
 Open access  Posted Content  DOI:10.1101/2020.09.14.296939

Fast and robust identity-by-descent inference with the templated positional Burrows-
Wheeler transform — Source link 

William A. Freyman, Kimberly F. McManus, Suyash Shringarpure, Ethan M. Jewett ...+2 more authors

Published on: 15 Sep 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Identity by descent and Inference

Related papers:

 Fast and Accurate Shared Segment Detection and Relatedness Estimation in Un-phased Genetic Data via TRUFFLE

 
Estimating genome-wide IBD sharing from SNP data via an efficient hidden Markov model of LD with application to
gene mapping

 Fast and accurate shared segment detection and relatedness estimation in un-phased genetic data using TRUFFLE

 GPhase: Greedy Approach for Accurate Haplotype Inferencing

 Accurate Prediction of Haplotype Inference Errors by Feature Extraction

Share this paper:    

View more about this paper here: https://typeset.io/papers/fast-and-robust-identity-by-descent-inference-with-the-
4oqfzze1d5

https://typeset.io/
https://www.doi.org/10.1101/2020.09.14.296939
https://typeset.io/papers/fast-and-robust-identity-by-descent-inference-with-the-4oqfzze1d5
https://typeset.io/authors/william-a-freyman-29swkw728d
https://typeset.io/authors/kimberly-f-mcmanus-3itdvphm4t
https://typeset.io/authors/suyash-shringarpure-3dve39i3up
https://typeset.io/authors/ethan-m-jewett-2ppbgzxdki
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/identity-by-descent-3bqw4h95
https://typeset.io/topics/inference-d6zpsjlj
https://typeset.io/papers/fast-and-accurate-shared-segment-detection-and-relatedness-16jp6qs04i
https://typeset.io/papers/estimating-genome-wide-ibd-sharing-from-snp-data-via-an-zyc7iy9oc8
https://typeset.io/papers/fast-and-accurate-shared-segment-detection-and-relatedness-wd2itufe32
https://typeset.io/papers/gphase-greedy-approach-for-accurate-haplotype-inferencing-4hcbya048i
https://typeset.io/papers/accurate-prediction-of-haplotype-inference-errors-by-feature-7wyjf2gk64
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fast-and-robust-identity-by-descent-inference-with-the-4oqfzze1d5
https://twitter.com/intent/tweet?text=Fast%20and%20robust%20identity-by-descent%20inference%20with%20the%20templated%20positional%20Burrows-Wheeler%20transform&url=https://typeset.io/papers/fast-and-robust-identity-by-descent-inference-with-the-4oqfzze1d5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fast-and-robust-identity-by-descent-inference-with-the-4oqfzze1d5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fast-and-robust-identity-by-descent-inference-with-the-4oqfzze1d5
https://typeset.io/papers/fast-and-robust-identity-by-descent-inference-with-the-4oqfzze1d5


Fast and robust identity-by-descent inference with the templated
positional Burrows-Wheeler transform

William A. Freyman1, Kimberly F. McManus1, Suyash S. Shringarpure1, Ethan M. Jewett1,

Katarzyna Bryc1, the 23andMe Research Team1, Adam Auton1

123andMe, Inc., Sunnyvale, CA, USA

Corresponding authors: William A. Freyman (willf@23andMe.com); Adam Auton (aauton@23andme.com)

Abstract1

Estimating the genomic location and length of identical-by-descent (IBD) segments among individuals is a2

crucial step in many genetic analyses. However, the exponential growth in the size of biobank and direct-3

to-consumer (DTC) genetic data sets makes accurate IBD inference a significant computational challenge.4

Here we present the templated positional Burrows-Wheeler transform (TPBWT) to make fast IBD esti-5

mates robust to genotype and phasing errors. Using haplotype data simulated over pedigrees with realistic6

genotyping and phasing errors we show that the TPBWT outperforms other state-of-the-art IBD inference7

algorithms in terms of speed and accuracy. For each phase-aware method, we explore the false positive and8

false negative rates of inferring IBD by segment length and characterize the types of error commonly found.9

