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Abstract

We revisit a pioneer unsupervised learning technique

called archetypal analysis [5], which is related to success-

ful data analysis methods such as sparse coding [18] and

non-negative matrix factorization [19]. Since it was pro-

posed, archetypal analysis did not gain a lot of popular-

ity even though it produces more interpretable models than

other alternatives. Because no efficient implementation has

ever been made publicly available, its application to impor-

tant scientific problems may have been severely limited.

Our goal is to bring back into favour archetypal analy-

sis. We propose a fast optimization scheme using an active-

set strategy, and provide an efficient open-source implemen-

tation interfaced with Matlab, R, and Python. Then, we

demonstrate the usefulness of archetypal analysis for com-

puter vision tasks, such as codebook learning, signal clas-

sification, and large image collection visualization.

1. Introduction

Unsupervised learning techniques have been widely used

to automatically discover the underlying structure of data.

This may serve several purposes, depending on the task con-

sidered. In experimental sciences, one may be looking for

data representations that automatically exhibit interpretable

patterns, for example groups of neurons with similar acti-

vation in a population, clusters of genes manifesting similar

expression [7], or topics learned from text collections [3].

In image processing and computer vision, unsupervised

learning is often used as a data modeling step for a subse-

quent prediction task. For example, natural image patches

have been modeled with sparse coding [18] or mixture of

Gaussians [25], yielding powerful representations for im-

age restoration. Similarly, local image descriptors have

been encoded with unsupervised learning methods [4, 12,

24], producing successful codebooks for visual recognition

pipelines. Interpretation is probably not crucial for these

prediction tasks. However, it can be important for other pur-
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poses, e.g., for data visualization.

Our main objective is to rehabilitate a pioneer unsu-

pervised learning technique called archetypal analysis [5],

which is easy to interpret while providing good results in

prediction tasks. It was proposed as an alternative to princi-

pal component analysis (PCA) for discovering latent fac-

tors from high-dimensional data. Unlike principal com-

ponents, each factor learned by archetypal analysis, called

archetype, is forced to be a convex combination of a few

data points. Such associations between archetypes and data

points are useful for interpretation. For example, cluster-

ing techniques provide such associations between data and

centroids. It is indeed common in genomics to cluster gene

expression data from several individuals, and to interpret

each centroid by looking for some common physiological

traits among individuals of the same cluster [7].

Interestingly, archetypal analysis is related to popular ap-

proaches such as sparse coding [18] and non-negative ma-

trix factorization (NMF) [19], even though all these formu-

lations were independently invented around the same time.

Archetypal analysis indeed produces sparse representations

of the data points, by approximating them with convex com-

binations of archetypes; it also provides a non-negative fac-

torization when the data matrix is non-negative.

A natural question is why archetypal analysis did not

gain a lot of success, unlike NMF or sparse coding. We be-

lieve that the lack of efficient available software has limited

the deployment of archetypal analysis to promising applica-

tions; our goal is to address this issue. First, we develop an

efficient optimization technique based on an active-set strat-

egy [17]. Then, we demonstrate that our approach is scal-

able and orders of magnitude faster than existing publicly

available implementations. Finally, we show that archety-

pal analysis can be useful for computer vision, and we be-

lieve that it could have many applications in other fields,

such as neurosciences, bioinformatics, or natural language

processing. We first show that it performs as well as sparse

coding for learning codebooks of features in visual recog-

nition tasks [24] and for signal classification [14, 21, 23].

Second, we show that archetypal analysis provides a simple

and effective way for visualizing large databases of images.
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This paper is organized as follows: in Section 2, we

present the archetypal analysis formulation; Section 3 is de-

voted to optimization techniques; Section 4 presents suc-

cessful applications of archetypal analysis to computer vi-

sion tasks, and Section 5 concludes the paper.

