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Fast And Robust

General Purpose Clustering Algorithms

V. Estivill-Castro
School of Computing and Information Technology,
Griffith University, Nathan, QLD 4111, Australia.

J. Yang
School of Electrical Engineering and Computer Science,
The University of Newcastle, Callaghan, NSW 2308, Australia.

Abstract. General purpose and highly applicable clustering methods are usually
required during the early stages of knowledge discovery exercises. k-Means has been
adopted as the prototype of iterative model-based clustering because of its speed,
simplicity and capability to work within the format of very large databases. However,
k-Means has several disadvantages derived from its statistical simplicity. We pro-
pose an algorithm that remains very efficient, generally applicable, multidimensional
but is more robust to noise and outliers. We achieve this by using medians rather
than means as estimators for the centers of clusters. Comparison with k-Means,
Expectation Maximization and Gibbs sampling demonstrates the advantages of
our algorithm.

Keywords: Clustering, k-Means, medoids, 1-Median problem, combinatorial opti-
mization, Expectation Maximization.

1. Introduction

Making sense of complex issues is naturally approached by breaking the
subject into smaller segments that can be each explained more simply.
Clustering aims at finding smaller, more homogeneous groups from a
large heterogeneous collection of items [7]. Computer-assisted analysis
must partition objects into groups, and must provide an interpretation
of this partition [7]. Efficient clustering is a fundamental task in data
mining where the goal is to discover patterns with large data sets
(thousands or millions of records) that are also high dimensional.

Many clustering methods exist to partition a data set by some nat-
ural measure of similarity [1, 18, 22]. While there is no widely accepted
definition of a cluster, many algorithms have been recently developed to
suit specific domains. However, a general purpose and highly applicable
clustering method is usually required during early stages of knowledge
discovery exercises to investigate potential for data mining. The k-
Means algorithm [35] has been widely adopted as such general purpose
algorithm because of its simplicity and speed. It offers practically no
limitation on the size of data sets because it typically requires linear
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2 Estivill-Castro & Yang

time to obtain an approximate solution to a hard optimization problem.
It also does not explicitly restrict the dimensionality of the data and it
is believed that it applies to a large variety of mixtures. General purpose
clustering methods should be stoppable and resumable [9, 10, 23], with
the capacity to obtain a clustering solution at any time, and to be able
to improve on the quality of the solution given more computational
resources. They should also work within the window or access methods
of databases and data-warehouses.

However, a closer look at k-Means reveals that it is probably a poor
choice for a clustering task unless very specific conditions on the data
are met. For example, k-Means typically succeeds when the clusters
are spherical, the data is free of noise and when its operation is prop-
erly initialized. These conditions hardly occur in practical knowledge
discovery situations. The weaknesses of k-Means result in poor quality
clustering, and thus, more statistically sophisticated alternatives have
been proposed. Representatives of these alternatives are Expecta-

tion Maximization (and model-based clustering [6, 14, 24]), Data
Augmentation [46] and Gibbs sampling Markov chain Monte Carlo
algorithms [3, 26, 45]. While these alternatives offer more statistical
accuracy, robustness and less bias, they trade this for substantially more
computational requirements and more detailed prior knowledge [36].

This paper describes a fast and robust general purpose algorithm ap-
plicable to situations in which k-Means is applied. While just slightly
slower than k-Means, it offers robustness to additive and multiplicative
noise. Our method is faster that the next level of sophistication (namely,
Expectation Maximization) and remains conceptually simple. For
example, our method does not demand the selection of a family of
models for a mixture, the provision of good estimates of variance,
or the provision of prior probabilities. Thus, it is simple to use. We
achieve this by minimizing a different loss function in the learning
of representatives of clusters. Our algorithms derive from the basic
structure of iterative methods, where subtle changes produce very dif-
ferent optimization problems. Thus, Section 2 reviews k-Means and
Expectation Maximization. Section 3 presents our algorithm in
detail. Section 4 describes a series of experiments that illustrate the
efficiency of our algorithm and compare it with alternative methods
like k-Harmonic Means, Expectation Maximization and Gibbs

sampling. This section also includes experiments that demonstrate the
robustness of our method and the quality of its results with large data
sets. We conclude with some final remarks in Section 5.
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Fast And Robust General Purpose Clustering Algorithms 3

2. General purpose clustering algorithms

A distinct characteristic of data mining applications is the huge size of
the data files involved. Thus, besides k-Means program-code simplic-
ity, the attractiveness of k-Means is due to its computational efficiency.
It requires only O(tDkn) time, where t is the number of iterations over
the entire data set, D is the dimension, k is the number of clusters,
and n is the number of data items. As t,D, k � n for data mining
applications, k-Means requires O(n) time. The fascination with k-
Means’s speed has motivated its adaptation for efficient processing of
large sets with both numeric and categorical attributes [28, 29].

2.1. The optimization problem

By iteratively improving an initial clustering (perhaps a random clus-
tering), the k-Means method produces an approximate solution to the
following optimization problem:

minimize M(C) =
n

∑

i=1

wi Euclid
2(~si,rep[~si, C]), (1)

where

1. S = {~s1, ~s2, . . . , ~sn} is a set of n data items in D-dimensional real
space IRD;

2. the weight wi > 0 may reflect relevance of the observation ~si, and
Euclid(~x, ~y) = (

∑D
j=1 |xj − yj|

2)1/2 is the Euclidean metric;

3. C = {~c1, . . . ,~ck} is a set of k centers, or representative points of
IRD; and

4. rep[~si, C] is the closest point in C to ~si; that is,

Euclid(~si,rep[~si, C]) = min
j∈{1,...,k}

Euclid(~si,~cj).

The partition into clusters is defined by assigning each ~si to its rep-
resentative rep[~si, C]. Those data items assigned to the same repre-
sentative are deemed to be in the same cluster; thus, the k centers
encode the partition S = C1| . . . |Ck of the data. That is, Cj = {~si ∈
S|Euclid(~si,~cj) ≤ Euclid(~si,~cq)∀~cq ∈ C \ {~cj}}.
k-Means iteratively refines a partition alternating a minimization

step and a classification step. In the minimization step, for each clus-
ter in the partition, a new representative is computed. In k-Means,
the weighted arithmetic mean of the cluster’s points is a “center” that
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4 Estivill-Castro & Yang

k-Means type

(1) Construct initial set of representatives.

