 3.0 and 4.0 data

sets. Click data is generated using the perfect, navigational, informational, and almost

random click models as shown in Table 3.1. Online performance is measured in terms of

discounted cumulative NDCG with discount factor γ = 0.995.

We compare the following three baseline runs and four experimental runs:

BI Baseline – learning with live data only, using BI (Joachims, 2003; Radlinski et al.,

2008b) for interleaved comparisons as detailed in Algorithm 1 on page 20 (Chap-

ter 2).

TD Baseline – learning with live data only, using TD (Radlinski and Craswell, 2010;

Radlinski et al., 2008b) for interleaved comparisons as detailed in Algorithm 2 on

page 21 (Chapter 2).

PI Baseline – learning with live data only, using PI-MA for interleaved comparisons as

detailed in Algorithm 7 (with Eq. 4.5) on page 51 (Chapter 4).

RHC-B Uses historical data to infer more reliable feedback (Algorithm 12, §7.1.1), with

biased comparison outcome estimates (PI-MA, Eq. 4.5).

RHC-U Uses historical data to infer more reliable feedback (Algorithm 12, §7.1.1), with

unbiased comparison outcome estimates (PI-MA-IS, Eq. 4.10).

CPS-B Uses historical data for candidate preselection (Algorithm 13, §7.1.2) with bi-

ased comparison outcome estimates (PI-MA, Eq. 4.5).

CPS-U Uses historical data for candidate preselection (Algorithm 13, §7.1.2) with un-

biased comparison outcome estimates (PI-MA-IS, Eq. 4.10).

For each data set, we run experiments over 1000 iterations (i.e., simulated interac-

tions), and repeat each experiment 25 times and average results over all folds and repe-

titions. Parameters for the DBGD learning algorithm are selected to match those found

to work best in previous work (w0 is initialized to zero, α = 0.01, δ = 1, cf., (Yue

and Joachims, 2009)). For the remaining parameters, we report results on one setting

(for CPS, η = 6, ζ = 10, and λ = 10; for RHC, λ = 10). The sensitivity to specific

parameter settings is analyzed in §7.4.
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7.3 Results

In this section, we present the results of the experiments described in §7.2, to answer

the main research question of this chapter: Can historical interaction data be reused to

speed online learning to rank? In addition to our main question, we also investigate how

historical data can best be reused (i.e., to improve the reliability of evaluations, as in our

RHC approach, or to improve the quality of candidate rankers, as in CPS), and whether

and how historical data reuse is affected by bias and variance in outcomes estimated from

historical data.

Table 7.1 shows the online performance obtained on all LETOR 3.0 and 4.0 data sets,

for the four click model instantiations specified in Table 3.1, the three baseline runs BI,

TD, PI, and the four experimental runs RHC-B, RHC-U, CPS-B and CPS-U. For reasons

discussed below, TD outperforms the other baseline methods. Therefore, we use TD as

our baseline for significance testing.

Overall, we see that the highest online performance is achieved by our CPS method

for all data sets and click models. The observed improvements over TD are statistically

significant and substantial. For example, for the data set HP2003, the highest perfor-

mance under the perfect click model is 116.85 (using biased estimates of comparison

outcomes), which constitutes an improvement of 7.3% over the best-performing baseline

method TD (cf., row 1). There are only four cases in which the observed improvements

are not statistically significant: for OHSUMED and MQ2008 under the informational

click model (rows 25 and 27), and for MQ2007 and MQ2008 under the almost random

click model (rows 35 and 36). In these cases, small improvements over the baseline are

observed, but they are not statistically significant.

To put the obtained absolute online performance scores in perspective, recall that we

measure discounted cumulative reward, i.e., high online performance is obtained when a

method both learns well (i.e., it achieves high offline performance, in terms of NDCG),

and it learns quickly, i.e., after a small number of interactions. In our experimental setup,

a method that presented perfect result lists (with NDCG = 1) on all interactions could

obtain an online performance of 200.0, while a method that would obtain no reward on

the first 500 interactions and perfect results after would achieve an online performance of

only 15.0. Scores obtained by our methods fall between these two extremes, indicating

that good rankers are learned within a few hundred simulated interactions.

For the baseline methods, which learn from live data only, we find that online per-

formance of BI and TD is very similar, while that of PI is significantly lower for most

data sets and click models. To understand why, we compare the offline performance

and learning speed of these methods (cf., the offline performance on data set NP2003 in

Figure 7.1).2 We see that the final offline performance is very similar (differences are

not statistically significant), and that they also learn equally fast. Thus, PI learns as well

as BI and TD but loses online performance due to the increase in randomization during

interleaving. Compared to the evaluation setting, where PI was shown to outperform

BI and TD when applied to compare rankers over large amounts of data, PI performs

worse (Chapter 4). PI provides fine-grained information about the magnitude of ranker

2We present offline performance plots for only one data set, because plots for the remaining data sets are

qualitatively similar.
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BI TD PI RHC-B RHC-U CPS-B CPS-U

