
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Heilbronner Str. 10, D-10711 Berlin-Wilmersdorf

Detlev Stalling Hans-Christian Hege

Fast and Resolution Independent

Line Integral Convolution

Preprint SC-94-37 (June 1995)

Fast and Resolution Independent

Line Integral Convolution

Detlev Stalling Hans-Christian Hege

Abstract

Line Integral Convolution (LIC) is a powerful technique for generating striking images

and animations from vector data. Introduced in 1993, the method has rapidly found many

application areas, ranging from computer arts to scientific visualization. Based upon lo-

cally filtering an input texture along a curved stream line segment in a vector field, it is

able to depict directional information at high spatial resolutions.

We present a new method for computing LIC images. It employs simple box filter

kernels only and minimizes the total number of stream lines to be computed. Thereby it

reduces computational costs by an order of magnitude compared to the original algorithm.

Our method utilizes fast, error-controlled numerical integrators. Decoupling the charac-

teristic lengths in vector field grid, input texture and output image, it allows computation

of filtered images at arbitrary resolution. This feature is of significance in computer ani-

mation as well as in scientific visualization, where it can be used to explore vector data by

smoothly enlarging structure of details.

We also present methods for improved texture animation, again employing box filter

kernels only. To obtain an optimal motion effect, spatial decay of correlation between in-

tensities of distant pixels in the output image has to be controlled. This is achieved by

blending different phase-shifted box filter animations and by adaptively rescaling the con-

trast of the output frames.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image generation; I.3.6 [Computer

Graphics]: Methodology and Techniques; I.4.3 [Image Processing]: Enhancement

Additional Keywords: vector field visualization, texture synthesis, periodic motion fil-

tering

i

Contents

1 Introduction 1

2 Background 2

3 Making Line Integral Convolution Fast 4

4 Streamline Integration 7

5 Selecting Streamlines 8

6 Texture Map Convolution 9

7 Periodic Motion Filters 11

7.1 Intensity Correlation . 11

7.2 Frame Blending . 13

7.3 Variable Velocities . 14

8 Smooth Detail Enlargement 16

9 Results 17

10 Conclusion 20

ii

1 Introduction

Generation of textured images from various kinds of vector fields has become an

important issue in scientific visualization as well as in animation and special ef-

fects. In 1993 Cabral and Leedom presented a powerful technique for imaging

vector data called line integral convolution [1]. Their algorithm has been used as

a general tool for visualizing vector fields. Additionally it has broad applications

for image enhancement. A major drawback of the original algorithm, however, is

its high computational expense and its restriction to a fixed spatial resolution.

In this paper we present an improved algorithm for line integral convolution,

in which computation of streamlines is algorithmically separated from that of con-

volution. This allows us to exploit economies and to provide wider functionalism

in each of the computational steps. The new algorithm

• is about an order of magnitude faster than original line integral convolution,

making interactive data exploration possible

• is more accurate by employing an adaptive, error-controlled streamline in-

tegration technique

• is resolution independent, enabling the user to investigate image details by

smooth detail enlargement (zooming)

• improves texture animation using shifted box filter kernels together with a

simple blending technique.

In recent years a number of methods for artificially generating textures have

been suggested. These methods cover a variety of applications. In the field of sci-

entific visualization texture-based methods are of special interest because they al-

low the display of vector fields in an unrivaled spatial resolution. Traditionally,

vector data has been represented by small arrows or other symbols indicating vec-

tor magnitude and direction. This approach is restricted to a rather coarse spatial

resolution. More sophisticated methods include the display of stream lines [8],

stream surfaces [10], flow volumes [14], as well as various particle tracing tech-

niques [19, 9, 11]. These methods are well suited for revealing characteristic fea-

tures of vector fields. However, they strongly depend on the proper choice of seed

points. Experience shows that interesting details of the field may easily be missed.

Texture-based methods are not affected by such problems. They depict all parts

of the vector field and thus are not susceptible to missing characteristic data fea-

tures. In addition they achieve a much higher spatial resolution, which in some

sense can be viewed as the maximum possible resolution since the minimum pos-

sible feature size of a textured image is a single pixel. In an early method intro-

duced by van Wijk [18] a random texture is convolved along a straight line segment

1

oriented parallel to the local vector direction. Line integral convolution (LIC) [1]

modifies this method, so that convolution takes place along curved stream line seg-

ments. In this way field structure can be represented much more clearly. Forssell

[5] describes another extension that allows her to map flat LIC images onto curvi-

linear surfaces in three dimensions.

Vector fields are not only of relevance in science and engineering. Many ob-

jects of our natural environment exhibit characteristic directional features which

are naturally represented by vector data. Consequently algorithms for turning such

data into pictorial information are of great importance for synthetic image genera-

tion, image post-processing, and computer arts [6, 16]. The variety of directional

filters offered by commercial image processing software is just one evidence for

this.

The remainder of the paper is organized as follows. Section 2 provides math-

ematical background and fixes notation. The basic ideas of the new algorithm are

outlined in section 3. In the following three sections we present algorithms for fast

and accurate streamline integration, discuss some optimization issues, and sketch

strategies for fast texture map sampling. We then discuss periodic motion filter-

ing and smooth detail enlargement. Finally we present some results and give an

outlook concerning various aspects of LIC methods.

