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Abstract—Edges provide important visual information in
scene surfaces. The need for fast and robust feature extraction
from 3D data is nowadays fostered by the widespread availability
of cheap commercial depth sensors and multi-camera setups.
This article investigates the challenge of detecting edges in
surfaces represented by unorganized point clouds. Generally,
edge recognition requires the extraction of geometric features
such as normal vectors and curvatures. Since the normals alone
do not provide enough information about the geometry of the
cloud, further analysis of extracted normals is needed for edge
extraction, such as a clustering method. Edge extraction through
these techniques consists of several steps with parameters which
depend on the density and the scale of the point cloud. In this
paper we propose a fast and precise method to detect sharp edge
features by analysing the eigenvalues of the covariance matrix
that are defined by each point’s k-nearest neighbors. Moreover,
we evaluate quantitatively, and qualitatively the proposed meth-
ods for sharp edge extraction using several dihedral angles and
well known examples of unorganized point clouds. Furthermore,
we demonstrate the robustness of our approach in the noisier
real-world datasets.

I. INTRODUCTION

Edge extraction has attracted a lot of attention in com-
puter vision. Many applications are built around this con-
cept. Examples include object recognition, similarity, regis-
tration, matching, down sampling, and visualization. In non-
photorealistic rendering, sharp edges are used to enhance the
visual perception. Additionally, in the case of segmentation,
knowledge about the position of features can be of great help.
The computer vision community has drawn their attention to
3D scene analysis in recent years using stereo and multi-
camera systems, and specially after the success of commercial
depth sensors, such as MS kinect or Asus Xtion.

Most of the existing research on extracting edges in point
clouds are considering either statistical and geometrical meth-
ods or estimating the normals on sharp edges.

The challenge for estimating normals on the edge feature
points is related to the neighbourhood employed for the normal
estimation. The neighborhood may enclose points belonging to
different surface patches across the edge feature.

In [1]-[3], Weber et al. estimate normals by triangulation.
This technique is quite sensitive, particularly for the relevant
points located around edge. Furthermore, triangulation for
normal estimation is computationally expensive and difficult
to implement in real time for large scale point clouds.

In this paper, we first explore the challenges of sharp edge
extraction in small dihedral angles of a 3D surface. In general
most techniques to extract sharp edges are prone to error
when the dihedral angle is small, due to the local analysis

neighborhood taking points on both sides of the surface edge.
The main contribution of this paper is to evaluate techniques
of sharp edge extraction quantitatively for toy examples and
qualitatively for some 3D shapes. Our intention is to extract
sharp edges through different techniques and then quantita-
tively compare the accuracy of results and their computational
load.

The remainder of the article is organized as follows. Section
IT presents related work, followed by a description of our
approach and architecture in Section III. Section IV reports
the experimental results of our approach, and conclusions are
drawn in section V.

II. RELATED WORK

Sharp feature extraction is a key issue in many scientific
fields, such as computer graphics, medical imaging, computer
vision and computational fluid dynamics. Some research
efforts focus on extracting sharp features on point clouds (3D
data).

A. Edge extraction

There are multiple techniques for the edge and sharp
feature extraction in point clouds, which can be categorized
into the classes hereafter: In [6]-[8] the authors have employed
robust statistics to extract sharp features. In [9], [10] surface
segmentation and in [13] line segmentation has been explored
to extract sharp features. Alternately, [1], [2], [11], [12] pro-
pose a region growing method that segments the point cloud
into clusters and identify the regions with sharp features based
on the analysis of the normals of the points.

Fleischman et al. [6] use statistical techniques in order to
identify sharp features. Neighborhoods of points are segmented
into regions corresponding to the same surface part, and the
creation of neighborhoods is guided by the moving least
squares (MLS) computation. A development of this work by
Daniels et al. [7] extracts feature curves on the reconstructed
MLS surface. The benefit is that points on the sharp feature
can be identified in the case of noisy and rough input data.
Following this idea, Oztireli et al. [8] adopted a robust implicit
moving least-squares (RIMLS) method to locally approximate
the scanned surface and to preserve sharp features. They
have employed kernel regression to extend the moving least
squares (MLS) surface reconstruction with sharp features.
Their method increases the presentation of sharp features by
combining the MLS and local kernel regression.