Our results highlight the fragility of most phased IBD inference methods; the accuracy of IBD estimates10

can be highly sensitive to the quality of haplotype phasing. Additionally we compare the performance of11

the TPBWT against a widely used phase-free IBD inference approach that is robust to phasing errors. We12

introduce both in-sample and out-of-sample TPBWT-based IBD inference algorithms and demonstrate their13

computational efficiency on massive-scale datasets with millions of samples. Furthermore we describe the14

binary file format for TPBWT-compressed haplotypes that results in fast and efficient out-of-sample IBD15

computes against very large cohort panels. Finally, we demonstrate the utility of the TPBWT in a brief16

empirical analysis exploring geographic patterns of haplotype sharing within Mexico. Hierarchical cluster-17

ing of IBD shared across regions within Mexico reveals geographically structured haplotype sharing and a18

strong signal of isolation by distance. Our software implementation of the TPBWT is freely available for19

non-commercial use in the code repository https://github.com/23andMe/phasedibd.20

1 Introduction21

Modern genetic data sets already number in the millions of genomes and are growing exponentially. Inferring22

the genomic location and length of identical-by-descent (IBD) segments among the related individuals in23

these data sets is a central step in many genetic analyses. Ideally, IBD estimates can be obtained from24

phased haplotypes; this means each diploid individual in the data set is represented by two sequences each25

of which consists of alleles inherited from a single parent. IBD estimates that are phase aware can improve26

relationship and pedigree inference (Ramstetter et al. 2017, 2018; Williams et al. 2020), enable health and27

trait inheritance to be traced (Browning and Thompson 2012; Lin et al. 2013; Vacic et al. 2014; Henden et al.28

2016; Belbin et al. 2017; Yang et al. 2019; Henden et al. 2019; Finke et al. 2020), and increase the accuracy of29

many other inferences regarding demographic history and genetic ancestry (Palamara et al. 2012; Ralph and30
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Coop 2013; Palamara and Pe’er 2013; Martin et al. 2018; Pathak et al. 2018; Browning et al. 2018; Naseri31

et al. 2019c).32

Estimating IBD segments is challenging due to not only the size of the genomic data sets but also due to33

two types of error that break up IBD segments: genotyping and phase switch error (Figure 1). Genotyping34

error occurs when the observed genotype of an individual is miscalled due to sequencing or microarray errors.35

Phase switch errors occur when alleles are assigned to the incorrect haplotype within a diploid individual36

during statistical phasing. Moreover, IBD segments may contain discordant alleles due to mutation or gene37

conversion since the common ancestor. Together, these errors and discordances may lead IBD inference38

methods to fragment true long IBD segments into many shorter, erroneous segments on separate haploid39

chromosomes. Some of these short fragments of IBD may be below the minimum segment length at which40

IBD inference methods can reliably make estimates. This can then result in an underestimate of the total41

proportion of the genome that is IBD since short fragments may be erroneously discarded as false IBD.42

Additionally, the number of IBD segments shared between the two individuals may be overestimated when43

a fragmented long IBD segment is erroneously identified as several shorter segments.44

Here we present the templated positional Burrows-Wheeler transform (TPBWT; see Figure 2), which45

extends the positional Burrows–Wheeler transform (PBWT; Durbin 2014) to make fast IBD estimates46

robust to genotype and phasing errors. The TPBWT is an extension of the PBWT with an extra dimension47

added that masks out potential errors in the haplotypes and extends IBD segments through putative errors.48

Additionally, we have incorporated within the TPBWT a heuristic that scans patterns of haplotype sharing to49

identify the location of phase switch errors and correct them. Using haplotype data simulated over pedigrees50

we explore the speed and accuracy of the TPBWT against other state-of-the-art phase-aware IBD inference51

approaches in the presence of simulated genotyping and phasing error. For each phase-aware method we52

compare the false positive and false negative rates of inferring IBD segments of varying lengths. Additionally53

we compare the performance of the TPBWT against the widely used IBD inference approach described in54