2. Formulation

Let us consider a matrix X = [x1, . . . ,xn] in R
m×n,

where each column xi is a vector in R
m representing some

data point. Archetypal analysis learns a factorial representa-

tion of X; it looks for a set of p archetypes Z = [z1, . . . , zp]
in R

m×p under two geometrical constraints: each data vec-

tor xi should be well approximated by a convex combina-

tion of archetypes, and each archetype zj should be a con-

vex combination of data points xi. Therefore, given a set of

archetypes Z, each vector xi should be close to a product

Zαi, where αi is a coefficient vector in the simplex ∆p:

∆p ,

{

α ∈ R
p s.t. α ≥ 0 and

∑p
j=1 α[j] = 1

}

. (1)

Similarly, for every archetype zj , there exists a vector βj

in ∆n such that zj = Xβj , where ∆n is defined as in (1)

by replacing p by n. Then, archetypal analysis is defined as

a matrix factorization problem:

min
αi∈∆p for 1≤i≤n
βj∈∆n for 1≤j≤p

‖X−XBA‖2F, (2)

where A = [α1, . . . ,αn], B = [β1, . . . ,βp], and ‖.‖F de-

notes the Frobenius norm; the archetypes Z are represented

by the product Z = XB. Solving (2) is challenging since

the optimization problem is non-convex; this issue will be

addressed in Section 3. Interestingly, the formulation (2) is

related to other approaches, which we briefly review here.

Non-negative matrix factorization (NMF) [19]. As-

sume that the data X is non-negative. NMF seeks for a

factorization of X into two non-negative components:

min
Z∈R

m×p
+

,A∈R
p×n
+

‖X− ZA‖2F. (3)

Similarly, the matrices Z and A in archetypal analysis are

also non-negative when X is itself non-negative. The differ-

ence between NMF and archetypal analysis is that the latter

involves simplicial constraints.

Sparse Coding [18]. Given a fixed set of archetypes Z

in R
m×p, each data point xi is approximated by Zαi, un-

der the constraint that αi is non-negative and sums to one.

In other words, the ℓ1-norm of αi is constrained to be one,

which has a sparsity-inducing effect [1]. Thus, archetypal

analysis produces sparse approximations of the input data,

and archetypes play the same role as the “dictionary ele-

ments” in the following sparse coding formulation of [18]:

min
Z∈R

m×p,
A∈R

p×n

1

2
‖X−ZA‖2F +λ‖A‖1 s.t. ‖zj‖2 ≤ 1 ∀j. (4)

Since the ℓ1-norm is related to the simplicial constraints

αi ∈ ∆p—the non-negativity constraints being put aside—

the main difference between sparse coding and archetypal

analysis is the fact that archetypes should be convex com-

binations of the data points X. As a result, the vectors βj

are constrained to be in the simplex ∆n, which encourages

them to be sparse. Then, each archetype zj becomes a lin-

ear combination of a few data points only, which is useful

for interpreting zj . Moreover, the non-zero entries in βj

indicate in which proportions the input data points xi are

related to each archetype zj .

Another variant of sparse coding called “local coordi-

nate coding” [26] is also related to archetypal analysis.

In this variant, dictionary elements are encouraged to be

close to the data points that uses them in their decompo-

sitions. Then, dictionary elements can be interpreted as an-

chor points on a manifold representing the data distribution.

2.1. Robust Archetypal Analysis

In some applications, it is desirable to automatically han-

dle outliers—that is, data points xi that significantly differ

from the rest of the data. In order to make archetypal anal-

ysis robust, we propose the following variant:

min
αi∈∆p for 1≤i≤n
βj∈∆n for 1≤j≤p

n
∑

i=1

h (‖xi −XBαi‖2) , (5)

where h : R 7→ R is the Huber loss function, which is often

used as a robust replacement of the squared loss in robust

statistics [11]. It is defined here for any scalar u in R as

h(u) =

{

u2

2ε + ε
2 if |u| ≤ ε

|u| otherwise
, (6)

and ε is a positive constant. Whereas the cost associated

to outliers in the original formulation (2) can be large since

it grows quadratically, the Huber cost only grows linearly.

In Section 3, we present an effective iterative reweighted

least-square strategy to deal with the Huber loss.