Demarsin et al. [9] also searched for sharp features in point



cloud data; they are interested in closed sharp features. They
use segmentation to identify the regions of sharp features.
The output is a set of points with many points representing
the feature line. Therefore, they use a graph approach with a
minimum spanning tree for closed feature lines.

Xu et al. [10] proposed a method to segment surface and
extract edge feature lines of irregular fractured fragments,
an accurate surface segmentation is implemented by merging
faces based on face normal vector and roughness, and edge
feature lines are extracted based on the surface segmentation.
Gumbhold et al. [11] present a method that uses the Rieman-
nian tree to build the connectivity information in the point
cloud. Then, they analyze the neighborhood of each point via
principal component analysis (PCA). The Eigen values of the
correlation matrix are used to determine a probability of a point
belonging to a feature, and the kind of feature. This method
can differentiate between line-type features, border and corner
points. The result is a quite dense set of points covering the
feature, independently of whether the feature is sharp or not,
since points with high curvature values are detected.

Weber et al. [1], [2] present a method for detecting sharp
features on an unstructured point cloud; this method computes
a Gauss map clustering on local neighborhoods in order to
discard all points that are unlikely to belong to a sharp feature.
Feng et al. [12] have presented an algorithm for reliably
detecting multiple planes in real time from point clouds. They
have constructed a graph whose node and edge represent
a group of points and their neighborhood respectively. An
agglomerative hierarchical clustering is performed on that
graph to systematically merge nodes belonging to the same
plane.

Noise reduction algorithms such as jump edge filtering may be
suitable, especially for finding better boundaries [1] for each
region.

Lin et al. [13] proposed a method that is capable of accurately
extracting plane intersection line segments from large-scale
raw scan points. The 3D line-support region, namely, a point
set near a straight linear structure, is extracted simultaneously.
The 3D line-support region is fitted by a Line-Segment-
Half-Planes (LSHP) structure, which provides a geometric
constraint for a line segment, making the line segment more
reliable and accurate.

In addition Wang et al. [24] employ the majority voting
scheme, in order to detect distinct geometric features such as
sharp edges and outliers in a scanned point cloud.

To obtain sharp edge features precisely it is essential to
estimate normals accurately using a convenient neighbourhood
points. In the following section we will summarize the normal
estimation techniques on the sharp edge features.

B. Normal estimation

Reliable estimation of normal vectors at each point in a

scanned point cloud has become a fundamental step in point
cloud data processing. Extracting sharp edge features from a
3D point cloud requires accurate normals as input in order to
generate high quality surfaces.
The performance of common point based rendering techniques
is much dependent on the accuracy of the input normals. In
this section, we review some research on the computation of
normals; specifically, some efforts on normal estimation to
extract sharp features from point clouds.

Park et al. [14] proposed EGG (Elliptic Gabriel Graph) which
is an intuitive extension of the Gabriel graph (GG), using an
elliptic influence region. EGG provides balanced neighbors
by considering both distance and directional spread and can
be used for normal vector estimation.

Holzer et al. [15] have presented two methods for fast
estimation of surface normals from organized point cloud data
using integral images. The use of integral images makes it
possible to adapt the considered neighborhood size according
to depth and object borders without any additional cost in
terms of processing speed.

Demarsin et al. [9] extract closed sharp feature lines to create
a closed curve network. They used a first order segmentation
to extract candidate feature points and process them as a
graph to recover the sharp feature lines. They considered the
Delaunay triangulation to estimate normal and the normal
of each sample point is estimated as the normal of the least
squares plane through the neighbors.