(2) Iterate.

a) Classification: (Find new clusters) Assign

each observation to its nearest representative.

b) Minimization: (Find new representatives)

For each cluster, find a new “center”.

Expectation Maximization type

(1) Construct initial set of representatives.

(2) Iterate.

a) Expectation: (Find new ‘complete’ data ~Y )

Evaluate E[l(~Y ; ~θ(t))].

b) Maximization: (Find new parameters

for model) Find ~θ(t+1) to maximize E[l(~Y ; ~θ(t))].

Figure 1. Generic iterative model-based clustering.

minimizes the sum of squared errors between the center and the points
in the cluster. Next, using the new representatives, a classification step
obtains new clusters. These steps are repeated until an iteration occurs
in which the clustering does not change; refer to Fig. 1. This conceptual
iteration of k-Means is illustrated in Fig. 1 to highlight its similarity
with Expectation Maximization.

We highlight that the conceptual pseudo code of Fig. 1 is not how
k-Means or Expectation Maximization should actually be imple-
mented. This is because this conceptual pseudo code implies two passes
over the data. But in both cases, the two conceptual passes can be
carried out per data item in an implementation that does only one
pass on the data per iteration (and obtain exactly the same result as
the two-pass version).

2.2. k-Means vs Expectation Maximization

k-Means is general but too simple, Expectation Maximization is
robust but too specific.

Despite its efficiency, k-Means variants have other drawbacks well
documented in the literature:

1. From an optimization point of view, it often converges to a local
optimum of poor quality [11, 24].

2. k-Means favors hyper-spherical clusters and that it is sensitive to
scaling or similar transformations [1, 18].

3. Because k central vectors are means of cluster points, they are com-
monly adopted as representative of the data points of the cluster.
However, it is possible for the arithmetic mean to have no valid
interpretation; for example, the average of the coordinates of a
group of schools may indicate that the representative school lies
in the middle of a lake.
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Fast And Robust General Purpose Clustering Algorithms 5

4. k-Means is very sensitive to the presence of noise and outliers, as
well as to the initial random clustering [31, page 277]. In particular,
much effort has been focused on the sensitivity of k-Means on the
set of representatives used to initialize the search [1, 10, 23].

5. The method is statistically biased. For parametric statisticians, this
implies that even if provided with the exact number of distributions
in a uniform family mixture (for example, all multivariate nor-
mal distributions), and large volumes of noiseless data, k-Means

converges to the wrong parameter values. This has favored other
statistical methods such as Expectation Maximization [16]. k-
Means is also statistically inconsistent. This has favored Bayesian
and Minimum Message Length (MML) methods [17, 48]. However,
these alternative methods work better when the user is able to
provide an accurate probabilistic model of the classes. Also, their
high sensitivity to the initial random solution has prompted re-
searchers to incorporate initialization mechanisms [23]. Some need
to approximately solve NP-hard problems as well, or use dynamic
programming algorithms that require Ω(n2) time 1.

The most popular alternative to k-Means for learning with mix-
tures is Expectation Maximization. This approach adds to the
k-Means a probabilistic assignment treating class labels as hidden
variables. Its formal analysis is much more complex than k-Means,
but Expectation Maximization is consistent (asymptotically unbi-
ased). Convergence is slow near local maxima so some implementations
switch to conjugate gradient methods or other methods near a solu-
tion [37]. The foundations of this approach were originally developed
for the exponential family of distributions [13], although it applies more
generally [30]. There is also concern in Expectation Maximization

for its sensitivity to initialization [23]. While studies on its attempts to
accelerate its performance on large data sets via summarization indicate
that the tails of distributions are critical [42].

Expectation Maximization corresponds to a family of iterative
methods for approximating the maximum likelihood estimate (MLE)

~̂θ in the likelihood function [16, 46, 47]. Some statisticians interpret
mixture data as incomplete data. This interpretation allows to frame
as Expectation Maximization a procedure that starts with an ini-
tial approximation ~θ(0) and produces a sequence of estimates 〈~θ(t)〉.
Each iteration consists of a expectation step and maximization step.

1 A function f(n) is in O(g(n)) if there is n0 such that f(n) ≤ g(n), ∀n > n0. A
function f(n) is in Ω(g(n)) if f(n) ≥ g(n) for infinitely many n. A function is f(n)
is Θ(g(n)) if it is both O(g(n)) and Ω(g(n)) [27].
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6 Estivill-Castro & Yang

The expectation step estimates the complete data from the incomplete
data. The maximization step takes the “estimated” complete data and
estimates ~θ by maximum likelihood [46, 47].

Titterington et al [47] show that often, (for example, if k = 2 or
the components are assumed to be of the same type and belonging to
an exponential density family), the maximization step is explicit, in

the sense that the value that attains the maximum of E[l(~Y ; ~θ(t))] can
be found algebraically, without numerical approximation, or it is of no
more difficulty as a Maximum Likelihood exercise on ‘complete’ data.

The Expectation Maximization procedure has solid theoretical re-
sults regarding the sequence 〈~θ(t)〉 of approximations. In particular, the
estimated parameters produce a sequence of likelihood values that is
non-decreasing.

Unfortunately, the maximization step for ~θj, depends on the form of

the part fj of the mixture
∑k

j=1 πjfj(~θj). Thus, different Expectation

Maximization methods update their parameters at each iteration
slightly differently. In order to have analytical solutions, typically, it
is assumed that each fj is a multivariate Gaussian density N(~µj,Σj)
(normal density) [6, 14, 24]. Further simplifications assume that all
components have the same known covariance Σ, and thus, the only
unknown parameter of each component fj in the mixture is the mean
~µj. Delicate aspects of the iteration occur at different levels. For ex-
ample, even in the simple case where the mixture is uni-dimensional
and the components fj are all normal densities, it is important to have

σ
(t)
j 6= 0, otherwise, the process converges to the singularities created

by data points placed on a class by themselves. Thus, only the simplest
versions of Expectation Maximization can compete in speed with
k-Means.