3. Optimization

The formulation (2) is non-convex, but it is convex with

respect to one of the variables A or B when the other one

is fixed. It is thus natural to use a block-coordinate descent

scheme, which is guaranteed to asymptotically provide a

stationary point of the problem [2]. We present such a strat-

egy in Algorithm 1. As noticed in [5], when fixing all vari-

ables but a column αi of A and minimizing with respect



Algorithm 1 Archetypal Analysis

1: Input: Data X in R
m×n; p (number of archetypes);

T (number of iterations);

2: Initialize Z in R
m×p with random columns from X;

3: Initialize B such that Z = XB;

4: for t = 1 . . . , T do

5: for i = 1 . . . , n do

6: αi ∈ argminα∈∆p
‖xi − Zα‖22;

7: end for

8: R← X− ZA;

9: for j = 1 . . . , p do

10: βj ∈ argminβ∈∆n

∥

∥

∥

1
‖αj‖2

2

Rαj⊤ + zj −Xβ

∥

∥

∥

2

2
;

11: R← R+ (zj −Xβj)α
j ;

12: zj ← Xβj ;

13: end for

14: end for

15: Return A, B (decomposition matrices).

to αi, the problem to solve is a quadratic program (QP):

min
αi∈∆p

‖xi − Zαi‖
2
2. (7)

These updates are carried out on Line 6 of Algorithm 1.

Similarly, when fixing all variables but one column βj of B,

we also obtain a quadratic program:

min
βj∈∆n

‖X−XBoldA+X(βj,old − βj)α
j‖2F, (8)

where βj,old is the current value of βj before the update,

and αj in R
1×n is the j-th row of A. After a short calcula-

tion, problem (8) can be equivalently rewritten

min
βj∈∆n

∥

∥

∥

∥

1

‖αj‖22
(X−XBoldA)αj⊤+Xβj,old−Xβj

∥

∥

∥

∥

2

2

,

(9)

which has a similar form as (7). This update is carried out

on Line 10 of Algorithm 1. Lines 12 and 11 respectively

update the archetypes and the residual R = X − XBA.

Thus, Algorithm 1 is a cyclic block-coordinate algorithm,

which is guaranteed to converge to a stationary point of the

optimization problem (2), see, e.g., [2]. The main diffi-

culty to implement such a strategy is to find a way to ef-

ficiently solve quadratic programs with simplex constraints

such as (7) and (9). We discuss this issue in the next section.

3.1. Efficient Solver for QP with Simplex Constraint

Both problems (7) and (9) have the same form, and thus

we will focus on finding an algorithm for solving:

min
α∈∆p

[

f(α) , ‖x− Zα‖22

]

, (10)

Algorithm 2 Active-Set Method

1: Input: matrix Z ∈ R
m×p, vector x ∈ R

m;

2: Initialize α0 ∈ ∆p with a feasible starting point;

3: Define A0 ← {j s.t. α0[j] > 0};
4: for k = 0, 1, 2... do

5: Solve (11) with Ak to find a step qk;

6: if qk is 0 then

7: Compute ∇f(αk)=−2Z
⊤(x−Zαk);

8: if ∇f(αk)[j] > 0 for all j /∈ Ak then

9: Return α∗ = αk (solution is optimal).

10: else

11: j⋆ ← minj /∈Ak
∇f(αk)[j];

12: Ak+1 ← Ak ∪ {j
⋆};

13: end if

14: else

15: γk ← maxγ∈[0,1] [γ s.t. αk + γqk ∈ ∆p];
16: if γk < 1 then

17: Find j⋆ such that αk[j] + γkqk[j] = 0;

18: Ak+1 ← Ak \ {j
⋆};

19: else

20: Ak+1 ← Ak;

21: end if

22: αk+1 ← αk + γkqk;

23: end if

24: end for

which is a smooth (least-squares) optimization problem

with a simplicial constraint. Even though generic QP

solvers could be used, significantly faster convergence can

be obtained by designing a dedicated algorithm that can

leverage the underlying “sparsity” of the solution [1].

We propose to use an active-set algorithm [17] that can

benefit from the solution sparsity, when carefully imple-

mented. Indeed, at the optimum, most often only a small

subset A of the variables will be non-zero. Active-set algo-

rithms [17] can be seen as an aggressive strategy that can

leverage this property. Given a current estimate α in ∆p at

some iteration, they define a subsetA = {j s.t. α[j] > 0},
and find a direction q in R

p by solving the reduced problem

min
q∈Rp

‖x− Z(α+ q)‖22 s.t.

p
∑

j=1

q[j] = 0 and qAC = 0,

(11)

where AC denotes the complement of A in the index set

{1 . . . , p}. Then, a new estimate α′=α+γq is obtained by

moving α onto the direction q—that is, choosing γ in [0, 1],
such that α′ remains in ∆p. The algorithm modifies the

set A until the algorithm finds an optimal solution in ∆p.