2 Background

Before looking at line integral convolution, let us introduce vector fields formally,

define some characteristic features and fix notation. For more detailed expositions

on vector fields see standard texts on vector analysis, e.g. [13]. Restricting our-

selves to the simplest case, we consider a stationary vector field defined by a map

v :R2→ R
2 ,x �→ v(x).

The directional structure of v can be graphically depicted by its integral curves,

also denoted flow lines or stream lines1. An integral curve is a path σ(u) whose

tangent vectors coincide with the vector field:

d

du
σ(u) = v(σ(u)) (1)

Like any path, σ(u) can be reparametrized by a continous, strictly increasing func-

tion without changing its shape and orientation. For our purpose it is convenient

to use arc-length s. Noting that ds/du = |v(σ(u))| we have

d

ds
σ(s) =

dσ

du

du

ds
=

v

|v|
≡ f (σ(s)). (2)

�The image of integral curves (“lines of force”) and their graphical representation played a cru-

cial role in Faradays development of the field concept during 1820-1850 [15].

2

Of course, this reparametrization is only valid in regions of non-vanishing |v|, i.e.

for non-degenerate curves σ. To find a stream line through x the ordinary differ-

ential equation (2) has to be solved with the initial condition σ(0) = x. It can

be proved that there is a unique solution if the right hand side f locally obeys a

Lipschitz-condition. In particular this condition is fulfilled for any function with

continuous first derivative. Otherwise, there may exist multiple solutions at a sin-

gle point x, i.e. multiple stream lines may start at that point. A typical example are

point sources in an electrostatic field. Numerical integrators used in LIC have to

be robust enough to handle such cases. Beside isolated singularities also discon-

tinuities occur quite often in vector fields. Usually these are encountered across

the boundaries of distinctly characterized field regions, e.g. regions with different

electromagnetic properties. An example of this is shown in Fig. 1.

Figure 1: LIC image of a vector field (electrical field) containing discontinuities. Field

strength jvj is indicated by color.

3

Given a stream line σ, line integral convolution consists in calculating the in-

tensity for a pixel located at x0 = σ(s0) by

I(x0) =
∫ s0+L

s0−L
k(s− s0) T (σ(s)) ds. (3)

Here T denotes an input texture, usually some sort of random image like white

noise. The filter kernel k is assumed to be normalized to unity. The convolution op-

eration (3) causes pixel intensities to be highly correlated along individual stream

lines, but independent in directions perpendicular to them. In the resulting images

the directional structure of the vector field is clearly visible. Usually good results

are obtained by choosing filter length 2L to be 1/10th of the image width. It is pos-

sible to simultaneously visualize field strength |v| by coloring or animating LIC

images.

3 Making Line Integral Convolution Fast

In traditional LIC for each pixel in the output image a separate stream line segment

and a separate convolution integral are computed. There are two types of redun-

dancies in this approach. First, a single stream line usually covers lots of image

pixels. Therefore in traditional LIC large parts of a stream line are recomputed very

frequently. Second, for a constant filter kernel k very similar convolution integrals

occur for pixels covered by the same stream line. This is not exploited by tradi-

tional LIC. Consider two points located on the same stream line, x1 = σ(s1) and

x2 = σ(s2). Assume, both points are separated by a small distance ∆s = s2− s1.
Then for a constant filter kernel k obviously

I(x2) = I(x1) − k

s1−L+∆s
∫

s1−L

T (σ(s)) ds + k

s1+L+∆s
∫

s1+L

T (σ(s)) ds. (4)

The intensities differ by only two small correction terms that are rapidly computed

by a numerical integrator. By calculating long stream line segments that cover

many pixels and by restricting to a constant filter kernel we avoid both types of

redundancies being present in traditional LIC.

To design a fast LIC algorithm, we have taken an approach which relies on

computing the convolution integral by sampling the input texture T at evenly

spaced locations xi along a pre-computed stream line σ(s). For the moment we

assume that input texture and output image are of the same size, like in traditional

LIC. The distance between different sample points is denoted by ht. We initiate

4

x0=σ(s0)

x1 x2
x

−1
x

−2

Figure 2: The input texture is sampled at evenly spaced locations xi along a stream line

σ. For each location the convolution integral I(xi) is added to the pixel containing xi. A

new stream line is computed only for those pixels where the number of samples does not

already exceed a user-defined limit.

stream line computation for some location x0 = σ(s0) (see Fig. 2). The convolu-

tion integral for this location is approximated as

I(x0) = k
n
∑

i=−n

T (xi), with xi = σ(s0 + iht). (5)

To ensure normalization we take k = 1/(2n+1). The resulting intensity is added

to the output image pixel containing x0. Calculation of more accurate trapezoidal

sums instead of Riemann sums is nearly as fast, but does not pay in terms of the

visual effect. After having computed I(x0), we step in both directions along the

current stream line, thereby updating the convolution integrals as follows

I(xm+1) = I(xm) + k [T (xm+1+n)− T (xm−n)]