2.3. Interpretation of k-Means

k-Means can be considered a direct simplification of Expectation

Maximization, in that it iteratively perform a simplified expectation
step and a maximization step; refer to Fig. 1. The minimization step
of k-Means corresponds to the maximization step of Expectation

Maximization, in the case Expectation Maximization is dealing
with a mixture of k multivariate normal distributions sharing a known
common covariance matrix Σ and the only unknown parameters are
the mean vectors ~µj of the components. However, the expectation step
is replaced by a classification step that also has some origins in maxi-
mum likelihood estimation. The arithmetic mean serves as an estimate
for ~µj . The underlying intuition follows from the observation that the
multivariate normal distribution N~µj ,Σ(~x) is large when ‖~x− ~µj‖

2
Σ−1 is
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Figure 2. A function Gravity(~x) and its level curves. The minimum is the gravity
center (shown with ◦).

small, because the normal distribution has a peak at ~µj with iso-lines
(level contours) defined by the covariance matrix Σ. Thus, k-Means

can be viewed as using the squared Euclidean distance ‖~x − ~µj‖
2
I =

(~x − ~µj)
t(~x − ~µj) (which is easier to compute) to approximate the

squared Mahalanobis distance ‖~x−~µj‖
2
Σ−1 = (~x−~µj)

tΣ−1(~x−~µj). The
dependence on the squared Euclidean distance (or gravity model) [25]
and not simply the Euclidean distance is a source of concern when using
k-Means for non-Gaussian data [38].

It is very important to realize that k-Means is not only measuring
dissimilarity by the Euclidean distance, but more importantly, it is
a least squares approach. Recall that k-Means approximately solves
the optimization problem of Equation (1) where the dissimilarity is
squared. This aspect is usually unnoticed by practitioners because the
pseudo-code or the descriptions of k-Means and its variants do not
make this aspect explicit. In fact, nowhere are distances squared. How-
ever, when k-Means finds a representative for a cluster by computing
the arithmetic mean, what has happened is that k-Means has found
the minimum of a strictly convex function called the gravity function.
More precisely, let Cj = {~x1, . . . , ~xnj} be the points in cluster Cj (in
what follows we use ~xi for a vector assigned to cluster Cj even when
our description pertains to finding the representative of the one cluster
Cj). Consider the objective function

Gravity(~x) =

nj
∑

i=1

wiEuclid
2(~x, ~xi) =

nj
∑

i=1

wi(~x− ~xi)
T · (~x− ~xi). (2)

An illustration of this function appears in Fig. 2. Because the function
is strictly convex, it has a unique minimum. The gradient of G(~x) is
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8 Estivill-Castro & Yang

a vector field whose components are the partial derivatives of G(~x)
at ~x. We denote by ∇G(~x) the gradient of G(~x) and by definition
∇G(~x) = (∂G/∂x1, · · · , ∂G/∂xD) . Then, the unique minimum can be
found by solving ∇G(~x) = ~0. So, for the d-th coordinate,

0 = ∂G/∂xd

nj
∑

i=1

wi(~x− ~xi)
T · (~x− ~xi) = 2

nj
∑

i=1

wi(xj − xid).

Letting Wj =
∑nj

i=1wi, this implies x̂d =
∑nj

i=1 wixid/Wj . That is,

the minimum is the arithmetic mean ~̂x
T

= (x̂1, . . . , x̂D) of cluster Cj .

It can be computed, as is typical in k-Means, in O(n) time as ~̂x =
∑nj

i=1 wixi/Wj .
All variants of k-Means minimize Gravity(~x) for each cluster in

their minimization step (see Fig. 1). Thus, k-Means approximates the
Expectation Maximization method where after each classification
step, the maximization step maximizes the likelihood by minimizing
Gravity(~x) within each cluster. Because of this, k-Means is a least
squares error method where the sum of the squared discrepancies be-
tween the representative and each data point represented is minimized.
Another view is that the error incurred by choosing the arithmetic mean
~̂x as a representative for Cj is proportional to the total sum of squared
discrepancies within cluster Cj . That is, arithmetic manipulation shows
that

2WGravity(~̂x) = 2W

[ nj
∑

i=1

wi(~xi − ~̂x)T · (~xi − ~̂x)

]

=

nj
∑

i=1

nj
∑

m=1

wiwmEuclid
2(~xi, ~xm). (3)

The arithmetic mean may have no valid interpretation, so one step
towards robustness is to find the point in the data that minimizes
Gravity(~x). This is called the discrete center optimization and it is
simple to compute. For any convex function F , the set L(c) = {~x ∈
IRd|F (~x) ≤ c} is a convex set, for all c ≥ 0. However, for Gravity(~x),
it is not hard to show that L(c) is a solid sphere [25] (in the case D = 2
illustrated in Fig. 2 we see that the level curves are circles). Thus,
the data point that minimizes Gravity(~x) can be found in O(n) time

simply by finding the center of all these spheres (the arithmetic mean ~̂x)
in O(n) time as before, and then, finding the nearest data point to the
arithmetic mean in O(n) time. Unfortunately, this variant to compute
an estimator of location is only slightly more robust. However, it does
point out that the finding of new centers can be achieved by other
methods.
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3. Our algorithms

The problem with means is that they are not robust estimators of
central tendency [43]. Means are very sensitive to noise and outliers.
Medians represent better a typical value in skew distributions and are
invariant under monotonic transformations of the random variable.
Means are invariant only under linear transformations. The median of a
distribution is much less tractable from the mathematical point of view
than the mean. This is the main reason why traditional statistics usu-
ally chooses the mean rather than then median to describe the “center”
of a distribution [12]. In clustering, as in vector quantization, the mean
is to be a representative of the data points ~xi that are nearest to it. The
mean and the median are both measures of location [12]. Equation (1)
represents what statisticians call a L2 loss functional [43]. Thus, an
immediate alternative is to use an error evaluation that measures the
sum of absolute errors rather than the sum of squared of errors. This
L1 criterion results in the Fermat-Weber clustering criterion [32],

minimize FW (C) =
n

∑

i=1

wi Euclid(si,rep[si, C]). (4)

Note that the squared Euclidean metric in Equation (1) is replaced
by simply the Euclidean metric.