This strategy is detailed in Algorithm 2.

Open-source active-set solvers for generic QP exist, e.g.,

quadprog in Matlab, but we have found them too slow

for our purpose. Instead, a dedicated implementation has



proven to be much more efficient. More precisely, we use

some tricks inspired from the Lasso solver of the SPAMS

toolbox [15]: (i) initialize A with a single variable; (ii)

update at each iteration the quantity (Z⊤
AZA)

−1 by using

Woodbury formula; (iii) implicitly working with the matrix

Q = Z⊤Z without computing it when updating β.

As a resutl, each iteration of the active-set algorithm

has a computational complexity of O(mp+ a2) operations

where a is the size of the set A at that iteration. Like

the simplex algorithm for solving linear programs [17],

the maximum number of iterations of the active-set algo-

rithm can be exponential in theory, even though it is much

smaller than min(m, p) in practice. Other approaches than

the active-set algorithm could be considered, such as the

fast iterative shrinkage-thresholding algorithm (FISTA) and

the penalty approach of [5]. However, in our experiments,

we have observed significantly better performance of the

active-set algorithm, both in terms of speed and accuracy.

3.2. Optimization for Robust Archetypal Analysis

To deal with the Huber loss, we use the following varia-

tional representation of the Huber loss (see, [11]):

h(u) =
1

2
min
w≥ε

[

u2

w
+ w

]

. (12)

which is equivalent to (6). Then, robust archetypal analysis

from Eq. (5) can be reformulated as

min
αi∈∆p for 1≤i≤n
βj∈∆n for 1≤j≤p
wi≥ε for 1≤i≤n

1

2

n
∑

i=1

1

wi
‖xi −XBαi‖

2
2 + wi. (13)

We have introduced here one weight wi per data point. Typ-

ically, (1/wi) becomes small for outliers, reducing their

importance in the objective function. Denoting by w =
[w1, . . . , wn] the weight vector in R

n, the formulation (13)

has the following properties: (i) when fixing all variables

A,B,w but one vector αi, and optimizing with respect to

αi we still obtain a quadratic program with simplicial con-

straints; (ii) the same is true for the vectors βj ; (iii) when

fixing A and B, optimizing with respect to w has a closed

form solution. It is thus natural to use the block-coordinate

descent scheme, which is presented in Algorithm 3, and

which is guaranteed to converge to a stationary point.

The differences between Algorithms 1 and 3 are the fol-

lowing: each time a vector αi is updated, the correspond-

ing weight wi is updated as well, where wi is the solution

of Eq. (12) with u = ‖xi − Zα‖2. The solution is actually

wi = max(‖xi − Zα‖2, ε). Then, the update of the vec-

tors βj is slightly more involved. Updating βj yields the

following optimization problem:

min
βj∈∆n

∥

∥

∥

(

X−XBoldA+X(βj,old − βj)α
j
)

Γ1/2
∥

∥

∥

2

F
,

(14)

Algorithm 3 Robust Archetypal Analysis

1: Input: Data X in R
m×n; p (number of archetypes);

T (number of iterations);

2: Initialize Z in R
m×p with random columns from X;

3: Initialize B such that Z = XB;

4: Initialize w in R
n with wi = 1 for all 1 ≤ i ≤ n;

5: for t = 1 . . . , T do

6: for i = 1 . . . , n do

7: αi ∈ argminα∈∆p
‖xi − Zα‖22;

8: wi ← max(‖xi − Zα‖2, ε);
9: end for

10: Γ← diag(w)−1 (scaling matrix);

11: R← X− ZA;

12: for j = 1 . . . , p do

13: βj ∈ argminβ∈∆n

∥

∥

∥

RΓαj⊤

αjΓαj⊤ + zj −Xβ

∥

∥

∥

2

2
;