I(xm−1) = I(xm) + k [T (xm−1−n)− T (xm+n)].
(6)

For each sample point the corresponding output image pixel is determined and the

current intensity is added to that pixel. In this way we efficiently obtain intensities

for many pixels covered by the same stream line. The probability for an output im-

age pixel to be hit by a sample point is proportional to the length of the line segment

covering that pixel. This can be used to set up some sort of quality control. Run-

ning through all output image pixels, we require the total number of hits already

occurred in each pixel to be larger than some minimum. If the number of hits is

smaller than the minimum, a new stream line computation is initiated. Otherwise

that pixel is skipped. At the end accumulated intensities for all pixels have to be

normalized against the number of individual hits. Basically our algorithm (refer-

enced as ‘fast-LIC’ hereafter) can be described by the following pseudocode:

5

for each pixel p

if (numHits(p) < minNumHits) then

initiate stream line computation with x� = center of p

compute convolution I(x�)
add result to pixel p

set m = 1
while m < some limit M

update convolution to obtain I(xm) and I(x
�m)

add results to pixels containing xm and x
�m

set m = m+ 1
for each pixel p

normalize intensity according to numHits(p)

There are a number of remarks necessary at this point. First, if stream line seg-

ments were computed for each pixel separately, the discrete sampling approach

would be tainted with major aliasing problems, unless ht is chosen much smaller

than the width of a texture cell. However, if a single stream line is used for many

pixels, correlation of pixel intensities along the stream line is guaranteed because

exactly the same sampling points are used for convolution. We found a step size

of ht = 0.5 times the width of a texture cell to be completely sufficient. Although

we have assumed input texture and output image to be of the same size, the fast-

LIC algorithm can easily be generalized to set these sizes independently. This is

necessary for smooth detail enlargement as discussed in Sect. 8.

The order in which all the output image pixels are processed is of some im-

portance for the efficiency of the algorithm. The goal is to hit as many uncovered

pixels with each new stream line as possible. Some optimization strategies are dis-

cussed in Sect. 5.

In our algorithm the computation of stream line segments can be performed

without referencing input texture or output image. This allows us to utilize power-

ful, adaptive numerical integration methods. We have implemented several differ-

ent integrators, which are discussed in Sect. 4. These methods not only accelerate

stream line tracking significantly in homogeneous regions, but also ensure high ac-

curacy necessary for resolving small details. Accuracy is especially important in

fast-LIC because multiple stream lines determine the intensity of a single pixel. If

these lines are incorrectly computed, the LIC pattern gets disturbed. This is most

evident near the center of a vortex in the vector field.

Accurate stream line integration also offers new opportunities for texture ani-

mation using shifted filter kernels, cf. Sect. 7. For animation we need a full sized

convolution range. Therefore, when a stream line leaves the domain of v, we con-

tinue the path in the current direction. For texture sampling all points are remapped

to fall somewhere into the input texture. We continue stream lines in a similar way

if |v| vanishes or if a singularity was encountered. Of course, artificially contin-

ued stream line segments can not be used to determine intensities of the underlying

pixels.

6

4 Streamline Integration

Usually the vector field will not be available in functional form. For sake of sim-

plicity we assume v to be given at discrete locations on an uniform grid. Vector

values at intermediate locations have to be computed by interpolation. We use bi-

linear interpolation. Of course, better interpolation schemes can be employed if

more information is available about the field. Sometimes global field properties

are known, e.g. the existance of closed stream lines. In general these properties are

not retained, when a local interpolation scheme like bilinear interpolation is used.

In particular closed stream lines in the true vector field may no longer be closed

in the interpolated field [12]. However, in practice errors due to interpolation are

usually much smaller than errors caused by a poor numerical integrator, unless v

is given on a very coarse grid.

Bilinear interpolation results in a representation of the field that is not dif-

ferentiable across the boundaries of grid cells. Therefore, to integrate Eq. (2) in

general we can’t rely on sophisticated algorithms like extrapolation methods or

predictor-corrector schemes, which require a very smooth right hand side. Instead

we have employed traditional Runge-Kutta methods. Accompanied with modern

error monitoring and adaptive step size control these methods are quite competi-

tive [17, 7, 3]. We also have to take into account that in many applications vector

fields arise that are very rough or even discontinuous. In such cases stream line

integration is confronted with the potential risk of missing small details embedded

in homogeneous regions. This problem can be tackled by delimiting the maximum

allowed step size of an adaptive numerical integrator. At the extreme, a really safe

method would require stepping from cell to cell in the v-grid.

A fast and accurate general-purpose stream line integrator can be built up from

the well-known classical fourth-order Runge-Kutta formula. This formula requires

four evaluations of the right hand side to proceed from some point x to some other

point φ̂hx located a step size h ahead on the same stream line:

k1 = hf (x)

k2 = hf (x+ 1
2
k1)

k3 = hf (x+ 1
2
k2)

k4 = hf (x+ k3)

φ̂hx = x+
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(h5) (7)

The equation is called fourth-order because it resembles the true solution up to a

power of h4. However, an integration method is rather useless without any means

for estimating the actual value of the error term. It turns out that an independent

third-order approximation φ̄hx can be computed by reusing some of the interme-

diate steps in (7), namely

φ̄hx = x+
k1

6
+

k2

3
+

k3

3
+

hf (φ̂hx)

6
+O(h4). (8)

7

The difference between both methods simply equals to

∆ = φ̂hx− φ̄hx =
1

6
(k4 − hf(φ̂hx)). (9)

This term is an estimate of the error of the less accurate formula. However, it can

be shown [3] that in many cases this estimate can be safely used to control the step

size of the more accurate method, too.