This implies that when we find the representative for cluster Cj =
{~x1, . . . , ~xnj} we find the minimum for the following function.

FW(~x) =

nj
∑

i=1

wiEuclid(~x, ~xi) =

nj
∑

i=1

wi

√

(~x− ~xi)T · (~x− ~xi). (5)

An illustration of this function appears in Fig. 3. Because the func-
tion is strictly convex, it has a unique minimum that is the so called
Fermat-Weber(FW) center.

However, some difficulties remain in order to use the Fermat-Weber
center, for instance, the gradient of the objective function is discon-
tinuous in the field (the gradient of FW(~x) is not defined for data
points ~x = ~xi). We emphasize that minimizing the function FW (~x) of
Equation (5) for cluster Cj = {~x1, . . . , ~xnj} is a continuous optimization
problem. There is no algorithm to compute the exact coordinates of the
FW center on a digital computer [5]. Other advances have been mainly
theoretical [4]. However, a practical approach can be developed. The
use of the extended gradient [34] results in an iterative approximation
algorithm [25]. Nevertheless, its convergence or divergence depends on
initialization [33], and when converging, it is slow [41].
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Figure 3. A Fermat-Weber function and its level curves. The arithmetic mean is
shown with ◦.

Solving Equation (4) with rep[si, C] ∈ S has been named medoids
clustering [39], but obtaining optimal solutions (that we call Discrete
FW Centers) is an NP-complete problem because medoids clustering
is equivalent to the p-medians problem (the optimization literature
uses p rather than k for the number of representatives). However,
several heuristics have been suggested to obtain medoids-based clus-
tering [20, 21, 39]. Medoids based clustering is much more robust than
k-Means with respect to multiplicative or additive noise, thus resulting
in clustering of much better quality. However, the heuristics are still
slower than k-Means and fundamentally applicable only for spatial
data, in particular, the bi-dimensional case.

Our approach here uses FW-based clustering but in the maximiza-
tion phase of an iterative algorithm of the Expectation Maximiza-

tion or k-Means family. When k-Means recomputes the representa-
tives of each cluster as the mean it is using Maximum likelihood as the
inductive principle [15, 19]. However, it is also using least squares, or
L2 as the loss function. Our proposal, is to use the L1 function. Thus,
we are using a different loss function.

3.1. Continuous FW center approach

Our first proposal is to very closely locate the continuous FW center
in each cluster during the maximization step. We call this algorithm k-
continuous-medians. For approximating the continuous FW center
we use Kuhn’s algorithm [34]. This algorithm is derived from the nec-
essary and sufficient conditions for the optimum (equations that define
it as a fixed point)[49]. Most applications of this algorithm for spatial
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mean

continuous FW center

Figure 4. Trace of iteration towards the continuous FW center.

median location have been in the context of small location problems,
although the convergence may be slow.

We conducted experiments to evaluate if the approximation using
Kuhn’s algorithm is fast and accurate enough for data mining purposes.
We performed two kinds of experiments. In our first set of experiments,
we took a configuration of points (~x1, · · · , ~xm) where we knew the
continuous FW center. We translated the points by a vector ~x. We
applied Kuhn’s algorithm to the translated set. Then, we translated the
solution obtained back by adding −~x. We found that the results from
Kuhn’s algorithm are accurate to the relative precision of the floating
point system used. In our second set of experiments, we distributed
points on a circle. We experimented with various radius of the circle
and compared results; then we changed the density of points and com-
pared results. This set of experiments gave similar results to the first
experiment. Together these two experiments showed that despite the
errors introduced by the floating-point system, the results from Kuhn’s
algorithm are satisfactory for data mining. Moreover, no divergent cases
happened with our implementation.

Fig. 4 illustrates five points and the trace of iteration towards the
continuous FW center. It also shows the location of the arithmetic
mean.

3.2. Discrete FW center approach

Our second proposal is to find the data point in each cluster that min-
imizes FW(~x). That is, we solve a discrete 1-median problem for each
cluster. Again, we minimize Equation (5), but now with the additional
restriction that the estimator of location be in Cj . Our clustering algo-
rithm (k-d-medians) has the same structure for k-Means presented
in Fig. 1. However, the new center of each cluster Cj is the discrete
1-median of the points in Cj. This can trivially be solved in O(n2

j ) time
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12 Estivill-Castro & Yang

by evaluating FW(xi) (for i = 1, . . . , nj) and returning the data point
that resulted in the minimum value. However, this results in an overall
clustering method requiring quadratic time. In what follows we present
our strategy to obtain the discrete 1-median problem for each cluster
in O(nj log nj) time. Our strategy does not impose any restrictions on
the dimension of the data.

3.2.1. The extended gradient as a filter
We now show that the extended gradient is very useful as a filter.

LEMMA 3.1. (Kuhn [33]) For m = 1, . . . , nj, let

FW¬m(~x) =
n

∑

i=1 i6=m

Euclid(~x, ~xi)

be an objective function where the m-th point in Cj is excluded from
consideration. Let ∇FW(~x) be the gradient of FW(~x) defined in IRD \
Cj. Let the extended gradient of FW(~x) be denoted by ∇EFW(~x) and
defined by

∇EFW(~x)

=







∇FW(~x) if ~x 6∈ Cj,

max

{

1 − 1
‖∇FW¬m(~x)‖

, 0

}

∇FW¬m(~xm) if ~x = ~xm ∈ Cj .

Then, ∇EFW(~x) is defined in IRD and the point f minimizes FW(~x)
if and only if ∇EFW(f) = ~0.

The extended gradient has the properties of the gradient with re-
spect to the level curves. For our purposes the following is most impor-
tant [2].

PROPERTY 3.1. The extended gradient vector ∇FWE(~x) is normal
to the tangent hyper-plane at ~x to L(FW(~x)) = {~y ∈ IRD|FW(~y) ≤
FW(~x)}, for all ~x ∈ IRD.

For an illustration in two dimensions see Fig. 5.
Thus, the extended gradient can be used as a filtering mechanism to

eliminate data points than cannot possibly be the discrete 1-median.
Consider a point ~x on a level curve bounding L(c); thus, c = FW(~x).