14: R← R+ (zj −Xβj)α
j ;

15: zj ← Xβj ;

16: end for

17: end for

18: Return A, B (decomposition matrices).

where the diagonal matrix Γ in R
n×n carries the inverse of

the weights w on its diagonal, thus rescaling the residual of

each data point xi by 1/wi as in (13). Then, it is possible to

show that (14) is equivalent to

min
βj∈∆n

∥

∥

∥

∥

1

αjTΓαj
(X−XBoldA)Γαj⊤ +Xβj,old−Xβj

∥

∥

∥

∥

2

2

,

which is carried out on Line 13 of Algorithm 3.

4. Experiments

We now study the efficiency of archetypal analysis in

various applications. Our implementation is coded in C++

and interfaced with R, Python, and Matlab. It has been in-

cluded in the toolbox SPAMS v2.5 [15]. The number of it-

erations for archetypal analysis was set to T = 100, which

leads to a good performance in all experiments.

4.1. Comparison with Other Implementations

To the best of our knowledge, two software packages im-

plementing archetypal analysis are publicly available:

• The Python Matrix Factorization toolbox (PyMF)1 is

an open-source library that tackles several matrix factoriza-

tion problems including archetypal analysis. It performs an

alternate minimization scheme between the αi’s and βj’s,

but relies on a generic QP solver from CVX.2

• The R package archetypes3 is the reference implemen-

1http://code.google.com/p/pymf/.
2http://cvxr.com/cvx/.
3http://archetypes.r-forge.r-project.org/.

http://code.google.com/p/pymf/
http://cvxr.com/cvx/
http://archetypes.r-forge.r-project.org/


tation of archetypal analysis for R, which is one of the most

widely used high-level programming language in statistics.

Note that the algorithm implemented in this package devi-

ates from the original archetypal analysis described in [5].

We originally intended to try all methods on matrices X

in R
m×n with different sizes m and n and different numbers

p of archetypes. Unfortunately, the above software pack-

ages suffer from severe limitations and we were only able

to try them on small datasets. We report such a comparison

in Figure 1, where the computational times are measured on

a single core of an Intel Xeon CPU E5-1620. We only re-

port results for the R package on the smallest dataset since it

diverged on larger ones, while PyMF was several orders of

magnitudes slower than our implementation. We also con-

ducted an experiment following the optimization scheme of

PyMF but replacing the QP solver by other alternatives such

as Mosek or quadprog, and obtained similar conclusions.

Then, we study the scalability of our implementation in

regimes where the R package and PyMF are unusable. We

report in Figure 2 the computational cost per iteration of our

method when varying n or p on the MNIST dataset [13],

where m = 784. We observe that the empirical complex-

ity is approximately linear in n, allowing us to potentially

learn large datasets with more than 100 000 samples, and

above linear in p, which is thus the main limitation of our

approach. However, such a limitation is also shared by clas-

sical sparse coding techniques, where the empirical com-

plexity regarding p is also greater than O(p) [1].

Figure 1: Experimental comparison with other implemen-

tations. Left: value of the objective function vs computa-

tional time for a dataset with m = 10, n = 507 and p = 5
archetypes. Our method is denoted by arch. PyMF was

too slow to appear in the graph and the R-package exhibits

a non-converging behavior. Right: same experiment with

n= 600 images from MNIST [13], of size m= 784, with

p = 10 archetypes. The R package diverged while PyMF

was between 100 and 1000 times slower than our approach.

4.2. Codebook Learning with Archetypal Analysis

Many computer vision approaches have represented so

far images under the form of a “bag of visual words”, or

by using some variants of it. In a nutshell, each local patch

Figure 2: Scalability Study. Left: the computational time

per iteration when varying the sample size n for different

numbers of archetypes p. The complexity of our implemen-

tation is empirically linear in n. Right: the same experi-

ment when varying p and with fixed sample sizes n. The

complexity is more than linear in p.

(small regions of typically 16 × 16 pixels) of an image is

encoded by a descriptor which is invariant to small defor-

mations, such as SIFT [12]. Then, an unsupervised learn-

ing technique is used for defining a codebook of visual pat-

terns called “visual words”. The image is finally described

by computing a histogram of word occurrences, yielding a

powerful representation for discriminative tasks [4, 12].