Henn et al. (2012) that is robust to phasing errors since it uses unphased data. We introduce both in-sample55

and out-of-sample TPBWT-based IBD inference algorithms and demonstrate their computational efficiency56

on direct-to-consumer and biobank scale datasets with millions of samples. Finally, we briefly present57

an empirical analysis that utilizes the TPBWT against the 23andMe database to explore the geographic58

patterns of haplotype sharing within Mexico. Hierarchical clustering of IBD shared across regions within59

individual 1, chromosome 5:

individual 2, chromosome 5:

IBD segments

individual 1, chromosome 5:

individual 2, chromosome 5:

phase switch errors

Figure 1: Phase switch errors fragment long IBD segments. Left: Two IBD segments (blue) are shared on a single
chromosome in two related diploid individuals. Right: Phase switch errors (dotted lines) occur at different positions along the
chromosome in the two individuals, fragmenting the two true IBD segments into many erroneous short IBD segments. Some
of these short fragments of IBD may be below the minimum segment length at which IBD inference methods can reliably
make estimates. The discarded fragments can result in an underestimate of the total proportion of the genome that is IBD.
Additionally, since each fragment is treated as an individual segment this can result in an overestimate of the number of IBD
segments shared between the two individuals.
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Figure 2: Summary of the TPBWT data structures and IBD inference algorithm. To identify haplotype sharing
among a large panel of haplotypes, the TPBWT passes once through a M by N by t three-dimensional structure where M is
the number of haplotypes, N is the number of bi-allelic sites, and t is the number of templates. Each template is a pattern at
which sites are masked out (shaded out in the figure). During the left-to-right pass through this structure, at each site k, two
arrays are updated (blue arrow). The positional prefix array ppa and the divergence array div are both two dimensional arrays
of size M by t. At site k, each of the t columns of ppa and div are updated for the templates that are not masked out. Each of
the t columns in ppa contains the haplotypes sorted in order of their reversed prefixes. Similarly each of the t columns in div
contains the position at which matches began between haplotypes adjacent to one another in the sorted order of ppa. During
the left-to-right pass through this structure, short fragments of IBD shared between haplotypes i and j, broken up by errors,
are identified by each of the t templates (green arrows). As these fragments are identified they are merged and extended with
one another in the current match arrays Ps and Pe. While merging and extending IBD fragments a heuristic is used to scan
for and fix putative phase switch errors. See the main text Section 4 for details.

Mexico reveals geographically stuctured haplotype sharing and a strong signal of isolation by distance.60

1.1 New Approaches61

To detect IBD segments we extend the positional Burrows–Wheeler transform (PBWT; Durbin 2014). Given62

M haplotypes with N bi-allelic sites, the PBWT algorithm described in Durbin (2014) identifies identical-63

by-state (IBS) subsequences of the haplotypes in O(NM) time. A major limitation of PBWT is that it64

requires exact IBS subsequence matches with no haplotyping errors or missing data. To reduce sensitivity to65

error and missing data we introduce the templated PBWT (TPBWT) that is inspired by the seed templates66

used by some short read alignment and homology search algorithms (Ma et al. 2002; Li et al. 2008). The67

TPBWT identifies IBS subsequences of the haplotypes despite missing data, genotyping, and phase switch68

errors with only a small linear increase in computational complexity compared to the PBWT.69

The TPBWT is robust to error while retaining the speed of the PBWT through two main innovations:70

(1) the TPBWT adds an extra dimension to the data structures within the PBWT that allows errors71

to be masked out and haplotype matches to be extended through them, and (2) the TPBWT applies a72

heuristic that scans for patterns of haplotype sharing to correct putative phase switch errors (Figure 2). To73

handle genotyping errors, the one-dimensional arrays in the PBWT (described below in the Materials and74