The idea of adaptive step size control is to choose h as large as possible while

observing a user-defined error tolerance TOL. For p-th order integration methods

the error term scales as hp+1. Therefore if a step size h results in some error ∆, an

optimized step size h∗ can be obtained by

h∗ = h p+1

√

ρ · TOL/∆, (10)

with a safety factor ρ < 1. With this equation a control mechanism can be set up as

follows. We ask the integrator to step forward by h and compute∆ from Eq. (9). If

∆ is bigger than TOL, we repeat the current step with h = h∗. Otherwise, we pro-

ceed and take h = min(h∗, hmax) for the next iteration, where hmax is the maximum

allowed step size. If h becomes much smaller than the grid spacing, we assume that

a singularity was encountered and terminate stream line integration. The resulting

adaptive numerical integrator, denoted as RK4(3) hereafter, turns out to be very

robust and well suited for our application.

We have also implemented two fifth order methods with fourth order error

estimation. The first method due to Dormand and Prince [4] requires five f -

evaluations per iteration. The other due to Cash and Karp [2] requires six. In our

case, where the right hand side f is obtained by bilinearly interpolating between

discrete grid points, the higher order methods usually will not be significantly su-

perior to RK4(3), except for smooth vector fields sampled at high resolution. How-

ever, experience shows that they will never be significantly inferior either.

5 Selecting Streamlines

For the fast-LIC algorithm it is not only important to quickly compute single

stream lines, but also to process the output image pixels in such an order that the

total number of stream line computations is minimized. For instance it is not a

good idea to process pixels in scanline order, because it would be quite probable

that new stream lines hit pixels already being covered by other lines. Instead of

looking for the optimal pixel to be processed next, we simply subdivide the image

into smaller blocks, taking the first pixel of each block, then the second, and so on.

With this method the number of computed stream lines is typically about 2% of

8

the number of image pixels. It is possible to incorporate some more sophisticated

schemes here like Sobol quasi-random sequences [17], which may be combined

with methods for finding areas in the image not covered by stream lines so far.

To obtain an approximately equal stream line density in the image, we stop

following an individual line after some distance Mht (cf. pseudocode in Sect. 3).

Ideally, this length should be adjusted automatically. If lots of previously covered

pixels are encountered, computation should be terminated. However, currently we

are using a much simpler scheme which nevertheless works reasonably well. We

use a fixed M until a certain percentage of pixels is hit. For the remaining pixels

we simply compute a short stream line segment and the corresponding convolu-

tion integral, but do not traverse the stream line further. Usually a covering limit

of 90% and a value Mht of about 50-100 pixel widths yield optimal run times, but

these values are not that critical for overall performance.

A simple way to compensate for a non-optimal stream line selection strategy is

to decrease the minimum number of hits required for a pixel. Even with a low limit

the total number of hits for each pixel may be large due to stream lines which are

computed later. In fact, for all images in this paper we have taken a limit of only

a single hit. Despite this low value, each pixel usually will be covered by several

stream lines, as may be seen from Fig. 2.

6 Texture Map Convolution

The ODE solvers discussed in Sect. 4 are able to quickly compute long stream

lines at guaranteed high accuracy. However, the actual step sizes used by these

integrators are usually much bigger than the distance ht needed for texture sam-

pling. Therefore we have to interpolate between every two neighbouring locations

returned by the ODE solver. The distance between these locations and the curva-

ture of the stream line may easily take values that prohibit the use of a simple linear

interpolation scheme. This is illustrated in Fig. 3. Average increments from 10 to

30 times the spacing of the v-grid are quite common in practice.

A much better approximation of stream lines can be obtained using cubic Her-

mite-interpolation, for convenience with a rescaled parameter u ∈ [0, 1],

p(u)=au3+bu2+cu+d, u=
s−sn

sn+1−sn
(11)

with coefficients

a = 2p(0)− 2p(1) + p′(0) + p′(1)

b = −3p(0) + 3p(1)− 2p′(0)− p′(1)

c = p′(0)

d = p(0).

9

Figure 3: Distances between stream line points as returned by the adaptive numerical inte-

grators are usually so large that cubic interpolation is necessary to track the path for texture

sampling.

p and p′ expressed in terms of stream line position and orientation are

p(0) = xn p′(0) = (sn+1−sn) f(xn)

p(1) = xn+1 p′(1) = (sn+1−sn) f(xn+1).