More precisely, typical methods for learning the code-

book are K-means and sparse coding [12, 24]. SIFT de-

scriptors are sparsely encoded in [24] by using the formula-

tion (4), and the image representation is obtained by “max-

pooling” the sparse codes, as explained in [24]. Spatial

pyramid matching (SPM) [12] is also used, which includes

some spatial information, yielding better accuracy than sim-

ple bags of words on many benchmark datasets. Ultimately,

the classification task is performed with a support vector

machine (SVM) with a linear kernel.

It is thus natural to wonder whether a similar perfor-

mance could be achieved by using archetypal analysis in-

stead of sparse coding. We thus conducted an image classi-

fication experiment by using the software package of [24],

and simply replacing the sparse coding component with

our implementation of archetypal analysis. We use as

many archetypes as dictionary elements in [24]—that is,

p = 1024, and n = 200 000 training samples, and we call

the resulting method “archetypal-SPM”. We use the same

datasets as [24]—that is, Caltech-101 [9] and 15 Scenes

Categorization [10, 12]. The purpose of this experiment

is to demonstrate that archetypal analysis is able to learn

a codebook that is as good as sparse coding and better than

K-means. Thus, only results of similar methods are repre-

sented here such as [12, 24]. The state of the art on these

data sets may be slightly better nowadays, but involves a

different recognition pipeline. We report the results in Ta-

bles 1 and 2, where archetypal analysis seems to perform as

well as sparse coding. Note that KMeans-SPM-χ2 uses a

χ2-kernel for the SVM [12].



Algorithms 15 training 30 training

KMeans-SPM-χ2 [12] 56.44 ± 0.78 63.99 ± 0.88

KMeans-SPM [24] 53.23 ± 0.65 58.81 ± 1.51

SC-SPM [24] 67.00 ± 0.45 73.20 ± 0.54

archetypal-SPM 64.96 ± 1.04 72.00 ± 0.88

Table 1: Classification accuracy (%) on Caltech-101

dataset. Following the same experiment in [24], 15 or 30

images per class are randomly chosen for training and the

rest for testing. The standard deviation is obtained with 10

randomized experiments.

Algorithms Classification Accuracy

KMeans-SPM-χ2 [12] 81.40 ± 0.50

KMeans-SPM [24] 65.32 ± 1.02

SC-SPM [24] 80.28 ± 0.93

archetypal-SPM 81.57 ± 0.81

Table 2: Classification accuracy (%) on Scene-15 dataset.

Following the same experiment in [24], 100 images are ran-

domly chosen for training and the rest for testing. The stan-

dard deviation is obtained with 10 randomized experiments.

4.3. Digit Classification with Archetypal Analysis

Even though sparse coding is an unsupervised learn-

ing technique, it has been used directly for classification

tasks [14, 21, 23]. For digit recognition, it has been ob-

served in [21] that simple classification rules based on

sparse coding yield impressive results on classical datasets

such as MNIST [13] and USPS. Suppose that one has

learned on training data a dictionary Zk in R
m×p for ev-

ery digit class k = 0, . . . , 9 by using (4), and that a new

test digit x in R
m is observed. Then, x can be classified by

finding the class k⋆ that best represents it with Zk:

k⋆ = argmin
k∈{0,...,9}

[

min
α∈Rp

1

2
‖x− Zkα‖

2
2 + λ‖α‖1

]

, (15)

where λ is set to 0.1 in [21] and the vectors x are normal-

ized. Since we want to compare archetypal analysis with

sparse coding, it is thus natural to also consider the corre-

sponding “archetype” classification rule:

k⋆ = argmin
k∈{0,...,9}

[

min
α∈∆p

‖x− Zkα‖
2
2

]

, (16)

where the Zk are archetypes learned for every digit class.