Methods Section 4) become two-dimensional arrays in the TPBWT. While the PBWT-based algorithm to75

find IBS sequences passes once through the N by M two-dimensional haplotype alignment, the TPBWT-76

based algorithm passes once through a N by M by t three-dimensional structure, where t is adjusted to77

control the method’s sensitivity to error. Each “level” in t represents a different template, or pattern, used to78

mask out sites that may contain errors. During a single pass through this three-dimensional structure, short79

fragments of IBS, broken up by errors, are identified from each template and then merged and extended. As80

these fragments of IBS are identified, a heuristic is used to scan for putative phase switch errors by checking81

the positions of IBS segments on complementary haplotypes. If a phase switch error in one or both of the82
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Figure 3: True and estimated IBD segments shared between simulated first cousins. Segments are plotted for
chromosomes 1-9 (the other chromosomes were omitted for space considerations). Each chromosome is represented as a grey bar.
Above each chromosome are plotted IBD segments; first the true simulated IBD segments (in pink), then segments estimated
by each method (in the order depicted in the legend). Each IBD segment is represented by two lines showing their position
within each of the two cousins. To a varying degree, phasing errors in either cousin fragmented the IBD segments estimated
by each method. For example, all methods including TPBWT erroneously fragmented the single long true IBD segment on
chromosome 9. In this case the TPBWT estimated two short segments rather than a single long segment; the other methods all
estimated between 7 and 9 short segments. Realistic levels of genotyping and phase switch errors were simulated (see Section
4.7).

individuals is found, their phase is corrected and IBS segments previously fragmented by switch errors are83

merged back together. By identifying and merging IBS fragments while correcting haplotype phasing, the84

TPBWT achieves better accuracy and computational efficiency than masking out or subsampling sites in85

multiple independent PBWT runs that are then post-hoc merged. Depending on the degree of sensitivity86

to error required by the user (determined by parameters described in the text below), the TPBWT has a87

worst-case time complexity of O(NMt) or collapses down to the PBWT when t = 1. Extensive details on88

the TPBWT are provided in the Materials and Methods Section 4. Our software implementation is freely89

available for non-commercial use in the code repository https://github.com/23andMe/phasedibd.90
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Figure 4: Error in the estimated number of IBD segments shared between simulated relatives. The y-axis
represents the number of erroneous IBD segments estimated for a simulated pair of relatives. The error was calculated as
(η̂ − η) where η is the true number of IBD segments and η̂ is the estimated number of IBD segments.

2 Results91

2.1 Performance of TPBWT Versus Other Phase-Aware Algorithms92

We compared the performance of TPBWT to other state-of-the-art IBD inference algorithms that use phased93

data by estimating IBD haplotype sharing within a dataset consisting of haplotypes simulated over pedigrees94

in which the true IBD shared among individuals was known perfectly. Our simulations included realistic95

levels of genotyping miscalls and phase switch errors to test how robust each method was to the error found96

in real data. TPBWT was compared to hap-IBD (Zhou et al. 2019), iLASH (Shemirani et al. 2019), PBWT97

(Durbin 2014), RaPID (Naseri et al. 2019b), and Refined IBD (Browning and Browning 2013). See Table98

2 for parameter settings of the different methods and Section 4.7.4 for a description of the analyses. All99

methods were run over the same set of simulated haplotypes; see Section 4.7 for details on how the haplotypes100

were simulated and phased. For each method we examined the IBD inference accuracy, false positive and101

false negative IBD detection rates, and computational efficiency.102

2.1.1 Inference Accuracy103

To motivate a systematic comparison of the IBD inference errors from various phase-aware methods, Figure104

3 plots the IBD segments estimated by each method and compares them to the true segments for a single105

randomly selected pair of simulated individuals. Realistic levels of genotyping and phase switch errors were106

simulated (see Section 4.7). Figure 3 illustrates the nature of the errors from each method; for example, for107

the single true IBD segment on chromosome 6 the TPBWT correctly estimated a single long IBD segment108

while the other methods estimated multiple short fragments of IBD: hap-IBD, Refined IBD, and iLASH each109
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Figure 5: Error in the proportion of the genome estimated to be IBD between simulated relatives. The y-axis
represents the proportion of the genome that was erroneously inferred to be IBD for a simulated pair of relatives. The error was
calculated as (λ̂− λ)/γ where λ is the true total amount of the genome that is IBD, λ̂ is the estimated amount of the genome
that is IBD, and γ is the genome length.