This ensures that the first derivative at the boundaries of the interpolation interval

is represented correctly. Since we need to evaluate the cubic interpolation poly-

nomial at evenly spaced sample points only, a forward difference scheme can be

employed for stream line tracking. Forward differences are defined by

∆1p(u) = p(u+ δ)− p(u)

= 3aδu2 + (3aδ2 + 2bδ)u+ aδ3 + bδ2 + cδ

∆2p(u) = ∆1p(u+ δ)−∆1p(u)

= 6aδ2u+ 6aδ3 + 2bδ2

∆3p(u) = ∆2p(u+ h)−∆2p(u)

= 6aδ3 = const.

To step along the curve with constant increment δ = ht/(sn+1−sn) we first have

to compute ∆1p(u0), ∆
2p(u0), and ∆3p(u0); then intermediate positions are ob-

tained by using the recursive relationships

p(uk+1) = p(uk) + ∆1p(uk)

∆1p(uk+1) = ∆1p(uk) + ∆2p(uk)

∆2p(uk+1) = ∆2p(uk) + ∆3p(uk).

10

After initialization, forward differences require just three additions per component

to evaluate the polynomial, instead of three additions and three multiplications re-

quired by Horner’s rule.

Note, that we cannot assume u0 to be zero, because in general the distance be-

tween two neighbouring positions returned by the integration algorithm will not be

a multiple of ht. Instead, the remainder of ht which just doesn’t fit into the previous

interval anymore will serve as the initial offset for the next interval.

It should be noted that we do not necessarily need to keep interpolation sepa-

rate from stream line integration. As an interesting alternative so-called continous

integration methods might be considered [7]. These provide dense output, i.e. so-

lution values at intermediate points x̃ = xi + θh with 0 < θ ≤ 1. The trick is

to gather appropriate information during integration to constitute an interpolation

polynomial that can be evaluated without much additional cost. For the 5-th order

method of Dormand and Prince a 4-th order continous extension is possible with-

out an extra function evaluation; the solution becomes the fifth-order solution for

θ = 1 [7].

7 Periodic Motion Filters

LIC images can be animated by changing the shape and location of the filter kernel

k over time. The apparent motion is well suited to envision vector field direction

in addition to the pure tangential information contained in static images. In previ-

ous work [1] specially designed periodic filter kernels have been used to achieve a

motion effect. On first sight it might appear difficult to combine texture animation

with the fast-LIC algorithm, since the latter is restricted to constant filter kernels,

i.e. box filters. However, this is not the case. In the following we will first intro-

duce the notion of intensity correlation. We will then present a simple blending

technique that keeps intensity correlation constant over time and thereby achieves

high quality animations.

7.1 Intensity Correlation

Using box filters, an obvious method to animate LIC images is to cycle the boxes

through some interval along the stream lines. If this is done with equal velocity

for all pixels, a periodic sequence arises. Cycling a box filter can be easily accom-

plished with the fast-LIC algorithm. Essentially we just have to add some periodic

offset function to the limits of the convolution sum in Eq. (5).

It turns out that this naive approach is not well suited for animation since no-

ticeable artifacts are introduced when the boxes reenter the interval. To see this,

consider two points p1 and p2 on a single stream line that are half a filter length

11

apart. The corresponding pixel intensities initially have a 50% correlation because

half of the texture cells being convolved are covered by both filter boxes. When

the filter boxes reenter the interval, correlation suddenly drops to zero, as depicted

in the following figure:

d

→

→

→

→

→

→

t0

t2

t1

2d

50%

25%

0%

Correlation

p
1

p
2

An intensity correlation function ξ measuring the amount of overlap between filter

kernels k for two points separated by a distance d may be defined as

ξ(d, t) =

∫

min(k(s, t), k(s+ d, t)) ds
∫

k(s, t) ds
(12)

for each frame t. For a cycled box filter a plot of this function is shown in Fig. 4a.

The length of the filter box was chosen to be 0.5 times the length of the interval.

Reduced correlation results in a smaller feature size in the resulting LIC images.

This is perceived as a disturbing artifact in animation. Note, that at the same time

distant points temporarily become correlated.

d

t

d

t

a) b)

Figure 4: Intensity correlation between two points on a single stream line for different

motion filter kernels: box filter (a) and Hanning filter (b). Two periods are shown in t-

direction.

To achieve a smoother motion Cabral and Leedom [1] suggested to employ a

weighted filter kernel made up of two so-called Hanning filters.

k(s, t) =
1 + cos(κs)

2
×

1 + cos(nκs+ ωt)

2

12

with κ = 2π/2L. For n = 2 the corresponding correlation is depicted in Fig. 4b.

This function varies significantly less over time than the correlation for the cycled

box filter. However, it cannot be used in conjunction with the fast-LIC algorithm.

Fortunately, there is a simple method capable of generating periodic animation se-

quences that can be used in fast-LIC. With this method no artifacts at all occur due

to reentering filter boxes.