perfect click model

1 HP2003 107.84 108.94 97.62� 89.43� 96.54� 116.85� 114.60�

2 HP2004 99.82 99.72 89.72� 81.75� 88.25� 108.87� 107.44�

3 NP2003 97.94 98.15 88.67� 81.93� 87.36� 108.50� 105.25�

4 NP2004 102.96 102.72 93.50� 88.25� 93.04� 114.95� 112.41�

5 TD2003 40.38 38.81 36.21� 29.84� 33.34� 46.93� 45.31�

6 TD2004 36.19 35.87 34.55� 27.62� 30.65� 44.71� 43.04�

7 OHSUMED 70.68 70.14 68.29� 61.51� 63.86� 75.11� 74.80�

8 MQ2007 59.87 60.18 58.23� 56.09� 57.96� 63.12� 63.73�

9 MQ2008 79.03 77.98 75.57� 76.67 77.28 84.18� 83.44�

navigational click model

10 HP2003 83.84 85.90 76.61� 78.05� 83.80 112.20� 110.42�

11 HP2004 75.32� 80.02 68.91� 64.00� 73.45� 104.14� 99.92�

12 NP2003 77.90 79.99 72.06� 72.36� 77.22 105.81� 102.97�

13 NP2004 83.18� 86.79 75.25� 78.51� 84.37 111.09� 108.22�

14 TD2003 31.74� 33.92 30.41� 27.01� 29.60� 43.63� 42.09�

15 TD2004 31.12 31.05 29.19� 24.98� 27.72� 40.38� 39.20�

16 OHSUMED 67.50 67.64 65.18� 62.24� 61.79� 71.33� 71.76�

17 MQ2007 56.56 57.06 55.78� 55.33� 55.40� 59.60� 59.98�

18 MQ2008 74.14 74.51 72.78� 74.45 73.11 80.46� 79.12�

informational click model

19 HP2003 55.63 55.65 46.87� 42.25� 64.04� 104.87� 100.16�

20 HP2004 42.99 45.02 37.52� 35.91� 55.60� 92.05� 81.10�

21 NP2003 53.38 52.88 45.38� 43.80� 63.59� 101.83� 98.64�

22 NP2004 58.31 57.62 52.32� 47.80� 72.70� 105.46� 98.18�

23 TD2003 22.11 21.99 21.74 19.46� 24.53� 39.43� 37.00�

24 TD2004 23.66 22.87 21.60 20.87� 21.74 28.49� 27.25�

25 OHSUMED 63.39 64.91 60.48� 59.80� 57.06� 63.27 65.39

26 MQ2007 55.29 54.58 53.99 52.20� 54.77 56.41 56.82�

27 MQ2008 73.14 71.83 70.42 70.99 70.38 74.56 73.12

almost random click model

28 HP2003 38.27 40.90 36.32� 49.58� 58.02� 96.73� 89.29�

29 HP2004 35.35 35.60 33.27 41.38� 49.76� 79.82� 80.10�

30 NP2003 39.71 37.07 37.26 47.84� 60.01� 93.94� 92.22�

31 NP2004 40.20� 45.57 41.33 54.67� 65.20� 90.78� 92.72�

32 TD2003 17.41 18.81 19.46 21.53� 24.96� 35.36� 34.02�

33 TD2004 18.92 19.23 18.90 20.14 19.63 27.92� 25.42�

34 OHSUMED 56.41 56.43 57.14 58.35 53.80� 55.52 61.78�

35 MQ2007 52.54� 53.96 52.27� 52.77 52.31� 54.70 54.52

36 MQ2008 69.36 69.75 69.02 70.29 69.15 71.02 71.47

Table 7.1: Online performance (in terms of discounted cumulative reward) when learning

with interleaved comparison methods. Statistical significance is indicated in comparison

with the baseline method TD.
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differences, which leads to more accurate comparisons when outcomes are aggregated

over repeated samples. However, in the online learning to rank setting with live data

only, ranker comparisons are based on a single data sample, and information about the

magnitude of ranker differences is lost. Developing online learning methods that exploit

this additional information is a direction for future work.

Under the almost random click model, where the level of noise is highest, the online

performance achieved under BI, TD, and PI is equivalent. In one case (TD2003, row

32), PI even improves significantly over the baseline TD. Examining the offline perfor-

mance for PI under this noise model (shown for NP2003 in Figure 7.1(d)), we see that

PI performs significantly higher than BI and TD. This suggests that learning with PI is

more robust to noise than when using the other baseline methods. Most likely, the lack

of fidelity shown for these methods in Chapter 4 gets magnified under noise, leading to

slower learning for these methods.

Our methods that learn from historical data are enabled by PI, meaning that to im-

prove performance over the best-performing baseline, TD, the methods need to learn

substantially faster, to overcome the initial performance loss incurred by the randomiza-

tion inherent to PI. For the CPS method, we see that this is the case. The method achieves

much higher online performance than any of the methods that learn with live data only.

Furthermore, the performance gain for reusing historical data is particularly big when

click feedback is noisy, with gains of up to 104.5% under the informational click model

(HP2004, row 20), and up to 153.4% under the almost random click model (NP2003,

row 30). Looking at offline performance (Figure 7.1), we observe that CPS learns faster

than methods that learn from live data only. In particular, the speed-up increases with

noise in the click model, suggesting that CPS can effectively limit the effect of noise in

click feedback.

Performance for RHC is generally lower than that obtained by CPS or the baselines

that only take live data into account. However, with bias correction (RHC-U) and under

noisier feedback, performance of this method increases. First, under all click models,

we see that RHC-U generally outperforms RHC-B. This performance improvement is

statistically significant in most cases (rows 1–8, 10–15, 19–23, 26, and 28–32). In only

two cases, RHC-U performs significantly worse than RHC-B (on OHSUMED, rows 25

and 34), and in the remaining cases, the performance of the two variants of RHC is

equivalent. This performance improvement under RHC-U indicates the importance sam-

pling component used to correct for bias is effective. The resulting unbiased estimates

of comparison outcomes under historical data not only provide a good estimate of the

relative ranker quality, but also indicate how reliable these estimates are so that they can

be properly combined with live estimates.

Looking at the performance of RHC under the perfect click model, we see that its

performance is significantly worse than for the baseline TD on all data sets. Under the

slightly noisier navigational click model, the performance of RHC-B is still worse than

the baseline for most data sets, but that of RHC-U is equivalent to the baseline on six

data sets. Under the informational click model, performance of RHC-U improves sig-

nificantly over the baseline for five data sets (rows 19–24). Finally, under the almost

random click model, the online performance of both variants of RHC improves signifi-

cantly over the baseline for five data sets (rows 28–32), and is statistically equivalent for

the remaining four data sets (rows 33–36). Comparing again to offline performance, we
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BI TD PI RHC-B RHC-U CPS-B CPS-U
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Figure 7.1: Offline performance of the baseline and RHB and CPS online learning to rank

methods on the data set NP2003 in terms of NDCG after up to 1,000 user impressions

with varying click models.

find that RHC learns as quickly as the baseline methods, but cannot make as effective use

of the learned rankers, similar to PI. However, when feedback is noisy, the method does

succeed in making comparisons more reliable (cf., Figure 7.1(c)–7.1(d)). When feedback

is at its noisiest, even the biased method RHC-B learns significantly faster than any of the

baseline methods. Thus, we conclude that RHC can effectively leverage historical data to

make ranker comparisons more reliable, but this results in performance gains only when

click feedback is indeed noisy.

For CPS, the biased version of the method performs slightly better than CPS-U under

perfect clicks (the differences are statistically significant in 4 cases, in rows 1, 3–4, and

6). However, as feedback becomes noisier, these differences become smaller and fewer

differences are statistically significant. Under the navigational click model, results for

three data sets are statistically significant (rows 11–13), under the informational click

model, this is true for two data sets (rows 20 and 22), and under the almost random click

model, this is true for only one data set (row 34). It appears that, in contrast to RHC,

where historical estimates of interleaved comparison outcomes are combined with live
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estimates, accurately compensating for bias in CPS does not lead to further performance

improvements. Instead, correcting for bias using importance sampling increases the noise

of estimates, which may cause small drops in performance, especially when feedback is

very reliable otherwise. While this trend can be observed in our results, performance

differences between CPS-B and CPS-U are small. Therefore, the differences between

these two variants of CPS should be explored in more detail in the future.

Our main results show consistently high performance for our CPS method, which can

achieve significantly and substantially higher online performance than all other methods

tested. We find that reusing historical data using CPS allows faster learning than with

current online learning to rank methods that take only live data into account. For RHC,

we found that the method can reduce noise and improve online performance substantially,

but only when click feedback is noisy. In the next section, we analyze our results in more

detail.