Grim et al. [16] have concentrated on non-uniformly sampled
and noisy point data. The output of the algorithm they
propose is a surface normal for each data point, a local
surface approximation in the form of a one-ring, the local
shape (flat, ridge, bowl, saddle, sharp edge, corner, boundary),
the feature size, and a confidence value that can be used to
determine areas where the sampling is poor or not surface-like.
Li et al. [17] estimate normals on unorganized point clouds
by employing statistics methods to detect the local tangent
plane for each point. Their proposed algorithm is capable
of dealing with points located in high curvature regions or
near/on complex sharp features.

Zhang et al. [18] use neighbor points normals as prior
knowledge to carry out neighborhood clustering. Afterwards
they design an unsupervised learning process to represent
the prior knowledge as a guiding matrix. Thereupon by
low-rank subspace clustering with the guiding matrix, they
segment the anisotropic neighborhood into several isotropic
neighborhoods. Hence, the normal of the points near sharp
features is estimated as the normal of a plane fitting the
consistent sub-neighborhood. Their method is capable of
estimating normals in noisy and anisotropic samplings, while
preserving sharp features within the original point data.
Wang et al. [19] have developed a normal estimation method
in order to establish effectively a proper neighborhood for
each point in the scanned point cloud. In particular, for a point
near sharp features, an anisotropic neighborhood is formed to
only enclose neighboring points located on the same surface
patch as the point. Neighboring points on the other surface
patches are discarded.

The challenge for estimating normals on the sharp feature
points is that the neighborhood employed for the normal
estimation would enclose points belonging to different surface
patches across the sharp feature. In particular, for a point near
sharp features, an anisotropic neighborhood is formed to only
enclose neighboring points located on the same surface patch
as the point. Neighboring points on the other surface patches
are discarded.

III. PROPOSED APPROACH

Our idea is partly motivated by the sharp feature detection
method proposed by Weber et al. [1]. They propose a normal



clustering approach based on Gauss map clustering to detect
sharp feature points. This algorithm aims to classify points
into sharp feature and non-sharp feature points by clustering
the normals of potential triangles in the neighborhood.

In Weber’s method, each point p has k nearest neighbors.
Hence, there are k(k — 1) possible triangles ! built with p
and two neighborhood points as vertices. Hereon there are
k(k — 1) normal vectors of these triangles. Feature detection
is performed by analysing the clustering behaviour of all these
normals in a given neighborhood of point p.

In this technique, the calculated normals are quite sensitive
to measurement noise. Moreover, if a sample point and two
neighbour points are aligned in a row, then these three points
will not form a triangle. The normal vector does not exist
in this case, as illustrated in Fig. 1. Furthermore, any neigh-
borhood formed by points in the two sides of a sharp edge
may provide normals which are neither reliable nor accurate.
Moreover, for large scale point clouds, this method of normal
estimation tends to present a high computational load in order
to process k(k—1) normals in the neighborhood of each point.
In order to extract edges, Weber proposes to map the set
of normals computed in the neighborhood of each point
to the Gaussian sphere (Gauss map). Then these normals
are clustered with a hierarchical agglomerative (bottom-up)
clustering method [21]. Initially, each point of the Gauss
map is considered as a separate cluster. Afterwards, clusters
are merged step by step into larger clusters. Weber defines
the criterion for the merging process as a distance measure
computed from the angle between normals in the Gauss map,
as defined in (1).
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where S, Sy are two clusters to be compared, |S| is the
number of elements in a cluster and d is the distance mea-
sure on the Gauss map. Each merging increases the distance
between the clusters. The clustering algorithm can stop when
the distance between the existing clusters exceeds a certain
threshold according to the angle between the normals in the
Gauss map, as it is presented in Algorithm 1. When the
agglomeration process results in a single cluster, the point is
considered to lay in a flat plane. In the case of two to four
clusters, Weber proposes to classify the point as a feature point.
We propose a method in III-A to estimate normals using
the PCA (Principal Component Analysis) and then clustering
normals according to Weber’s method [1] to extract sharp edge
features.