For illustration, refer to Fig. 5. The tangent hyper-plane of L(c) at ~x
will divide the space IRD into two parts. One half-space contains the
set L(c). We call this half space the keeping zone. For any point ~y in the
other half space, FW(~y) > c = FW(~x). We call the other half space the
filtering zone. Thus, any point in the filtering zone can be discarded
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Figure 5. Fermat-Weber level curve and its normal and tangent.

from being the discrete 1-median if there is a data point ~xi ∈ Cj in
the keeping zone with FW(~xi) ≤ c = FW(~x). In addition, we call the
dividing hyper-plane between the keeping zone and the filtering zone
the judge hyper-plane. In particular, the point ~x is called the judge
point.

Note also that after computation of the extended gradient we have
the judge hyper-plane L(c) encoded by its normal vector ~n~x. Moreover,
testing if a point is in the filtering zone can be done in constant time
(with respect to nj = ‖Cj‖). Namely, for any point ~y in IRD, if the dot
product between the normal ~n~x and ~y − ~x is not negative, ~y is in the
filtering zone (this is because if we let α~x~y denote the angle between
~n~x and ~y − ~x, then cos(α~x~y) is non-negative if and only if ~y is in the
filtering zone).

Our algorithm for 1-medoid repeatedly finds a hyper-plane and fil-
ters the points. In order for our algorithm to be effective, we need a
data point ~xi in the keeping zone with FW(~xi) ≤ c = FW(~x). This
is easily achieved if we select ~x to be some data point ~xi. Note the
importance of the extended gradient (selecting ~x = ~xi is impossible
with the standard gradient).

However, we also need computational efficiency. Filtering passes
must remove many points from further consideration because we can
only afford o(n) passes for a sub-quadratic clustering method.

3.2.2. Each judge point halves the list of candidates
We now describe our strategy for choosing hyper-planes that remove
half of the candidates in each filtering step, thus reducing the nj candi-
dates in log nj steps to a very small number where the discrete 1-median
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can be found in O(nj) time. The halving strategy will result in a total
of O(nj log nj) time to compute the discrete 1-median.

As we already pointed out, the arithmetic mean corresponds to the
center of mass. Also, by Equation (3) the mass is

Gravity(~̂x) =
1

2Wj

nj
∑

i=1

nj
∑

m=1

Euclid
2(~xi, ~xm),

where Wj =
∑

~xi∈Cj wi. Moreover, the level curves are spheres. Thus
any hyper-plane on the arithmetic mean, independently of direction,
will divide the mass in half. Thus, a procedure that repeatedly uses the
center of mass as the judge point will require

O(nj log

nj
∑

i=1

nj
∑

m=1

Euclid
2(~xi, ~xm)/2W )

time in the worst case to reduce the number of candidates to a small
constant. Since with O(nj) time we can make sure that

nj
∑

i=1

nj
∑

m=1

Euclid
2(~xi, ~xm)/2W = O(nl

j)

with l a small constant, we have a total of O(nj log nj) time to filter
nj items.

The problem with this procedure is that the arithmetic mean may
be very close to the Fermat-Weber point and the discrete 1-median may
actually be on the filtering zone. We need to select a point ~x = ~xi ∈ Cj .
We select the u nearest neighbors in Cj to the arithmetic mean of
Cj as judge points (u ≥ 1 a small integer constant). We also ensure
that the hyper-planes cut a large proportion of the mass. There are
very constrained configurations where this strategy will fail to remove
a fraction of the candidates (for example, when the data points are
bi-dimensional and constitute the vertices of a regular polygon). We
monitor the number of candidates filtered, if the u judging hyper-planes
filter less than a fourth of the candidates, we just pick the discrete center
(the nearest neighbor to the arithmetic mean) as the center of this
cluster. This maintains the O(nj log nj) time bound. Convergence of the
overall clustering method results from its maximization/classification
structure [44].

Thus our algorithm for finding the ‘center’ of cluster Cj is as follows.

Step 0. Set the list of candidates to the data points in Cj.

Step 1. Calculate the arithmetic mean ~̂x of a list of candidates.
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Step 2. Find u points ~xm in the candidate set nearest to the arithmetic
mean.

Step 3. If for one of the u-points FW(xm) < FW(~̂x), use ~̂x as another
judge point.

Step 4. Compute ∇EFW(xm) and construct the normal vector with
xm as the judge point.

Step 5. Remove from the candidate list the points in u filtering zones.

Step 6. If at least a quarter of the candidates was filtered, repeat step
1 to step 5. Otherwise, return the point nearest to the arithmetic
mean.

Step 7. When the list of candidates has 6 or less points, perform a
brute force search for the discrete 1-median.

3.3. Other implementations

To show the difference among a group of representative-based clus-
tering methods, we also implemented k-Harmonic Means [50] and
k-c-L1 medians [11]. Fig. 6 demonstrates five points and centers of dif-
ferent clustering methods. k-c-L1 medians is a similar method [11] to
our algorithms. k-c-L1 medians uses medians as centers but switches
similarity measure to to the 1-norm to avoid the Fermat-Weber prob-
lem. Thus, it confirms that medians offer more robust iterative model-
based clustering than arithmetic means. This change of similarity met-
ric has problems because beyond 2 dimensions 1-norm median can
be outside the convex hull of the cluster of points. Moreover, this
alternative was proposed [11] with the use of a search for 1-norm
medians that formulates a bilinear program. This bilinear program
is solved iteratively in closed form. However, a much simpler imple-
mentation is possible since the 1-norm median can be obtained as the
median of the projections on each coordinate [25]. Our implementation
of k-c-L1 medians uses this much simpler and faster algorithm.

4. Experimental validation
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Arithmetic mean

mean

Discrete FW center

meandiscrete
FW center

Harmonic mean

Harmonic
mean

Contionious L1 median

continuous
L1 median

Figure 6. Four types of centers (estimators of location) on the same data set.