7.4 Analysis

In this section, we first compare the performance of our methods to supervised learning

to rank approaches (§7.4.1). Then we compare our methods’ sensitivity to parameter

settings (§7.4.2 and 7.4.3).

7.4.1 Offline Performance

Most previous work on learning to rank for IR focused on supervised approaches, and

measured the offline performance achieved by learners after all training data had been

processed. Our approach is fundamentally different, as it learns online, from relative

feedback observed on the result lists presented to users. Despite this more limited form

of feedback, we showed in Chapter 6 that effective learning is possible. The algorithms

developed in this chapter further improve on the learning speed of baseline learning al-

gorithms.

To allow for some comparison with supervised learning to rank approaches, we show

the offline performance achieved by CPS-U in terms of NDCG at different cutoffs on the

perfect and informational click models in Table 7.2.3 Note that this implementation of

NDCG differs from that used in the LETOR benchmark (as discussed in §3.5), however

at cutoff 1 (NDCG@1) the two metrics are equivalent.

Performance of CPS is competitive with the supervised learning to rank approaches

included in the LETOR benchmark (Liu, 2009). For all included data sets, CPS with

perfect feedback beats a simple regression approach. In addition, CPS beats more than

half the included (supervised pairwise and listwise) approaches in terms of NDCG@1

on the data sets HP2003, NP2004, and TD2003. On one of these, NP2004, CPS im-

proves over the offline performance of all supervised methods reported in (Liu, 2009)

(best NDCG@1 achieved there is 0.533, while CPS achieves an NDCG@1 of 0.566).

This demonstrates that competitive offline performance can be achieved by CPS, despite

3Results differ slightly from those reported in Hofmann et al. (2013a), as some errors were corrected. The

corrected results are better, but show the same trend (in terms of the relative performance of the method under

perfect and informational feedback).
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perfect informational

N@1 N@3 N@10 N@1 N@3 N@10

HP2003 0.701 0.740 0.771 0.673 0.711 0.742

HP2004 0.590 0.682 0.732 0.529 0.613 0.663

NP2003 0.541 0.657 0.712 0.533 0.643 0.699

NP2004 0.566 0.682 0.738 0.535 0.647 0.700

TD2003 0.326 0.301 0.296 0.262 0.263 0.266

TD2004 0.402 0.359 0.309 0.291 0.272 0.239

OHSUMED 0.484 0.454 0.424 0.437 0.407 0.385

MQ2007 0.321 0.327 0.364 0.288 0.295 0.333

MQ2008 0.348 0.389 0.486 0.309 0.350 0.454

Table 7.2: Offline performance after 1,000 iterations in terms of NDCG and cutoffs 1, 3,

and 10 for CPS-U under the perfect and informational click models.

the limited feedback, after only 1,000 iterations. Further improvements are possible for

longer run times.

The offline performance of CPS remains relatively high under the informational click

model. The reason is that the method compensates for some of the click noise. The

biggest drop in NDCG@1 is observed for the data set TD2004, with a decrease in offline

performance by 28% (from 0.427 to 0.307). The smallest decrease is observed for the

data set NP2003. There, offline performance under the informational click model is

only 1.5% lower (0.533) than under perfect feedback (0.541). Overall, our results show

that good offline performance can be achieved by CPS, even when feedback is noisy.

7.4.2 CPS – Sensitivity to Parameter Settings

Above, we reported results for only one set of parameters. Here, we investigate the

sensitivity of CPS to changes in these parameters. CPS has three parameters: the history

length λ (default: 10), the size of the candidate pool η (default: 6), and the number of

historical comparisons per candidate pair ζ (default: 10). The algorithm is linear in η

and ζ per live update (O(ηζ)). An increase in λ does not significantly affect the run time

of the algorithm, but determines the number of historical samples kept in memory, from

which the samples for candidate comparisons are selected.

Figure 7.2 (parts a–c) shows the online performance achieved by CPS-U under the

navigational click model on the data set NP2003 when varying one parameter at a time.

The online performance of CPS-U in this setting with default parameter settings is 102.97,

as shown in Table 7.1 (row 12). Decreasing η, the size of the candidate pool, to η = 2
leads to a decrease in performance of 12.3% percent (to 90.29). Increasing the number

of candidates to 10 increases online performance to 104.24, a much smaller change of

1.2%. This suggests that the performance reported above (§7.3) can be further increased

by using larger candidate pools. However, returns are expected to diminish as ever more

candidates are used.

For the number of repetitions performed to compare candidate rankers using histori-

cal data (ζ, default setting: ζ = 10), effects are much smaller. We observe a small change
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Figure 7.2: Online performance (min, max, and mean with standard error) after 1,000
iterations for different settings of parameters (a) η, (b) ζ, and (c) λ for CPS and (d) λ for

RHC on the NP2003 data set and the navigational click model. (Note the differences in

scale of the y-axes between plots (a)–(c) and (d).)

in mean online performance when changing the setting to ζ = 5, but the change is not

statistically significant. Increasing the number of repetitions to ζ = 15 results in a small

but significant drop in performance, likely because additional comparisons increase noise

without providing additional information. These results suggest that investing additional

computational resources in increasing ζ is less beneficial than increasing η, as shown

above.

Increasing the history length to λ = 100 significantly decreases the performance of

CPS-U. The reason is that the more recent historical samples used with a smaller λ are

collected on ranker pairs that are more similar to the current candidate rankers. When

older samples are used instead, the variance of historical outcome estimates increases

(under CPS-B, bias would increase), leading to diminished performance.

Overall, we find that performance under CPS can be further improved by increasing

the size of the candidate pool. For the remaining parameters, performance is relatively

stable and decreases gracefully when less optimal settings are used. Finally, our analysis

indicates that additional computational resources are best spent on increasing the size of

the candidate pool (η). Although the linear increase in computation is expected to lead to

sub-linear performance gains, developers of deployed applications are typically willing

to invest in additional computing time when it translates to even small performance gains

(while in a scientific setting computational resources limit what experiments are feasible

to run).

7.4.3 RHC – Sensitivity to Parameter Settings

RHC has only one parameter, the history length λ (cf., Algorithms 5 and 12, default: 10).

This parameter determines how many historical data points are kept in memory, and are

used to compare the current best ranker wt to the candidate ranker w�

t. This method is

linear in λ per live update.

The sensitivity of RHC-U to changes in λ is shown in Figure 7.2, part (d). Setting
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λ = {5, 15} has no significant effect on online performance. The slightly lower perfor-

mance of the original setting of λ = 10 is likely due to noise. We can conclude that

the performance of this algorithm is relatively robust to changes in λ (thus, investing in

additional resources to increase λ is not recommended).