However, these techniques of extracting sharp features by
classifying normals are prone to error when the dihedral angle
of the sharp edge is small. Hereupon, we propose a faster
method in III-B to extract sharp features merely by analysing
eigenvalues of covariance matrix that are defined by each
point’s k-nearest neighbors.

A. PCA and agglomerative clustering

We propose to replace Weber’s normal estimation method
(triangulation) with PCA. For each point of the cloud, a least

'Note that Weber computes normals for the discrete Gauss map from the
triangle formed by the sample point p and two neighbors p;, p; as n;; =
pp; X ppj, considering the two possible results n;; = —n;; per triangle.

squares local plane is fitted to its k nearest neighbors. The
normal of each point is the eigenvector corresponding to the
smallest eigenvalue of the covariance matrix. After estimating
the normal of each point, then we consider k nearest neighbors
for the sample point and afterwards cluster the normals of
those k nearest neighbors with the agglomerative technique.
We have estimated normals, and implemented it as proposed
in [20]. An open source implementation of normal estimation
is made available in the Point Cloud Library (PCL) [23] 2,

Algorithm 1 Agglomerative Clustering algorithm

1: procedure AGGLOMERATIVE—CLUSTERING

Consider each element as an individual Cluster at the
first step

for all the Clusters do

Find the angle between each Clusters

end for

Find the pair of clusters with minimum angle

Merge two clusters with the minimum angle as in (1)
: While MinAngle < Threshold

Compute number of clusters
end procedure

»
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B. Eigenvalue analysis

To avoid the complexity of the process of edge extraction,
due to the two step of estimating normals and clustering, in this
section we propose a method to extract sharp edges without
clustering. Since estimating normals by PCA is based on the
eigenvalues of the covariance matrix, we extract edge features
merely with the variation of the eigenvalues for each point.
This statistical approach eliminates the sensitivity of the nor-
mal estimation of sharp edges, furthermore, it removes the
clustering step simplifying the edge estimation process.
Covariance is a measure of how much each of the dimensions
varies from the mean with respect to each other. For a 3-
dimensional data set (X, Y, Z), the 3 x 3 Covariance matrix C
for a sample point p(z,y, z) is given by:

Cov(z,z) Cov(z,y) Cov(x,z)
C = |Cov(y,x) Cov(y,y) Cou(y,=2) 2
Cov(z,x) Cov(z,y) Cov(z,z)

where, for instance Cov(x,y) is the Covariance of z, y
computed as:

S (i —2) (g — 9)

n—1

Cov(z,y) = 3)

Afterwards we explore the Eigenvalues of C: Ay < A1 <
Ao,

In [4], [5] Pauly et. al. introduce the following concept of
surface variation o (p):

Ao

- % 4
Ao+ A1+ A X

or(p)

The surface variation, o (p), for each sample point with &
neighbors allows us to distinguish whether the point belongs

2 Available as a feature in the PCL trunk: http://www.pointclouds.org.



Fig. 1: Mlustration of a case with a sample point
(in brown) and 8 neighbors (in red) used for
triangulation in normal estimation

to a flat plane or to a salient point (edge) in the point cloud.
Since the smallest eigenvalue of covariance matrix for the flat
surfaces is zero then the value of the surface variation for the
flat surfaces would be zero.

IV. EXPERIMENTAL RESULTS

In this section we explain the experimental data set used in
our research and the experimental results of edge extraction.

A. Experimental data

We propose to first study the behavior of edge detectors
with simple synthetic (artificial) point clouds, for which we
can easily label the ground truth. The existence of ground truth
also allows to derive quantitative measures for the evaluation
of different edge extraction techniques.

1) Geometric shapes: The artificial point clouds in this
paper are based on geometric concepts. Since the aim of this
research is to extract sharp edges, we determine edges as the
junction points of two planes. In order to analyse the effect
of edge sharpness on the effectiveness of edge detection, we
sample a surface made of two planar rectangular patches joined
at various dihedral angles. As shown in Fig. 2.