4.1. Performance

We first present results that evaluate the efficiency of our algorithm
in Section 3.2, referred as k-d-medians. Our C implementation of k-
d-medians is compared with our C implementation of k-Means and
Expectation Maximization. For Expectation Maximization we
used the assumption that the covariance matrix Σj of each component,
although unknown, is diagonal [40]. The assumption that Σj is diagonal
implies that the component densities are aligned with the axes. In a
sense, the clouds of points that are the clusters are ellipsoids with
axes parallel to the coordinate axes. If the assumption on diagonal
from is removed, then other assumptions are required to manage the
maximization step explicitly. So this is the most flexible Expectation

Maximization with efficiency comparable with k-Means. We also
compared with Gibbs sampling. Thus we used the 1999 release (also
in C) of the fbm-software by R. N. Neal2 for the Gibbs sampling and
the generation of data in two examples for Bayesian mixture models.

The first example is a bivariate density estimation problem. We used
the fbm-software to generate datasets from 500 to 100,000 points and
measured the CPU time of the algorithms. The Bayesian Gibbs sam-
pling (with two components in the mixture) remains linear because of

2 http://www.cs.toronto.ca/~radford/
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Figure 7. Comparison of CPU times for R. N. Neal examples for Bayesian mixture
models.

a bound in the number of iterations but requires more than 15 minutes
of CPU for 100,000 records. It requires several meta-parameters and
prior probabilities but provides much more information on termination.
Expectation Maximization requires 5 minutes of CPU for the same
100,000 points while k-d-medians only 1 minute and k-Means only
15 s. Thus, our algorithm is significantly faster than Expectation

Maximization. In fact, time requirements are a fifth of Expectation

Maximization at 5 times more than k-Means for this Bayesian model.
All methods achieved equivalent quality classification with respect to
Gibbs sampling with k = 2. Thus, the only difference for these datasets
was speed. In fact, for most numerical data, specially from mixtures
of Gaussians with noise, our methods was significantly faster than
Expectation Maximization and just slightly slower than k-Means.
The slowest remained Gibbs sampling.

The second example by R. N. Neal consist of 10 dimensional data
where all attributes are categorical (and boolean). This dataset is the
most difficult for our type of method, because, when data items are
regarded as vectors in IR10, they all are placed in the vertices of the
Hilbert cube. Thus, they are all in the vertices of a convex body and
clustering really is a result of repetitions. When using the fbm-software
to generate 100,000 records, only 1024 are different. The only method
of those tested designed for this type of data is Gibbs sampling which
took just over 2 hrs of CPU time (using the default stopping criteria
in the fbm-software). However, all methods obtained the 4 patterns
corresponding to the 4 centers of the clusters. The only exception was
k-Means, which resulted in poorer clusters for files of 20,000 records of
more, while for 500 records or less k-d-medians occasionally missed one
center. Thus, for these datasets quality of clustering was not an issue.
However, our method becomes slower, about the same of Expectation

Maximization, while k-Means remains extremely fast (only half a
minute of CPU time for 100,000 items). After extensive search, we
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believe that this type of dataset constitutes the worst case for our
method, and we are pleased to see that it remains comparable to Ex-

pectation Maximization. We should remark that we experimented
with enlarging the categorical domain of attributes (from two to 5 or
10 values) and found that k-Means performance deteriorates and ours
improves.

4.2. Resistance to noise

To contrast the quality of clustering in the presence of noise, we present
an experimental illustration contrasting our algorithm k-d-medians

with k-Means and Expectation Maximization. We first used a
simple generator [20] of bi-dimensional data sets and mechanisms
to regulate noise. The mixture of generator [20] produces a random
vector ~si

T = (xi1, xi2) ∈ IR2 with a probability density function given
by

p(~x) =
1 − φ

k
P (~c1 + r)+ . . .+

1 − φ

k
P (~ck + r)+φ U([0, 1]× [0, 1]), (6)

where U([0, 1] × [0, 1]) denotes the uniform distribution over the unit
square and P (~c+r) denotes a peak distribution over the circle centered
at ~c and radius r.

In this generator, noise is modeled as the additive term in the
finite mixture model corresponding to uniform distribution on the unit
square. Additive noise are points that do not belong to any cluster.
Our experiments compare clustering algorithms with different levels
of additive noise – increasing values of φ. For this purpose, the gen-

erator has an option modified to initially produce a data set with
no noise. A later option can be used to perform a pass over the first
dataset and the generator repeatedly generates a random number
ρ uniformly in [0, 1]. If ρ > φ, it copies a data point from its input
to the output. If ρ ≤ φ, then a point in U([0, 1] × [0, 1]) is produced.
As performed in [20], for the same data set and level of additive noise
we compare with different levels of multiplicative noise – the term for
it would appear multiplying in the finite mixture model. The levels of
multiplicative noise are regulated by the parameter ψ.

The quality of a partition is the percentage of non-noise points that
are labeled correctly by the clustering algorithm. The fewer the miss
labeled points, the higher the quality of the partition. The top part
of Table I shows comparisons of the algorithms for one data set of 300
data items generated by Equation (6). The algorithms compared are k-
Means k-Means initialized by the results of single linkage clustering
(found in O(n log n) time by Minimum Spanning Tree computation),

Estivill-CastroYandDAMI237-00.tex;



Fast And Robust General Purpose Clustering Algorithms 19

Table I. Misclassification with 95% confidence in-
tervals. The top part of this table is one data set
produced with generator and for each combina-
tion of φ, ψ each clustering algorithm is executed
10 times (with different initialization). The bottom
part combines 10 different data sets produced with
generator.

n = 300 One data set (10 runs per set)

k = 10 Algorithm

u = 1 k-Means k-d-medians EM

Noise Random MST Random Random

ψ φ start start start start

0 0 39% ±7 8% 16%±4 25%±5 %

0.1 30% ±4 27% 16%±4 30%±4

0.2 30% ±5 30% 22%±5 39%±3

0.5 0 29% ±5 12% 14%±4 24%±4

0.1 30% ±4 30% 14%±4 38%±4

0.2 30% ±5 31% 18%±5 38%±4

1.0 0 33% ±5 19% 18%±4 22%±3

0.1 26% ±6 36% 17%±4 39%±4

0.2 35% ±6 30% 15%±5 38%±4

1.5 0 34% ±4 22% 18%±4 30%±5

0.1 30% ±4 31% 14%±5 37%±10

0.2 34% ±4 30% 20%±5 34%±4

n = 300 10 data sets (10 runs per set)