7.2 Frame Blending

Consider an image sequence Bn, n = 0, 1, ..., N−1, with a filter box running along

some stream line segment, but not reentering at the beginning. Obviously, such

a sequence is not periodic anymore, but it will exhibit a constant intensity corre-

lation over time. We have simply discarded all frames associated with the peaks

in Fig. 4a. A periodic sequence A of length N/2 may be obtained by smoothly

blending between phase-shifted B-frames, namely

An = w1(n)BnmodN + w2(n)B(n+ 1

2
N)modN (13)

with the weights w1 and w2 chosen as follows:

0 N/2 N 3N/2 n

1

w2

w1

This means that frames get less and less weighted as their filter boxes get closer

to the extreme positions. Whenever wi equals one, the middle frame of B will be

visible. For each pixel both intensity contributions are completely independent,

provided that filter boxes do not overlap. In this case averaging multiple LIC im-

ages is statistically equivalent to computing the convolution integral from a mod-

ified input texture given as the weighted average of two textures distributed in the

original way. While effective filter length L remains the same, averaging multi-

ple frames causes the contrast of the resulting image to be reduced. This has to be

compensated.

In raw LIC images intensity I of a single pixel usually is given by convolving

a large number of independent texture cells. Therefore the central limit theorem

of statistics applies and I can assumed to be gaussian distributed, that is

ψ(I) = const. exp(−
(I − µ)2

2σ2
). (14)

13

���
���

���
���
��� ���

���
���
���

�������
����

���
���

← ← ← ← ←

ψ

I

t1 t2 t3 t4 t1

Figure 5: Snapshots from a periodic LIC animation obtained by frame blending. The first

and the last image are identical. The figure contains a schematic view of the differently

weighted filter boxes moving along the stream line. In the lower part intensity histograms

of the blended images are shown. To keep contrast constant, intensity has to be rescaled

to fit the original gaussian distribution.

Here µ and σ2 denote average and variance of the intensity distribution ψ, respec-

tively. Any linear combination of independent gaussian distributed quantities will

again be distributed gaussian. The resulting variance is given by σ2
res =

∑

w2
i σ

2
i .

Consequently, after averaging multiple LIC images of equal µ and σ2, the original

intensity distribution and therefore also contrast can be restored by a simple linear

scaling,

I ←
I − µ

√

w2
1 + w2

2

+ µ. (15)

Figure 5 summarizes the process of frame blending and intensity rescaling. Note,

that for Eq. (15) to be valid intensities need to be statistically independent. This

is guaranteed if the filter boxes in the frames being averaged do not overlap, i.e. if

filter length does not exceed 0.5 times the length of the interval. As an alternative

we may also use two image sequences computed from completely different input

textures. In this case a periodic sequence of length N would be obtained.

7.3 Variable Velocities

The simple blending technique described above comes to its real value when the

texture is to be animated with variable velocities for each pixel. Such animations

are useful to display not only vector direction and orientation, but also to give an

impression of vector magnitude |v|.
For variable velocities the standard filter cycling approach will not yield pe-

riodic sequences anymore. Forsell [5] describes a technique for endlessly playing

14

back a variable motion movie from a fixed number of pre-computed constant speed

images. The final intensity for a pixel is computed by interpolating the pixel inten-

sities from those two images, where the filter kernel phase approximately resem-

bles the actual value. However, there still remains a major problem. With ongoing

time, filter kernel phases for neighbouring pixels will lose any correlation. Dras-

tic spatio-temporal aliasing effects are introduced. For example the texture may

appear to move in the opposite direction in some areas.

To avoid these effects we build up a variable speed animation from only such

frames, where the filter kernel phases are correlated. Correlated frames can be pro-

duced by letting filter boxes move some variable distance proportional to their ve-

locity, as depicted in the following picture:

t0
→v1

→v2 < v1

t2

→

→

t1

→

→

To generate a periodic sequence we would like to use the blending technique de-

scribed above again. However, in general the intensities being averaged are not

independent because filter boxes overlap in regions of low velocity. Therefore

Eq. (15) is not valid anymore. It is also not a good idea to use two image se-

quences computed from different input textures. This would cause the LIC pat-

tern to change over time in regions of low velocity. Although no flow would be

perceived, blending between different patterns is somehow irritating. Instead, we

have to rescale intensity locally according to the actual amount of filter box over-

lap. Overlap is inversely proportional to velocity and may be described by a num-

ber u ∈ [0, 1]. An expression for the resulting local variance can be derived

by splitting blended intensity into three independent contributions, one due to the

overlapping part and two due to the non-overlapping parts of the individual boxes:

σ2
res =

(

(w2
1 + w2

2)(1− u)2 + u2
)

σ2. (16)

With this equation we are able to rescale intensity of every pixel so that the original

σ2 is restored. In this way a high quality animation sequence is obtained.

It should be noted that building up animation sequences from shifted box filter

convolutions requires accurate stream line computation, because highly unsym-

metric convolution ranges can occur. These will emphasize errors due to poor nu-

merical integration. For example, circular stream lines may be falsely depicted as

15

spirals. Artifacts of this kind are usually disguised by a symmetric filter kernel

[18, 1]. They do not occur if stream line integration is accurate.

8 Smooth Detail Enlargement

For many applications it is useful to adjust the size of a LIC input texture, so that

a single texture cell is covered by lots of output image pixels. This can be easily

accomplished with the fast-LIC algorithm. As before we are using Eq. (5) to com-

pute the convolution integral for some initial point x0. It is sufficient to sample

the input texture at increments ht = 0.5 times the width of a texture cell. How-

ever, when stepping along the stream line and updating the integral according to

Eq. (6), we use a smaller step size in order to ensure that we hit as many pixels

covered by the stream line as before. Of course, using a smaller step size means

that the value of k in Eq. (6) has to be adjusted, too. The ability to choose the sizes

of input texture and output image independently can be exploited in several ways.