Note that when archetypes are made of all available train-

ing data, the convex dual of (16) is equivalent to the nearest

convex hull classifier of [16]. We report the results when all

the training data is used as archetypes in Table 3, and when

varying the number of archetypes per class in Figure 3. We

include in this comparison the performance of SVM with a

Gaussian kernel, and the K-nearest neighbor classifier (K-

NN). Even though the state of the art on MNIST achieves

less than 1% test error [14, 22], the results reported in Ta-

ble 3 are remarkable for several reasons: (i) the method AA-

All has no hyper-parameter and performs almost as well as

sparse coding, which require choosing λ; (ii) AA-All and

SC-All significantly outperform K-NN and perform simi-

larly as a non-linear SVM, even though they use a simple

Euclidean norm for comparing two digits; (iii) none of the

methods in Table 3 exploit the fact that the xi’s are in fact

images, unlike more sophisticated techniques such as con-

volutional neural networks [22]. In Figure 3, neither SC nor

AA are helpful for prediction, but archetypal analysis can

be useful for reducing the computational cost at test time.

The choice of dictionary size K should be driven by this

trade-off. For example, on USPS, using 200 archetypes per

class yields similar results as AA-All.

Dataset AA-All SC-All SVM K-NN

MNIST 1.51 1.35 1.4 3.9

USPS 4.33 4.14 4.2 4.93

Table 3: Classification error rates (%) on the test set for

the MNIST and USPS datasets. AA-All and SC-All respec-

tively mean that all data points are used as archetypes and

dictionary elements. SVM uses a Gaussian kernel.
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Figure 3: Train and Test error on MNIST (left) and USPS

(right) when varying the number p of archetypes. All-AA

means that all data points are used as archetypes.

4.4. Archetyping Flickr Requests

Data visualization has now become an important topic,

especially regarding image databases from the Internet [6],

or videos [8]. We focus in this section on public images

downloaded from the Flickr website, and present a method-

ology for visualizing the content of different requests using

robust archetypal analysis presented in Section 2.1.

For example, we present in this section a way to visu-

alize the request “Paris” when downloading 36 600 images

uploaded in 2012 and 2013, and sorted by “relevance” ac-

cording to Flickr. We first compute dense SIFT descrip-

tors [12] for all images, and represent each image by using



a Fisher vector [20], which have shown good discrimina-

tive power in classification tasks. Then, we learn p = 256
archetypes. Interestingly, we observe that the Flickr request

has a large number of outliers, meaning that some images

tagged as “Paris” are actually unrelated to the city. Thus, we

choose to use the robust version of archetypal analysis in or-

der to reduce the influence of such outliers. We use similar

heuristics for choosing ǫ as in the robust statistics literature,

resulting in ǫ = 0.01 for data points that are ℓ2-normalized.

Even though archetypes are learned in the space of

Fisher vectors, which are not displayable, each archetype

can be interpreted as a sparse convex combination of data

points. In Figure 4 we represent some of the archetypes

learned by our approach; each one is represented by a few

training images with some proportions indicated in red (the

value of the βj’s). Classical landmarks appear in Figure 4a,

which is not surprising since Flickr contains a large num-

ber of vacation pictures. In Figure 4b, we display several

archetypes that we did not expect, including ones about soc-

cer, graffitis, food, flowers, and social gatherings. In Fig-

ure 4c, some archetypes do not seem to have some semantic

meaning, but they capture some scene composition or tex-

ture that are common in the dataset. We present the rest

of the archetypes in the supplementary material, and results

obtained for other requests, such as London or Berlin.

In Figure 5, we exploit the symmetrical relation between

data and archetypes. We show for four images how they de-

compose onto archetypes, indicating the values of the αi’s.

Some decompositions are trivial (Figure 5a); some others

with high mean squared error are badly represented by the

archetypes (Figure 5c); some others exhibit interesting rela-

tions between some “texture” and “architecture” archetypes

(Figure 5b).

5. Discussions

In this paper, we present an efficient active-set strat-

egy for archetypal analysis. By providing the first scalable

open-source implementation of this powerful unsupervised

learning technique, we hope that our work will be useful for

applying archetypal analysis to various scientific problems.

In particular, we have shown that it has promising applica-

tions in computer vision, where it performs as well as sparse

coding for prediction tasks, and provides an intuitive visual-

ization technique for large databases of natural images. We

also propose a robust version, which is useful for processing

datasets containing noise, or outliers, or both.
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