k = 10 Algorithm

u = 1 k-Means k-d-medians EM

Noise Random MST Random Random

ψ φ start start start start

0 0 31% ±4 7%±2 16%±5 24%±6

0.1 30% ±4 23%±5 18%±5 42%±6

0.2 30% ±5 30%±3 20%±4 40 %±6

0.5 0 30% ±4 12%±4 19%±7 24%±4

0.1 30% ±4 30%±4 19%±7 37%±6

0.2 30% ±5 30%±5 18%±6 39%±7

1.0 0 31% ±5 20%±4 22%±6 22%±4

0.1 30% ±6 32%±4 20%±4 38%±7

0.2 31% ±6 30%±5 19%±5 40%±8

1.5 0 33% ±4 22%±4 18%±5 31%±6

0.1 32% ±4 31%±5 20%±4 38%±9

0.2 32% ±4 31%±5 20%±5 36%±8

our k-d-medians and Expectation Maximization (with diagonal
covariance matrices). The bottom part of the table combines the results
from 10 different data sets, each generated by the model in Equa-
tion (6). The results clearly show the robustness of our algorithm to
both types of (additive and multiplicative) noise.
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4.3. 3D mixture data test

This experiment consisted of generating data with respect to a mix-
ture of 3-dimensional (multivariate) normal distributions with noise.
Thus, data was generated with the form p(~x) = π1N~µ1,Σ1

(~x) + . . . +
πkN~µk ,Σk(~x) + πk+1U(~x) where each component N~µj ,Σj (~x) is a multi-
variate normal distributions with mean ~µj and the covariance matrix
Σj and U(~x) is the uniform distribution in a box that bounds all ~µj.
Again we compared k-Means, Expectation Maximization, and our
algorithms: our implementation of k-c-L1 medians and k-d-medians.
We used 20% noise, k = 3 and πj = .8/k for j = 1, . . . , k = 3. Moreover,
the three covariance matrices Σj were set to the identity in order to
create data sets as favorable as possible to k-Means and Expectation

Maximization.
We evaluated the quality of the clustering results by the sum of the

norms between the original ~µj and the approximations ~̂µj obtained for
the algorithms. Data sets with n = 2, 000 were generated by selecting
three points ~µj at random in [0, 20.0]×[0, 20.0]×[0, 20.0]. For example, a
typical data set had ~µT

1 = (13.1, 7.6, 6.9), ~µT
2 = (2.6, 7.1, 14.5) and ~µT

3 =
(16.6, 9.3, 14.9). Table II shows the results for one data set. Typically,
the sum of discrepancies between norms was twice as large for k-Means

than for k-d-medians. k-d-medians consistently outperformed the
others with respect to quality. On average, Expectation Maximiza-

tion is closer than the results in Table II but still surpassed by k-
d-medians. k-c-L1 medians is the fastest, followed by k-d-medians.
k-Means has problems detecting convergence and sometimes is the
slowest. Both Expectation Maximization and k-Means end up
being several times slower that k-d-medians and k-c-L1 medians.
k-c-L1 medians can produce some poor results, as illustrated by Ta-
ble II.

Because the results of these algorithms depend on their random
initialization, we have compared them when they are executed 10 times,
but for each execution, all algorithms start with the same initial config-
uration. Using 10 different 3D mixtures (only the true means are differ-
ent), the first 4 columns of Table III shows the results of 4 algorithms
starting 10 times with common random initialization. Clearly Ex-

pectation Maximization and k-Means have large error and small
variance. Fuzzy-c-Means [8] has small error on average and nil vari-
ance. This shows that Fuzzy-c-Means is the least subject to the
initialization configuration. In practical settings, all these algorithms
should be executed several times and the best solution of all (mea-
sured by the criteria they are optimizing) should be adopted as the
answer from such algorithm. This multi-start version eliminates the
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Figure 9. Data is uniform if projected to either axis, but has a clear pattern.

Table II. Results for 3-D mixture of normals with 20% noise.

Algorithm Estimated ~̂µ
T

j

∑3

j=1
‖~̂µj − ~µj‖ CPU time

~µT1 = (12.7, 8.4, 6.3)

k-Means ~µT2 = (3.1, 7.8, 13.5) 2.83 96 sec

~µT3 = (16.3, 9.6, 14.8)

~µT1 = (10.1, 9.7, 9.4)

Expectation Maximization ~µT2 = (2.7, 7.1, 14.4) 7.77 5 sec

~µT3 = (15.1, 8.6, 11.3)

~µT1 = (12.8, 8.0, 6.9)

k-d-medians ~µT2 = (2.8, 7.1, 14.4) 0.97 0.7 sec

~µT3 = (16.6, 9.6, 14.8)

~µT1 = (7.8, 16.0, 6.0)

k-c-L1 medians ~µT2 = (3.8, 7.1, 14.4) 16.8 0.4 sec

~µT3 = (15.0, 8.5, 9.8)

dependency on the initial configuration. We declared an algorithm a
multi-start winner, if it produced the best result in each of 10 multi-
starts, each consisting of 10 random initial configurations. The last
column of Table III shows that our algorithm was the winner for the
10 data sets. Occasionally our methods provide poor results, on some
initial configurations. But their multi-start version is superior to all
others.
k-c-L1 medians is faster than k-d-medians, but one should be

aware that k-c-L1 medians performs poorly when the clusters are the
synergy (interaction) of the attributes. Fig. 9 shows two 2D clusters.
They have the very distinctive pattern: they are lines. However, for
each coordinate, the data is a uniform distribution. The algorithm
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Table III. Results for 10 dataset each consisting of a 3-D mixture of normals with
20% noise.