7.5 Conclusion

In this chapter, we investigated whether and how historical data can be reused to speed

up online learning to rank for IR. We proposed two approaches for integrating estimates

based on historical data with a stochastic gradient descent algorithm for online learning to

rank. Our first approach, RHC, uses historical comparison estimates to complement live

comparisons and to make them more reliable. Our second approach, CPS, uses historical

data for preselecting candidate rankers, thereby improving the quality of the rankers that

are evaluated in live interactions with search engine users.

Our experimental evaluation of the proposed methods, based on the nine LETOR data

sets and four click models that allowed us to investigate online performance of the meth-

ods under varying levels of click noise, yielded several insights. First, we found that CPS

can substantially and significantly speed up online learning to rank for IR. We observed

high gains in online performance over methods that use live data only for all click mod-

els. Second, performance gains of CPS were particularly high when click feedback was

noisy. This result demonstrates that CPS is effective in compensating for noise in click

feedback. Third, RHC was found to make ranker comparisons more reliable. However,

positive effects on learning were observed only under noisy feedback and performance

gains were lower than those obtained by CPS. Finally, we found that compensating for

bias in click feedback substantially improved the performance of RHC, where histori-

cal estimates of interleaving outcomes are combined with live outcomes, but had small

(negative) effects on the performance of CPS.

This work is the first to show that historical data can be used to significantly and sub-

stantially improve online performance in online learning to rank for IR. It also demon-

strates that our interleaved comparison methods PI-MA and PI-MA-IS open up new di-

rections for collecting and using interaction data in online learning to rank for IR. In-

terestingly, best results were obtained by improving the quality of the candidate rankers

using CPS. This finding suggests that developing more complex sampling and explo-

ration schemes is a promising direction for follow-up work.

This chapter concludes our investigation of the principles under which online learning

to rank for IR can be reliable and efficient. In the next chapter (Chapter 8), we draw

conclusions from all research chapters and present our main findings and directions for

future work.
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Conclusions

In this thesis, we presented work towards enabling “self-learning search engines” that can

automatically adjust to user behavior and preferences. Broadly, we investigated whether

search engines can learn effectively from user interactions. Online learning to rank for IR

is different from the most commonly used supervised learning approaches, because user

interactions with such a system are most suitable for interpretation as relative feedback,

and because feedback can be noisy and biased (e.g., due to the order in which search re-

sults are displayed). In addition, online learning to rank algorithms need to learn quickly

from the available user interactions, and they need to make use of what has been learned

as well as possible to satisfy users’ expectations even while learning.

The four research chapters of this thesis addressed the challenges of online learning

to rank for IR as follows. First, in Chapter 4, we focused on how to extract information

that is as useful as possible from the noisy, biased user interactions that such a system can

observe. In particular, we analyzed interleaved comparison methods, which allow com-

parisons between rankers using click feedback, and proposed new methods to address

limitations of existing methods. Second, in Chapter 5, we investigated the limitations

of click data and interleaved comparison methods in a real-live application, web search.

Here, we focused on the effects search result presentation may have on user clicks, and

how such effects can influence the outcomes of interleaving experiments. In Chapter 6,

we turned to the online performance of online learning to rank for IR approaches, and

tested the hypothesis that balancing exploration and exploitation can improve online per-

formance in pairwise and listwise online learning to rank. Finally, in Chapter 7, we

focused on the reliability and speed of learning in the online setting. Building on the

interleaved comparison methods developed in Chapter 4, we developed two approaches

for speeding up learning by reusing previously observed interaction data.

Below, we provide a more detailed summary of the contributions and results of our

research, and answer the research questions set out at the beginning of this thesis (§8.1).

We conclude with an outlook on future research directions (§8.2).

8.1 Main Findings

The starting point of this thesis was the earlier finding that implicit user feedback in a

search setting is most reliable when interpreted relative to the presented rankings (Radlin-

ski et al., 2008b). In particular, interleaved comparison methods had previously been
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shown to be able to compare result rankings using click data (Radlinski and Craswell,

2010). The first research questions we addressed in Chapter 4 focused on formalizing the

characteristics of these methods:

RQ 1 What criteria should interleaved comparison methods satisfy?

RQ 2 Do current interleaved comparison methods satisfy these criteria?

To answer the first question, we proposed a framework for analyzing interleaved com-

parison methods in terms fidelity, soundness, and efficiency. Fidelity captures whether

the expected comparison outcomes of an interleaved comparison method reflect differ-

ences in ranking quality as appropriate for an IR experiment. Soundness reflects whether

the estimator of the method produces unbiased and consistent estimates of that expected

outcome. Efficiency reflects the number of data samples required by the method. This

framework allows more formal and systematic comparisons between interleaved com-

parison methods than was previously possible.

Using the proposed framework, we analyzed all existing interleaved comparison

methods, and found that none exhibited fidelity. This means that for each method, there

are cases where the expected outcome of the method does not reflect ranking quality

appropriately.

To address these shortcomings, we designed probabilistic interleave (PI), which takes

into account the magnitude of differences between rankings. We also designed an exten-

sion, PI-MA, to increase efficiency of the method.

RQ 3 Do PI and its extension PI-MA exhibit fidelity and soundness?

RQ 4 Is PI-MA more efficient than previous interleaved comparison methods? Is it

more efficient than PI?

We showed analytically that PI and PI-MA exhibit fidelity and soundness. Then, we em-

pirically compared the efficiency of PI-MA to existing interleaved comparison methods

and to PI. We found PI-MA to be more efficient than existing methods, and more efficient

than PI, which confirmed our analytical results.

We further extended PI to allow the estimation of interleaved comparison outcomes

from historical data that was collected during earlier comparisons of other (source) rankers.

This extension, PI-MA-IS, combines probabilistic interleaving with importance sam-

pling. Reusing historical data for interleaved comparisons was previously not possible,

resulting in the following questions:

RQ 5 Can historical data be reused to compare new ranker pairs?

RQ 6 Does PI-MA-IS maintain fidelity and soundness?

RQ 7 Can PI-MA-IS reuse historical data effectively?

The central question was whether it was possible to reuse data for interleaved compar-

isons. By showing that PI-MA-IS can indeed reuse such data, we were able to answer

this question affirmatively. We analytically showed that PI-MA-IS is sound, as it main-

tains both fidelity and soundness under data that was collected following a distribution

different from that would be obtained under the target ranker pair to be compared. We
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showed empirically that PI-MA-IS is the only interleaved comparison method that can

effectively reuse historical data.

In Chapter 5 we turned to questions about how user clicks may be affected by result

presentation, and how this may affect interleaving results:

RQ 8 (How) does result presentation affect user clicks (caption bias)?

RQ 9 Can we model caption bias, and compensate for it in interleaving experiments?

RQ 10 (How) does caption bias affect interleaving experiments?