First, in LIC images created from high frequency input textures, such as white

noise, these high frequencies are retained in directions perpendicular to the field

direction. This is caused by the one-dimensional nature of the filter kernel. The

resulting images often look quite busy. Problems arise if the images are to be pro-

cessed by lower bandwidth filters like video tape recorders or image compression

algorithms. The usual remedy is to use a low-pass filtered input texture or to blur

the final LIC images afterwards. With our algorithm convolutions over long dis-

tances L can easily be computed. Therefore a better approach is to simply scale up

the size of a texture cell as well as convolution length L in terms of pixel width.

With traditional LIC it is hard to generate exactly the same image at different

resolutions. It would require to use both a resampled input texture as well as a re-

sampled vector field. This approach is tedious and will unnecessarily introduce

errors. However, often it is important to create several versions of a single im-

age at different resolutions, e.g. adopted to various output devices, or for use in

animations that require distance dependent texture resolution. This can be easily

accomplished with fast-LIC since the size of the output image can be chosen inde-

pendently of vector field resolution and the input texture.

A slightly different utilization of this feature is the computation of smooth

zooms into the vector data field to enlarge interesting details. As an example some

close-ups of details in a vector field are shown in Fig. 6, where linear magnification

extends up to a factor 100.

If the zoom is to be played back in a sequence, care has to be taken for low

magnification factors. If stream line integration is unconditionally started at the

center of output image pixels, then in each frame slightly different stream lines

are computed. This causes annoying variations in texture to occur from frame to

16

Figure 6: Details of a vector field displayed at different magnification factors (1, 3, 15,

100). For each frame a completely new LIC image has been computed. The data set had

a resolution of 5002. At the finest level only a few grid points are covered.

frame. One solution would be to increase the minimal number of hits required for

a pixel. Another more robust method is to try exactly the same stream lines used

in the previous frame first. For these lines the starting point will not correspond

to the center of an output image pixel anymore. Remaining pixels are treated as

usual afterwards. This method yields smooth animation sequences, allowing one

to compute striking trips into details.

9 Results

We have implemented the fast-LIC algorithm in the C++ programming language

within the framework of the modular visualization environment IRIS ExplorerTM .

Within this system it is possible to pre-process the vector field as well as to post-

process the resulting LIC images in various ways. We have found it especially

useful to apply a directional gradient filter to the raw LIC images to further em-

phasize directional information. Another useful method is to multiply color into

the images to simultaneously visualize a scalar quantity in addition to vector field

17

Figure 7: Field of an irradiating dipole antenna. The same data as in Fig. 6 is shown.

Field strength is indicated by color. Note, how gradient filtering and coloring emphasize

the vector field structure.

orientation. The images in Fig. 1, 7, and 8 were post-processed in this way.

The data shown in Fig. 1 comes from so-called hyperthermia simulation, a form

of cancer therapy based upon radiating radio waves into the human hip region. In

Fig. 7 electrical field lines irraditated by a dipole antenna are depicted. This im-

age has to be compared with Fig. 6a. In both cases the same vector field is shown.

However, after gradient filtering and coloring, the image looks much more attrac-

tive. In Fig. 8 a snapshot from the simulation of an instationary fluid flow around

a cylinder is shown. Finally, Fig. 9 presents an application of LIC in modern art.

Table 1 summarizes some execution times of fast-LIC compared to the origi-

nal LIC algorithm of Cabral and Leedom. The numbers, obtained on a SGI Indigo2

with 150 MHz MIPS R4400, are in seconds. They refer to the vector fields shown

in Fig. 1, 7 and 8, but do not take into account computing time for gradient filtering

and coloring. For better comparision with the original algorithm the dimensions of

input texture, vector field, and resulting image were chosen to be equal. The actual

18

Figure 8: Flow around a cylinder. Color depicts the value of stream function (upper) and

magnitude of velocity (lower). In the lower image directional information still is clearly

visible, although color does not correspond to stream line shape.

Figure 9: LIC-based variations on a scissors cut of Henri Matisse.

19

L LIC RK CK DP

Hyperthermia

400× 600

10 12.26 3.36 3.65 3.55

20 21.93 3.75 4.15 3.99

40 41.36 4.60 5.20 4.88

Dipole

500× 500

10 18.35 4.35 4.41 4.31

20 34.29 4.78 4.81 4.60

40 71.14 5.61 5.61 5.39

Cylinder

600× 200

10 7.76 1.49 1.54 1.57

20 14.44 1.62 1.65 1.70

40 27.01 1.92 1.99 2.00

Table 1: Performance of the original LIC algorithm compared to the new algorithm using

different numerical integrators: RK = adaptive Runge-Kutta scheme RK4(3), CK = Cash

and Karp, DP = Dormand and Prince (cf. Sect. 4). The boldface entry gives the shortest

time in each row.

sizes are indicated in the table. L is the extent of the convolution integral in one

direction. The table contains different columns for various numerical integrators

we have implemented. These integrators do not differ much in performance. Usu-

ally only about 25% of the time is spent in stream line integration. Most time is

spent in texture sampling. For the hyperthermia data set, fast-LIC performs some-

what worse than in the other examples. This is caused by the discontinuities in the

vector field, forcing the adaptive integrators to choose very small step sizes across

the boundaries. The higher order methods are more affected by this than RK4(3).