In addition, in order to explore our approach at different scales,
we have designed on a synthetic curved wedge, which has
sharp and curve features. This shape is defined as a para-
metric synthetic shape for objective evaluation of 3D feature
descriptors. The generated shape has the form of a curved
wedge represented by a point cloud, with varying sharpness
and scale at the geometrical edge. We have extended the sharp
edge of the symmetric curved wedge to a cylindrical section,
by considering a scale, which can be defined as the radius of
the cylindrical section. Part of the plane surface is changed into
a cylindrical section at a certain point, keeping the continuity
at the surface transition both in position and in gradient. Fig.
3 shows a synthetic curved wedge for which the radius of the
cylindrical section is 0.2 cm and the angle between the planes
is 90°.

The point distribution is uniform both for the curved and for
the sharp edge objects.

2) Ground truth estimate: The ground truth of geometric
shapes is defined at the synthesis stage by labelling the points
located at the proximity of the sharp edges. The width of the
edge line for the ground truth, is set the equivalent to the
average distance between the points for each neighborhood
size.

el

Fig. 2: Sharp edge features for different dihedral
angles

Fig. 3: Synthetic curved wedge with an angle of 90° and a
radios of the cylindrical section of 0.2cm

B. Experimental results

In order to quantitatively compare the results of the dif-
ferent techniques, we propose to use the F1-Score, as metrics,
defined as:

Precision x Recall
Fp =2x 5)

Precision + Recall

where precision is defined as the proportion of points correctly
detected by the edge extraction technique and recall is defined
as the proportion of points labeled as edges in the ground truth.
Precision and recall are defined as:

TP TP

tprrp dll=7piEy ©

where T'P stands for True Positives representing the number
of correctly detected points, F'P stands for False Positives
representing the number of wrongly detected points, F'N
stands for False Negatives, representing the number of false
rejections, i.e. points that belong to the ground truth but are
not detected by the edge extraction technique.

Precision =

1) Edge extraction for a small dihedral angle: Our first
variation with respect to Weber’s strategy is to implement
PCA to estimate normals instead of triangulation, according to
the explanation in III-A. A second variation implementation is
the proposed strategy for 3D edge detection from the analysis
of the eigenvalues according to the explanation in III-B. We
compare the detection of edge points on several dihedral angles
with the reference method [1] and the two proposed variations.
The values of precision, recall and F1-score for this experiment
are given in Table L.

When comparing triangulation and PCA methods in the two
first column groups of Table I, F1-Scores are almost the same
for the largest angles (90° and 67.5°) whereas triangulation
is slighly more precise for smaller angles (45° and 22.5°).
The computational load of the triangulation method makes
it 60 times slower than PCA, as will be discussed below in



[[ Triangulation Method and Clustering |

PCA and Clustering

|

Eigenvalues Analysis

l

|
F1-Score “ Precision [ Recall [ F1-Score “ Precision [ Recall [ F1-Score ]

[ Dihedral Angle “ Precision [ Recall [
90 0.886 0.956 0.919 0.933 0.896 0.914 0.902 0.909 0.906
67.5° 0.890 0.935 0.912 0.925 0.912 0.918 0.914 0.888 0.901
45° 0.755 0.943 0.839 0.671 0.745 0.706 0.907 0.873 0.890
22.5° 0.589 0.936 0.723 0.602 0.795 0.685 0.795 0.962 0.870

TABLE I: Quantitative evaluation of methods for edge extraction for several dihedral angles

I Max

I Min

Fig. 4: Analysis of the eigenvalues of the covariance matrix. Behaviour of the eigenvalues A\g < A\; < Ay

paragraph IV-B2. The last column group in Table I allows com-
paring these results with the technique of surface variation [4],
[5] for the analysis of eigenvalues according to (4). As shown
in the Table, the results for the 45° and 22.5° dihedral angles
are more accurate compared to the two previous techniques.
The surface variation method does not employ normal vectors
explicitly, whereas for the two previous techniques we have
employed agglomerative clustering to group the normal vectors
in each neighborhood. The common challenge of the agglom-
erative clustering method is to find a suitable angle threshold
for reliable edge extraction results.