We confirmed that result presentation has a strong effect on click behavior. We pro-

posed and trained models of such caption bias on usage data of a web search engine,

and found that click behavior was best explained by a combination of relevance, posi-

tion, and caption features. The most important caption features included whether a result

was presented with deep links, the amount of highlighting in the title, and the snippet

length. Also, we found that per-document features had a much stronger affect on click

behavior than document-pairwise features (such as whether a result title had more or less

highlighting than the document ranked immediately before or after it). Building on our

probabilistic caption-bias models, we developed extensions of two interleaved compari-

son methods, TD and PI-MA, that compensate for caption bias. In applying our model of

caption bias to six real-life interleaving experiments, we found first evidence that caption

bias can affect the outcome detected in an experiment, e.g., if the experiment includes

rankers that use click data during training.

After developing and investigating new approaches and models for interleaved com-

parisons, we focused on principles of learning from such feedback inferred from user

behavior. When learning from user feedback in an online setting, systems need to en-

sure that high-quality results are presented to satisfy user expectations, but also that the

presented results ensure that high-quality feedback can be collected for future learning.

In Chapter 6 we formulated this exploration-exploitation dilemma for online learning to

rank, and addressed the following research questions:

RQ 11 Can balancing exploration and exploitation improve online performance in on-

line learning to rank for IR?

RQ 12 How are exploration and exploitation affected by noise in user feedback?

RQ 13 How does the online performance of different types (pairwise and listwise) of

online learning to rank for IR approaches relate to balancing exploration and ex-

ploitation?

We developed the first two approaches (one pairwise, one listwise) for balancing ex-

ploration and exploitation in an online learning to rank setting, and found that such a

balance can substantially and significantly improve online performance. We found im-

portant differences between the two developed approaches and under different levels

of noise in click behavior. While the original (purely exploitative) pairwise approach

performs very well under perfect click feedback, it cannot learn from noisy click data.

Adding exploration could partially compensate for this performance loss. The original

(purely exploratory) listwise learning approach was found to over-explore under all levels

of noise, and its performance could be significantly improved by balancing exploration

and exploitation.
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In Chapter 7 we combined our interleaved comparison methods PI-MA and PI-MA-

IS to investigate whether reusing historical data for interleaved comparison methods

could be used to improve online learning.

RQ 14 Can previously observed (historical) interaction data be used to speed up online

learning to rank?

RQ 15 Is historical data more effective when used to make comparisons more reliable

(as in RHC), or when used to increase local exploration (as in CPS)?

RQ 16 How does noise in user feedback affect the reuse of historical interaction data for

online learning to rank?

We found that historical data could indeed be used to significantly and substantially im-

prove online learning to rank for IR. While a straightforward application of this data to

make comparisons more reliable (using RHC) resulted in moderate performance gains,

using this data for preselecting new candidate rankers resulted in much higher gains.

Performance gains were highest under noisy click data.

This thesis resulted in insights and algorithms for enabling large-scale online learning

to rank for IR. The software developed for our experiments, along with reference imple-

mentations of the developed interleaved comparison and online learning to rank methods

is available online (see Appendix A for details).

The goal of this thesis is to develop a better understanding of how search engines can

learn from user interactions, and to translate this understanding into new algorithms that

allow more effective learning in an online learning to rank setting. We advanced to-

wards this goal in several ways. We now better understand how rankers can be compared

using interleaved comparisons methods, and what the properties of these methods are.

This understanding was translated into a new set of interleaved comparison methods that

naturally take into account differences between result rankings, and that allow ranker

comparisons using data that was collected with other rankers. Also, we better understand

how the presentation of search results can affect user clicks, and we have developed a

model for measuring and compensating for those clicks in interleaved comparisons. We

learned to improve online performance of online learning to rank for IR by balancing

exploration and exploitation, and found that such a balance is particularly helpful in list-

wise learning. Finally, we showed that it is possible to speed up online learning to rank

for IR by reusing previous interactions for exploring candidate rankers.

The obtained results show that online learning to rank for IR can be efficient and

effective. We expect them to have an impact both on the theoretical development of on-

line learning to rank approaches, and on their practical applications. Our methods enable

online learning to rank in practice, and we hope that they will contribute to practical

search applications in the future. Many search settings have been addressed much less

thoroughly than web search, and achieving good search performance in settings such as

enterprise search or search of personal collections is notoriously difficult. These are the

settings that may most immediately benefit from our results. Another early application

is recency search, where first benefits of online learning have been demonstrated (Moon

et al., 2012). More immediately, our results on interleaved comparison methods is di-

rectly applicable to online evaluation in a manual tuning setting. Using these methods,
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rankers tuned using e.g., expert knowledge or supervised learning, can be compared on

real user interactions to assess their quality from a user perspective. However, in the

long term, we expect that complete online learning to rank solutions will be an important

solution to addressing situational relevance in a scalable manner.

Finally, mechanisms for learning from user interactions are much more broadly ap-

plicable than in an IR setting alone. Until now, these adaptations are often designed

manually, with limited adaptation online. Figuring out how to develop systems that

can automatically adapt to users by online learning is a major challenge. The princi-

ples identified here constitute a step towards that goal. For example, human feedback

may be noisy, and may be more easily interpreted as relative than absolute in many set-

tings, requiring effective algorithms for learning from such feedback. Similarly, many

settings where computers learn directly from their users may require a focus on online

performance, and a balance of exploration and exploitation. When these challenges are

addressed, online learning to rank could facilitate smarter and more natural interactions

between computers and human users.

8.2 Future Work

This thesis resulted in insights and algorithms for enabling online learning to rank for

IR. Beyond these, it opens up many interesting and important directions for future work.

Below, we outline three main areas: real-live applications, smarter exploration, and long-

term learning and planning.

Applications. One important direction for following up on this work is to develop ap-

plications that put the developed methods to work in real search settings. As online learn-

ing to rank methods are only at the beginning of their development, many questions need

to be addressed when making the transition to real-live applications. Within this thesis,

we focused on principles of obtaining feedback and learning from it in an online learning

to rank setting, independent of the particular search context in which these principles and

the resulting technology would be applied. A first step in applying these principles is to

identify sets of ranking features that can provide a good basis for online learning to rank

for a variety of IR settings. Many features have been explored for supervised learning to

rank. These may be similarly effective in the online learning setting. Additional relevant

work has been done in the area of recency search, and features that have been found to

effectively capture temporal aspects of query-document relationships may be applicable.