10 common start configurations

Error mesured as sum3
i=1‖~̂µj − ~µj‖ Multistart

Dataset Expectation Maximization k-Means Fuzzy-c-Means k-d-medians Winner

1 4.75 ±0 5.65 ±4 1.92 ±0 13.8 ±10 k-d-medians

2 3.96 ±3 6.17 ±3 1.94 ±0 10.90 ±5 k-d-medians

3 9.84 ±3 15.78 ±2 6.21 ±3 7.77 ±6 k-d-medians

4 10.59 ±5 4.93 ±4 1.57 ±0 5.12 ±6 k-d-medians

5 11.16 ±3 5.80 ±4 2.03 ±0 7.54 ±5 k-d-medians

6 15.09 ±0 13.04 ±5 1.80 ±0 10.09 ±6 k-d-medians

7 10.88±2 6.29 ±4 1.07 ±0 5.60 ±5 k-d-medians

8 3.3 ±0 5.31 ±4 4.17 ±6 5.51 ±6 k-d-medians

9 13.35 ±3 9.52 ±4 2.72 ±0 7.13 ±5 k-d-medians

10 9.11 ±2 6.79 ±4 2.21 ±0 4.54 ±5 k-d-medians

k-c-L1 medians finds cluster with over 40% error 90% of the time
and 10% of the time is totally wrong providing two clusters separated
by the line Y = 0.5. By contrast, k-d-medians performs very well in
this data set, 90% of the time the misclassification is only 10%.

The statistical literature has rejected the L1-metric optimization
because the estimator of location can be outside the convex hull of
the cloud of points for which it is estimating a center [43]. A simple
example is the 3 point set (1,0,0), (0,1,0) and (0,0,1) in 3D. The L1

center is (0,0,0) which is outside the convex hull.

4.4. A large text dataset experiment

As a benchmark for our algorithms we used a setting in text clustering.
We conducted experiments on a well-known Reuters-21578 dataset3.
This dataset has been used before as a benchmark for representative-
based clustering in data mining [9, 23]. We reproduced the experiments
to asses our algorithms.

We derived two datasets from the original text file reut2-all.sgm

consisting of 21, 578 SGML marked documents. Dataset one (D1) has
302 dimensions while dataset two (D2) has 135 dimensions. D1 columns
correspond to the 302 most frequent words in the entire collection. A
record in D1 corresponds to an document and has the counts for these
302 words as they appear in the document. D2 columns correspond to
the 135 topics in the entire collection. A record in D2 is a vector of
counts for these 135 topics.

3 http://www.research.att.com/~lewis/reuters21578/README.txt
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Our experiment compares clustering these two large datasets with
five different clustering methods. These are our two algorithms k-d-

medians and k-continuous-medians, our novel implementation of
k-c-L1 medians and two fast versions of k-Means, a simple standard
k-Means and also k-Harmonic Means.

The 302 most frequent words are extracted from all words between
the tag pairs ( < TEXT > < /TEXT > ), ( < TITLE > <
/TITLE > ) and ( < BODY > < /BODY > ), and included ab-
breviations like mln, pct and corp.

There is a standard set of 135 topic words for the Reuters dataset.
However not all topics appear in the dataset. Actually only 120 topic
words appear. Despite some documents have no topic, we do not ex-
clude them in our experiment.

Datasets D1 and D2 are used in our experiment as raw data for clus-
tering analysis. We would like to identify which of all the representative-
based clustering algorithms provides the best clusters.

Because the algorithms we are comparing are optimizing different
criteria, using any of these criteria to compare all algorithms could
be seen as favorable to the algorithm that is explicitly attempting to
optimize such criteria. Therefore, because clustering aims at reducing
diversity within a class, we decided to use entropy on the attribute-
vectors to measure the diversity in clustering results. We also used total
gravity for a measure, because this is the criteria used by k-Means.
We use this to show that k-Means is actually the poorest performance
even for the criteria it is explicitly optimizing.

For the entropy analysis, we first compute dissimilarity inside each
cluster. For a given cluster Cj with nj elements and m dimensions,
after normalizing each vector, we add all the values in each attribute.
That is, we find the vector

~e =
∑

~xi∈Cj

~xi.

Now if ~eT = (e1, e2, · · · , em), the entropy of cluster Cj is given by

En(Cj) = −
m

∑

i=0

ei
nj

log2(
ei
nj

). (7)

The entropy of a clustering result is just the sum of the entropy in all
clusters. The clustering method that has smaller entropy has reduced
diversity in the clusters the best. The gravity of each cluster is the
sum of squared Euclidean distance of all points in the cluster Cj to
their representative, and the total gravity is the sum of gravity over all
clusters Cj .
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Table IV. Algorithms ranked by quality of the clustering on Reuters
datasets consisting of 21, 578 records.

n = 21, 578 Data set D1 Data set D2

(dimensions D = 302) (dimension D = 135)

Algorithm Entropy Gravity CPU s Entropy Gravity CPU s

k-d-medians 440 2 622,467 3,521 40 3,742 312

k-continuous-medians 423 2 764,454 885 49 4,093 226

k-Means 505 2 782,003 288 62 5,713 72

k-Harmonic Means 524 3 342,582 768 41 10,034 75

k-c-L1 medians 553 3 024,238 2,066 68 10,983 739

We performed this experiment on implementations in Java. Table IV
shows a summary of the experimental results. Clearly, for both, Entropy
and Gravity assessment of the clusters, our algorithms obtain better
clustering results. Also, our algorithms are scalable, they are linear in
D (the dimension) and O(n log n) time is required, where n is the size
of the datasets. The CPU time measurements show that they are a
constant factor of about 5 slower than fast versions of k-Means(this is
across the arguments n and D). However, they compensate this fixed
overhead by much improved clustering results. The readers may note
that once k-Harmonic Means performed better with respect to En-
tropy, but much worse with respect to Gravity. This seems to indicate
that Gravity is inherently a less effective clustering criteria, sensitive
to outliers [38].

5. Final remarks

Section 4.1 shows that our algorithms are slightly more costly than k-
Means but certainly much faster than alternatives like Expectation

Maximization and Gibbs Sampling. Section 4.2 shows that our algo-
rithm provide much more resistance to noise and outliers. Section 4.3
shows that they offer high statistical quality. Section 4.4 shows how our
algorithms can be applied successfully to a case study previously used
in the Data Mining literature. Our algorithms produce clusterings with
improved results.

The algorithms presented here are suitable for exploratory data
analysis. They do not depend on the order of the data, as some variants
of k-Means and they do not demand detailed initialization. Their use
brings insight into the structure of a large multidimensional data set.
Because they are faster than Expectation Maximization, they can
be applied in combination with criteria for determining the number k
of clusters. Recall that the most robust criteria to find an estimate of
the value of k by repeatedly cluster with different values of k [39, 40].
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