The analysis of the eigenvalues of the covariance matrix in
the surface variation method has a certain advantage over the
two previous methods to face this challenge, both in terms of
precision and simplicity, and also in terms of computational
load, as we will show later in IV-B2. Since the covariance is
a measure of how much each of the dimensions varies from
the mean with respect to each other, the eigenvalues of the
covariance matrix measure the variation of the corresponding
point along the direction of the eigenvectors. Hence the largest
and smallest eigenvalues of the covariance matrix correspond
to the dimensions that have the strongest and smallest cor-
relation [22]. There are three eigenvalues for the covariance
matrix of the three dimensional data sets, and the eigenvector
of smallest eigenvalue is associated to the normal vector. Thus,
for a flat surface, the amount of the smallest eigenvalue will
be zero and if any curvature is present in the surface defined
by the neighborhood of the sample point, then the amount of
the corresponding smallest eigenvalue will be larger. Fig. 4
shows the amount of the eigenvalues of the covariance matrix
in a pseudocolor representation (red is high, yellow is mid-
high and green and blue represent low values).

For qualitative evaluation of the eigenvalue analysis technique,
we provide edge detection results on other 3D shapes, as shown
in Fig. 5. The Bunny and Dragon are from the Stanford 3D

Scanning Repository * and the Trim-Star is from the Aim @
SHAPE Shape Repository *.

2) Fast edge extraction: To evaluate the -eigenvalue
analysis technique’s performance in terms of time, the total
computation time for the three techniques is given in Table II.
We implemented, the three techniques in C++. All experiments
were conducted on a system with an Intel Core i5-3470 CPU
of 3.20GHz and 8GB of RAM. No multi-threading or any
other parallelism such as OpenMP or GPU was used in our
implementation. As shown in Table II, normal estimation with
PCA is about 60 times faster than triangulation. Moreover,
the eigenvalue analysis is two times faster than clustering in
the second step of the reference method to extract edges.

3) Robustness to noise: In order to test the robustness of
the eigenvalue analysis method to noise, we show the results
for noisy models perturbed with additive 10% and 20% of
Gaussian noise. Fig. 6 shows the edge extraction of the
surface by eigenvalue analysis in a noisy point cloud. In this
case we have computed the surface variation as in (4). Edges
are detected and even salient points in the corners are clearly
detected in both cases with 10% and 20% added noise. In
addition the F1-Scores for edge detection with Gaussian noise
in this figure are given in Table III. As shown, the F1-Score
is over 0.5 even for the point cloud with 20% Gaussian noise.
Increasing the percentage of the Gaussian noise, increases
recall and decreases precision, due to the scattered noisy
points around the surface, which are counted as the (false)
edge points.

4) Multi-scale analysis: In order to extend the proposed
eigenvalue analysis method to other scales, we propose a multi-
scale approach. In this last experiment, we work both with

3http://graphics.stanford.edu/data/3Dscanrep/
“http://www.aimatshape.net/



Fig. 5: Eigenvalue analysis for the Bunny, Dragon and Trim-Star in order to extract sharp features

[ Il Total Time
[ Dihedral Angle “ Triangulation Method and Clustering [ PCA and Clustering [ Eigenvalues Analysis ]
90 2m58.618s 0m?2.596s Om1.260s
67.5° 2m46.539s 0m2.432s 0m1.540s
45° 2m19.363s 0m?2.328s Om1.552s
22.5° 2m?20.025s 0m?2.480s Om1.380s

TABLE II: Computation time of different methods of edge extraction

I:x:a.\'. Sigma

Without Noise 10 % Noise

20 % Noise

I Min Sigma

Fig. 6: Edge extraction with the eigenvalues of the covariance matrix with different levels of Gaussian noise in the values of
the coordinates of the points in the cloud

the sharp edge between two planes in a 90° dihedral angle,
and with the curved wedge presented in IV-Al. We have
considered different number of local neighbors and computed
the surface variation according to (4). As shown in Fig. 7, we
have analysed, for different neighborhood sizes, the evolution
of the surface variation parameter oy (p) at each surface point
according to the distance of the point to the edge.