An orthogonal problem is to determine to what groups of users, queries, or higher-

level tasks learning to rank should be applied. In our experiments, we abstracted from

such fine-grained differences and instead applied online learning to rank with the goal of

identifying global patterns of ranking quality. However, when a system has many users,

large amounts of interaction data can be observed and used to learn rankings for relatively

small groups. Positive effects of personalization have been demonstrated in, e.g., web

search (Matthijs and Radlinski, 2011; Teevan et al., 2008), and we therefore think that

adapting to the preferences of individuals, or small groups of users, can further improve

the performance of search engines that use online learning to rank. Similarly, online

learning has been demonstrated to provide positive effects when adapting to individual
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frequent queries, as well as to global ranking preferences (albeit in a setting with absolute

feedback (Moon et al., 2012)). Challenges that need to be addressed include finding

effective similarity metrics for identifying appropriate levels of adaptation and designing

mechanisms for interpolating between ranking functions learned for different levels of

granularity.

Our methods have been evaluated using simulated user interactions, except in Chap-

ter 5, where we studied effects of search result presentation on user clicks. For studying

principles of online learning and developing new algorithms, our setup had the advantage

that it enabled experiments in various settings, such as different amounts of noise in click

feedback. Naturally, assumptions underlying these simulations need to be tested before

moving these methods to a real setting. In addition to validating our results in more re-

alistic settings, such additional experiments can help develop more complex models of,

e.g., user interaction that can be applied to the online learning to rank setting. Interest-

ing areas include the application of the most recent click models or exploring the use of

implicit feedback beyond clicks.

Smart exploration. A second area of development is to further improve our under-

standing of the fitness landscape in an online learning to rank for IR setting. In some

aspects, this area is similar to the supervised learning setting, where optimizing for the

typically non-smooth and non-differentiable IR metrics proved to be hard, and several

approaches have been developed to address this problem (such as approximations). The

online learning to rank setting differs in that for many of the developed approaches it is

not clear in how far they can be transferred to a setting where only relative feedback is

provided for learning.

In this thesis, we demonstrated the importance of balancing exploration and exploita-

tion in online learning to rank. A better understanding of the fitness landscape in this

setting could help address the question of how best to explore. Current approaches for

online learning to rank for IR are based on stochastic exploration. An advantage is that

the resulting learning approaches make few assumptions about the structure of the fea-

ture and ranking solutions, and that they are very computationally efficient. However,

their random exploration may result in many wasteful exploration steps. Algorithms that

explore more systematically could substantially increase the speed of learning, and there-

fore online performance. Support is given by our results on improved candidate selection

with CPS. By exploring candidate rankers more thoroughly, learning could be sped up

and online performance improved significantly, particularly under noisy click feedback.

Future exploration methods could model the effects of changes on individual features, or

could try to explicitly model the fitness landscape. Obvious starting points for developing

smarter exploration methods for listwise learning are methods for exploration in policy

search RL (Heidrich-Meisner and Igel, 2009; Kalyanakrishnan et al., 2012). For the

pairwise approach, the cost of random exploration is high. Exploration methods based

on active learning approaches (Donmez and Carbonell, 2009; Tian and Lease, 2011; Xu

et al., 2007, 2010) are a promising alternative that may allow more targeted exploration

of promising areas of the solution space. This could reduce the cost of exploration, while

maintaining or even improving long-term learning.

A limitation of our work is that a number of parameters, such as the exploration rates

k and �, and the learning step sizes α and δ in Chapter 6, of our learning methods were
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fixed, typically to values that had resulted in good performance in previous work. In

supervised learning settings, such parameters would be tuned using cross-validation, but

this is not a realistic option in an online learning to rank scenario where no labeled train-

ing data is provided. Results of our experiments with the nine LETOR 3.0 and 4.0 data

sets showed that learning is effective even without additional tuning and that our findings

are stable across data sets and tasks. However, it is likely that better performance can be

obtained with additional tuning, both to a particular online learning to rank setting and

to changes in user behavior and preferences over time (in non-stationary settings). Con-

sequently, an interesting question is whether and how such a system could automatically

adjust its learning parameters to a specific setting.

Long-term planning and learning. A third direction for following up on the work

presented in this thesis is to explore and develop algorithms that adapt to long-term inter-

actions with their users. So far, we have modeled the interactions between search engine

and user as a contextual bandit problem. Relaxing the assumption of independence be-

tween system actions and queries makes the problem much more difficult to address, but

poses opportunities for a diverse range of interaction patterns.

One direction of development is to model interactions between user and search engine

as a full Markov Decision Process (MDP) (Sutton and Barto, 1998), where the agent’s

actions (e.g., retrieval results) can affect the state of the environment (e.g., the cognitive

state of the user). This could enable systems that learn to guide users paths through infor-

mation spaces, by building up towards more complex material, or by adding interactions

with the searcher that can lead to new associations between concepts. Formulating inter-

actions as a partially observable MDP (POMDP) (Kaelbling et al., 1998), would allow

the system to infer states (of the user) when information is partially hidden, similar to a

recent application in the related domain of ad-selection (Yuan and Wang, 2012). While

this and other existing solutions do not address the relative feedback setting, extensions

towards long-term online learning to rank for IR could make use of preference-based RL

methods that are being developed in the RL community (Fürnkranz et al., 2012). The

resulting methods can pave the way towards more effective long-term interactions within

search sessions, over tasks, or over even longer periods of time.
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A
Software

The software used to run the experiments described in Chapters 4, 6, and 7 is made avail-

able as the online learning framework OL2R on http://ilps.science.uva.nl/

resources/online-learning-framework. OL2R contains all software required to

run the experiments, following the experimental setup detailed in Chapter 3.

Below, we describe the prerequisites for running OL2R (§A.1), and give short step-

by-step instructions for running evaluation and learning to rank experiments (§A.2).

Then, we detail the contents of the package, and finish with a brief outline of possible

extensions of this software (§A.3).

A.1 Prerequisites

OL2R is implemented in python, and has the following prerequisites:

• Python - version 2.7 or higher

• PyYaml

• Numpy - version 1.6.1 or higher

A.2 Getting Started

OL2R is provided as an archive in tar format on http://ilps.science.uva.nl/

resources/online-learning-framework. After downloading and extracting the

archive, two types of experiments can be run: online evaluation experiments replicate the

experimental setup of Chapter 4, and online learning experiments replicate the experi-

mental setup of Chapters 6–7.

Setting up and running both evaluation and learning experiments requires the follow-

ing four steps:

1. prepare the data

2. create a configuration file

3. run the experiment

4. summarize experiment outcomes

We provide an example for evaluation experiments in §A.2.1, and an example for learning

experiments in §A.2.2.
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A.2.1 Running Evaluation Experiments

1. Data. OL2R accepts input data in SVMLight format.1 The MSLR-WEB10K and

LETOR 3.0 and 4.0 data sets are provided in the required format and can be obtained

from http://research.microsoft.com/en-us/projects/mslr/ and http://

research.microsoft.com/en-us/um/beijing/projects/letor/, respectively.

For example, download the MQ2008 data set of LETOR 4, and note the location of the

data as $DATA DIR. All tools accept input files in either plain text format, or compressed

using gzip.