10 Conclusion

We have introduced a new line integral convolution algorithm that performs an

order of magnitude faster than previous methods. A feature of our method is the

ability to compute images at arbitrary resolution. We presented methods for pro-

ducing high quality texture animation sequences, employing constant filter kernels

only.

The new techniques have particular significance for computer graphics. They

are useful for fast procedural generation of textures with directional features and

of texture sequences with continously variable spatial resolutions. The production

of such sequences is of growing interest in computer animation, where several ver-

sions of a texture with different spatial resolutions are often needed for different

20

views or output media.

There are a number of directions for future research. We intend to investigate

the visualization of time varying and three-dimensional vector fields. The inclu-

sion of visual representations of global and local vector field characteristics other

than flow lines is also an interesting topic that deserves further investigation.

Finally there is room for considerable further research work with respect to

computer animation, e.g. concerning the production of hierarchies of directional

textures with different spatial resolutions, or new methods for synthesizing vector

fields from images to auto-convolve them. This may lead to a new class of direc-

tional filters for image processing.

Acknowledgements

We would like to thank Charlie Gunn, Roland Wunderling, and Gerhard Zum-

busch for reviewing the manuscript and for various helpful discussions. We are

also grateful to the anonymous reviewers of this paper for their valueable remarks,

and to Brian Cabral and Casey Leedom for making their code available on the net.

References

[1] Brian Cabral and Leith (Casey) Leedom. Imaging vector fields using line integral convo-

lution. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH ’93 Proceedings), vol-

ume 27, pages 263–272, August 1993.

[2] J. R. Cash and Alan H. Karp. A variable order Runge-Kutta method for initial value problems

with rapidly varying right-hand sides. ACM transactions on Mathematical Software, Vol. 16,

pages 201–222, 1990.

[3] Peter Deuflhard and Folkmar Bornemann. Numerische Mathematik II: Integration gewöhn-

licher Differentialgleichungen. Verlag de Gruyter, Berlin, 1994.

[4] J. R. Dormand and P. J. Prince. Higher order embedded Runge-Kutta formulae. J. Comp.

Appl. Math., 7:67–75, 1981.

[5] Lisa K. Forssell. Visualizing flow over curvilinear grid surfaces using line integral convolu-

tion. In Visualization ’94, pages 240–247. IEEE Computer Society, 1994.

[6] Paul E. Haeberli. Paint by numbers: Abstract image representations. In Forest Baskett, edi-

tor, Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 207–214, August

1990.

[7] Ernst Hairer, Syvert Paul Nørsett, and Gerhard Wanner. Solving Ordinary Differential Equa-

tions I, Nonstiff Problems. Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1987.

[8] James L. Helman and Lambertus Hesselink. Visualizing vector field topology in fluid flows.

IEEE Computer Graphics and Applications, 11(3):36–46, May 1991.

21

[9] Andrea J. S. Hin and Frits H. Post. Visualization of turbulent flow with particles. In Visual-

ization ’93, pages 46–52. IEEE Computer Society, October 1993.

[10] Jeff P. M. Hultquist. Interactive numerical flow visualization using stream S urfaces. Com-

puting Systems in Engineering, 1(2-4):349–353, 1990.

[11] Kwan-Liu Ma and Philip J. Smith. Virtual smoke: An interactive 3d flow visualization tech-

nique. In Visualization ’92, pages 46–52. IEEE Computer Society, October 1992.

[12] Gordon D. Mallinson. The calculation of the lines of a three-dimensional vector field. In

Graham de Vahl Davis and Clive Fletcher, editors, Computational Fluid Dynamics, pages

525–534. North-Holland, August 1988.

[13] Jerrold E. Marsden and Anthony J. Tromba. Vector Calculus. W. H. Freeman, New York,

3rd edition, 1988.

[14] Nelson Max, Barry Becker, and Roger Crawfis. Flow volumes for interactive vector field

visualization. In Visualization ’93, pages 19–24, October 1993.

[15] Nancy John Nersessian. Faraday’s field concept. In David Gooding and Frank A. J. L. James,

editors, Faraday Rediscovered: Essays on the Live and Work of Michael Faraday, pages 175–

187. Stockton Press, New York, 1985.

[16] Ken Perlin. An image synthesizer. In B. A. Barsky, editor, Computer Graphics (SIGGRAPH

’85 Proceedings), volume 19, pages 287–296, July 1985.

[17] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 2nd

edition, 1992.

[18] Jarke J. van Wijk. Spot noise-texture synthesis for data visualization. In Thomas W. Seder-

berg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 309–318,

July 1991.

[19] Jarke J. van Wijk. Rendering surface-particles. In Visualization ’92, pages 54–61. IEEE

Computer Society, October 1992.

22