We consider K neighbors as a discrete scale parameter. As
explained in IV-B1 when the smallest eigenvalue is zero, means
that the sample point lies in a plane. For small neighborhood
sizes (K=10, 22), the smallest eigenvalue of the covariance
matrix is not zero only when the sample point is placed
at a very short distance to the edge, as some points in its

neighborhood may be placed after the edge.

For the case of two planes, there is a sharp change in the value
of the surface variation at a certain distance to the edge. This
turning point in each corresponds to the equivalent radius of
the neighborhood for the K nearest neighbors in a uniformly
sampled surface. Increasing the number of neighbors, the
distance for this turning point increases, which denotes that
more points in the neighborhood are located after the edge.
For the case of the curved wedge, the distance for this turning
point is constant because, according to IV-Al, it depends
on the radius of cylindrical section. In our experiment the
radius is 0.2 cm. As shown in Fig. 7, the turning point is
placed at 0.2 for all the scales. When the number of neighbors



[ [[ Without Noise | 10% Noise | 20% Noise |

Precision 0.875
Recall 0.881
F1-Score 0.878

0.531 0.410
0.901 0.922
0.668 0.568

TABLE III: F1-Score for the eigenvalue analysis in the point cloud without and with Gaussian noise

is small the cylindrical section surface can be considered
approximately flat, and when increasing the number of neigh-
bors, the variation of the o4(p) in the cylindrical section
increases. Interestingly enough, a certain spread in the values
of surface variation can be observed, according to the number
of neighbors, for points placed closer than 0.2 cm to the edge.

V. CONCLUSION

In this paper we have investigated the challenges of edge
extraction techniques in unorganized point clouds. We focused
on the quantitative results for several synthetic dihedral angles
and the total computation time for several edge detection
strategies.

We have proven that normal estimation for edge extraction
shows definitely smaller computation times when using PCA
than when normal estimation is done by triangulation in the
neighborhood, with similar detection efficiency in both cases.
We have also proven that edge extraction by the analysis
of the eigenvalues the covariance matrix (via the surface
variation parameter) is faster and more accurate in small
dihedral angles. In addition, it reduces user dependency by
eliminating any parameter (threshold) in the edge extraction
method.

For this, we have quantitatively compared the accuracy of
results and the total computation time in the analysis of
synthetic objects for which we do have ground truth.
Furthermore, by adding Gaussian noise to the artificial point
clouds, we have demonstrated that this approach how much
will be robust in the noisier real-world datasets.

The outcomes of our study favors the proposed strategy of
eigenvalues analysis, and can be summarized in three aspects.
First, it works for edges in very small dihedral angles.
Second, it is a fast procedure, and third, it reduces the user
dependency.

We plan to exploit the algorithm proposed in [24] in order to
develop a normal estimation method that rejects neighborhood
outliers. Furthermore, our future work aims at the design
of an adaptive threshold algorithm for multi-scale analysis.
We plan to complete semi-automatic edge extraction for 3D
point-clouds. Our main aim is a new classification framework
that allows discrete surface analysis at multiple scales.
Moreover, with the grouping of edge points, we plan to
extract feature lines, for analysis or visualization to enhance
the the rendering of 3D objects.
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Fig. 7: Scatter-plot of the evolution of surface variation parameter for different neighborhood sizes, over the distance of the
each point to the edge for the intersection of two planes (top) and the curved wedge surface (bottom)
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