For evaluation experiments, data files need to be split in individual files per query –

to enable fast randomization of the queries during the experiment. For this purpose, a

script is provided with the package. It is called as follows:

Listing A.1: Splitting SVMLight data by query.

python src/python/split-query-file.py \

$DATA_DIR/INPUT_FILE $DATA_DIR/MQ2008-SPLIT $FEATURE_COUNT

2. Configuration. To set up an evaluation experiment, prepare a configuration file in

yml format.2 For example, start from the template provided in Listing A.2, and save it as

config-eval.yml (replace DATA DIR and OUTPUT DIR as appropriate).

Listing A.2: Example configuration for evaluation experiments.

query_dir: $DATA_DIR/MQ2008-SPLIT

feature_count: 46

num_runs: 10

num_queries: 1000

result_length: 10

# cascade model with 5 relevance grades

user_model: environment.CascadeUserModel

# for p-click and p-stop provide mappings from relevance grades to

# probabilities (here: perfect click model)

user_model_args:

--p_click 0:0.0, 1:0.2, 2: 0.4, 3: 0.8, 4:1.0

--p_stop 0:.0, 1:.0, 2:.0, 3:.0, 4:.0

# method names can be arbitrary strings and have to be unique

live_evaluation_methods:

- BI

- TD

- DC

- PI-MA

# provide arguments per method in matching order

live_evaluation_methods_args:

- # BI

--class_name comparison.BalancedInterleave

--ranker ranker.DeterministicRankingFunction --ranker_args None

--startinglist random

1For details, see http://svmlight.joachims.org/. A tool for converting whitespace or

comma separated files to SVMLight format is available at http://www.soarcorp.com/svm_
light_data_helper.jsp.

2PyYaml accepts input in Yaml version 1.1. See http://yaml.org/spec/1.1/ for details.
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- # TD

--class_name comparison.TeamDraft

--ranker ranker.DeterministicRankingFunction --ranker_args None

- # DC

--class_name comparison.DocumentConstraints

--ranker ranker.DeterministicRankingFunction --ranker_args None

--startinglist random

- # PI-MA

--class_name comparison.ProbabilisticInterleave

--ranker ranker.ProbabilisticRankingFunction --ranker_args 3

output_dir: $OUTPUT_DIR/experiment-1

output_prefix: evaluation-test-MQ2008

# set to False to avoid accidentally overwriting previous experiments

output_dir_overwrite: True

Note that all interleaved comparison methods that are compared to each other should be

configured to run in the same experiment. This ensures that all methods are run on the

same random sample of queries, which reduces variance in experiment outcomes.

3. Running the experiment. Evaluation experiments are run using configuration files

as follows:

Listing A.3: Running evaluation experiments.

python src/python/evaluation-experiment.py -f config-eval.yml

The experiment output is stored in yml files in the output directory provided in the con-

figuration file.

4. Summarizing experiment outcomes. The output files produced by an evaluation

experiment can be summarized using the script provided with OL2R:

Listing A.4: Summarizing online evaluation experiments.

python src/python/summarize-evaluation-experiment.py --fold_dirs \

$OUTPUT_DIR --metrics live_outcomes.BI live_outcomes.TD \

live_outcomes.DC live_outcomes.PI-MA -t 1 5 10 50 100 500 1000 \

--print_every 10 --output_base $OUTPUT_DIR/experiment-1

Results are aggregated over runs and folds, and arbitrarily many folds can be listed

per experiment. Output is produced in the form of space separated files, one every

print every runs, that can be further processed using e.g., gnuplot. The produced

files provide the accuracies and lower and upper bounds of the 95% binomial confidence

intervals for all compared interleaved comparison methods after t1 . . .tn queries:

Listing A.5: File format of evaluation experiment summaries.

<line> .=. <query_count> <metric_mean> <lower_bound> <upper_bound>

... <metric_mean> <lower_bound> <upper_bound>

<query_count> .=. <integer>

<metric_mean> .=. <float>

<metric_lower_bound> .=. <float>

<metric_upper_bound> .=. <float>
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A.2.2 Running Learning Experiments

1. Data. Data for online learning to rank experiments needs to be pre-processed to

normalize feature values per query. When using LETOR data sets, a normalized version

of the data is already provided in the QueryLevelNorm version of the data. For data sets

that are not normalized per query, we provide a script for pre-processing. Like all other

scripts provided with OL2R, this script accepts files in SVMLight format (as plain text

or compressed using gzip).

Listing A.6: Normalizing data sets per query.

python src/python/normalize-per-query.py \

$DATA_DIR/INPUT_FILE $DATA_DIR/OUTPUT_FILE $FEATURE_COUNT

2. Configuration. The configuration files for learning experiments are similar to those

for evaluation experiments. For example, a test experiment on the MQ2008 data set can

be configured as follows:

Listing A.7: Example configuration for learning experiments.

test_queries: $DATA_DIR/MQ2008/Fold1/test.txt

training_queries: $DATA_DIR/MQ2008/Fold1/Fold1/train.txt

feature_count: 46 # 64 for .Gov, 46 for MQ*, 136 for MSLR

num_runs: 10

num_queries: 500

# cascade model with 3 relevance grades

user_model: environment.CascadeUserModel

# for p-click and p-stop provide mappings from relevance grades to

# probabilities (here: perfect click model)

user_model_args:

--p_click 0:.0, 1:1.0, 2:1.0

--p_stop 0:.0, 1:.0, 2:.0

# baseline listwise learning system with team draft interleaving and

# deterministic rankers

system: retrieval_system.ListwiseLearningSystem

system_args: --init_weights zero --comparison comparison.TeamDraft

--delta 1.0 --alpha 0.01 --ranker_tie random

--ranker ranker.DeterministicRankingFunction

output_dir: $OUTPUT_DIR

output_prefix: MQ2008-Fold1

# set to False to avoid accidentally overwriting previous experiments

output_dir_overwrite: True

In contrast to online evaluation experiments, online learning to rank experiments are

configured for one method at a time (here: baseline listwise learning system with TD).

3. Running the experiment. Learning experiments are run using configuration files as

follows:

Listing A.8: Running online learning to rank experiments.

python src/python/learning-experiment.py -f config-learn.yml
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4. Summarizing experiment outcomes. The output files produced by a learning ex-

periment can be summarized using the script provided with OL2R:

Listing A.9: Summarizing online learning to rank experiments.

python src/python/summarize-learning-experiment.py --fold_dirs \

$OUTPUT_DIR > $SUMMARY_FILE

Arbitrarily many folds can be listed per experiment. Results are aggregated over runs and

folds. The output format is a space separated text file that can be further processed using

e.g., gnuplot. The output files contain the mean and standard deviation of the offline and

online performance after n queries.

Listing A.10: File format of learning experiment summaries.

<line> .=. <query_count> <offline_mean> <offline_stddev> \

<online_mean> <online_stddev>

<query_count> .=. <integer>

<offline_mean> .=. <float>

<offline_stddev> .=. <float>

<online_mean> .=. <float>

<online_stddev> .=. <float>

A.3 Package Contents and Extensions

Apart from the scripts demonstrated above, the OL2R consists of 8 packages that imple-

ment its functionality as follows:

comparison interleaved comparison methods for comparing rankers using

click data; contains the baseline interleaved comparison methods

described in §2.3.1, the probabilistic interleave methods devel-

oped in Chapter 4, and the RHC method developed in Chapter 7

environment click models for simulating user interactions

evaluation evaluation metrics (NDCG)

experiment entry level classes for learning and evaluation experiments

query parse and provide access to collections of queries (with document

features and relevance judgments)

ranker deterministic and probabilistic ranking functions

retrieval system online learning retrieval systems, e.g., for pairwise and listwise

learning to rank; contains the baseline learner DBGD (§2.5.2), the

methods for balancing exploration and exploitation developed in

Chapter 6, and the CPS method developed in Chapter 7

utils various utility functions
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The code is intended to be extended with new interleaved comparison methods and meth-

ods for online learning to rank for IR. The most obvious points for extension are:

• comparison – extend AbstractInterleavedComparison to add new interleaving or

inference methods.

• environment – extend AbstractUserModel to enable evaluation under different as-

sumptions about user behavior.

• evaluation – extend AbstractEval to add evaluation metrics.

• retrieval system – extend AbstractLearningSystem to add a new mechanism for

learning from click feedback.
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Samenvatting

De hoeveelheid digitale data die we elke dag produceren is vele malen groter dan wat

we kunnen verwerken. Het vinden van zinvolle informatie in deze overvloed aan data is

daarom één van de grootste uitdagingen van de 21e eeuw. Zoekmachines zijn één van

de mogelijkheden om grote dataverzamelingen te ontsluiten. Hun algoritmes hebben een

immense ontwikkeling doorgemaakt. Waar zoekmachines eerst simpelweg zoektermen

met documenten vergeleken, zijn het nu complexe systemen die vaak honderden signalen

met elkaar combineren om zo de best mogelijke zoekresultaten voor elke gebruiker te ge-

nereren.

De huidige methoden voor het afstellen van zoekmachineparameters kunnen zeer

effectief zijn, maar vergen vaak veel expertise en handmatige aanpassingen. Deze me-

thoden zijn gebaseerd op zogenoemde gecontroleerde leertechnieken (“supervised learn-

ing”), wat betekent dat ze leren van handmatig geannoteerde voorbeelden van relevante

documenten voor bepaalde zoekvragen. Goede handmatige voorbeelden zijn vaak niet of

onvoldoende beschikbaar, zoals bij gepersonaliseerde zoektoepassingen, bij toegang tot

gevoelige data en bij toepassingen die met de tijd veranderen.

Dit proefschrift richt zich op het ontwikkelen van nieuwe online leertechnieken,

gebaseerd op het principe van versterkend leren (“reinforcement learning”). In tegen-

stelling tot gecontroleerde technieken kunnen deze direct van de interacties tussen zoek-

machine en gebruiker leren. Deze interacties kunnen vaak eenvoudig verzameld wor-

den, maar zijn door onzuiverheden en ruis moeilijk te interpreteren. De belangrijkste

uitdaging is daarom het ontwikkelen van technieken die deze interactie goed kunnen

interpreteren. De resultaten van dit proefschrift omvatten onder meer een zuivere sto-

chastische methode die impliciete voorkeuren van gebruikers voor bepaalde zoekresul-

taten nauwkeurig kan detecteren en leermethodes die doeltreffend van de resulterende

relatieve feedback kunnen leren.

De verworven analytische en empirische resultaten laten zien hoe zoekmachines ef-

fectief van gebruikersinteracties kunnen leren. In de toekomst kunnen deze en vergelijk-

bare technieken nieuwe manieren mogelijk maken om waardevolle informatie uit steeds

grotere dataverzamelingen te ontsluiten.
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Zusammenfassung

Die Menge digitaler Daten, die wir täglich produzieren, übersteigt unsere Möglichkeiten

diese zu verarbeiten bei weitem. Eine der größten Herausforderungen des 21. Jahrhun-

derts ist es deshalb, nützliche Informationen in dieser Datenflut zu finden. Suchmaschi-

nen bieten eine Möglichkeit, große Datensammlungen zu erschließen. Ihre Algorithmen

haben eine immense Entwicklung durchlaufen. Aus Maschinen die Suchanfragen Wort

für Wort mit Dokumenten vergleichen, sind komplexe Systeme geworden, die oft hun-

derte von Signalen kombinieren, um die bestmöglichen Suchergebnisse für jeden Nutzer

zu generieren.

Heutige Methoden zur Optimierung von Suchmaschinen können sehr effektiv sein,

benötigen aber meist ein großes Maß an Expertise und manuellem Aufwand. Sie basieren

auf sogenannten überwachten Lernmethoden (“supervised learning”), die von manuell

erstellten Beispielen relevanter Dokumenten für bestimmte Suchfragen lernen. Solche

manuell erstellten Beispiele sind in vielen Bereichen nur bedingt verfügbar, zum Beispiel

bei personalisierten Suchergebnissen, bei Zugang zu sensitiven Daten, oder in Suchan-

wendungen in denen die Nutzeranforderungen sich mit der Zeit verändern.

In dieser Dissertation werden neue online Lernmethoden entwickelt. Diese basieren

auf dem Prinzip des verstärkenden Lernens (“reinforcement learning”) und ermöglichen,

im Gegensatz zu überwachten Lernmethoden, die Entwicklung von Suchmaschinen, die

direkt von Interaktionen mit ihren Nutzern lernen. Spuren von Nutzerinteraktionen sind

ein natürliches Nebenprodukt der normalen Nutzung von Suchmaschinen, und können

deshalb die wirklichen Erwartungen von Nutzern widerspiegeln. Die wichtigste He-

rausforderung ist es jedoch, diese Interaktionen korrekt zu interpretieren, da sie durch

Rauschen und Trends (“bias”) beeinflusst werden. Die Beiträge dieser Dissertation um-

fassen unter anderem eine neue, wahrscheinlichkeitsbasierte, Methode, um Suchergeb-

nisse durch Auswertung von Nutzerverhalten miteinander zu vergleichen. Darauf auf-

bauend werden online Lernmethoden entwickelt, die die resultierenden Vergleiche ef-

fektiv verarbeiten können.

Die erzielten analytischen und empirischen Ergebnisse zeigen wie Suchmaschinen

effektiv von Nutzerinteraktionen lernen können. In Zukunft können diese und ähnliche

Technologien neue Möglichkeiten eröffnen, um wertvolle Information aus stets größeren

Datensammlungen zu erschließen.
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