estimated two short fragments, RaPID estimated 4 short fragments, and Durbin’s PBWT estimated 6 short110

fragments. The short fragments of IBD estimated by hap-IBD, Refined IBD, and iLASH covered only a small111

portion of the true amount of chromosome 6 that was IBD. Note that many of the methods fragmented the112

true IBD segment at the same locations along the chromosome; these are the locations of phase switch errors.113

The TPBWT, on the other hand, successfully “stitched” short fragments of IBD together across phase switch114

and other haplotyping errors to reconstruct the full length of the true IBD segment. Since Durbin’s PBWT115

was the only method that does not allow for a minimum segment length threshold in genetic distance, it was116

the only method that detected segments < 3 cM; many of those very short fragments filled in gaps between117

errors and therefore resulted in relatively decent coverage of the genomic regions that were truly IBD but118

an extreme over estimate in the number of IBD segments. Additionally, Durbin’s PBWT detected very119

short IBS segments scattered across the genome that were false positive IBD. Note that while the TPBWT120

appeared to perform the best in terms of accuracy its performance was still far from perfect. For example,121

all methods including TPBWT erroneously fragmented the single long true IBD segment on chromosome 9122

and to varying degrees underestimated the amount of chromosome 9 that was truly IBD (Figure 3). In this123

case the TPBWT estimated two short segments rather than a single long segment; the other methods all124

estimated between 7 and 9 short segments.125

To quantitatively compare the performance of the IBD inference methods across a large number of126

simulations, we focused on their accuracy in estimating two summary statistics: the estimated number of127

IBD segments shared between two individuals and the estimated proportion of the genome that is IBD128

between two individuals. These two statistics are particularly informative for downstream analyses such as129

estimating relatedness and demographic inference. Error in the estimated number of IBD segments shared130
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between simulated relatives is shown in Figure 4. All methods had substantially larger error than TPBWT.131

The error was highest in closely related pairs that shared long IBD segments; particularly parent–child and132

siblings. Durbin’s PBWT performed the worst in estimating the number of segments; the true IBD segments133

were highly fragmented by errors resulting in extreme error, sometimes overestimating by 600 to 800 IBD134

segments. Error in the estimated percentage of the genome that is IBD in simulated relatives is shown in135

Figure 5. Here all methods had substantially larger error than TPBWT except Durbin’s PBWT. hap-IBD136

and Refined IBD had the largest error; on average they underestimated the amount of the genome that was137

IBD by approximately 10%. The error in all methods was higher in simulated pairs that shared long IBD138

segments such as parent–child compared to more distant relative pairs such as first cousins. These results139

confirm the nature of the errors illustrated in Figure 3; compared to the TPBWT, the other methods tested140

here were highly sensitive to phasing and genotyping errors resulting in estimated IBD segments that were141

short fragments of the true long IBD segments.142

2.1.2 False Negative and False Positive Rates143

To further characterize the performance of each method we additionally calculated the false positive and144

false negative rates of inferring IBD. Rates were calculated for bins of IBD segment lengths as described145

in Section 4.7.4. For IBD segments ≥ 4 cM all methods had very low false positive rates (< 0.02; Figure146

6). For segments in the smallest bin (3–4 cM) Refined IBD and hap-IBD had the lowest false positive rates147

(between 0.02 and 0.03). TPBWT, PBWT, and iLASH had false positive rates about 0.04, and RaPID had148

much higher false positive rates (between 0.4–0.5) compared to all other methods.149

The false negative rate varied according to how it was calculated (Figure 6). The first false negative150

rate we compared was calculated as the proportion of true segments in a size bin that did not overlap any151

estimated segment compared to the total number of true segments in the size bin. Using this rate all methods152

performed well (approached 0.0) as segment sizes increased except RaPID, which missed approximately 10%153

of all long segments (> 15 cM). However, for short segments the methods varied considerably: in the 3–4154

cM range hap-IBD missed over 40% of true IBD segments whereas Durbin’s PBWT missed less than 5% of155

the segments. For false negatives, all methods performed worse than the TPBWT except Durbin’s PBWT.156

The second false negative rate we compared was calculated as the proportion of the length of true segments157

in a size bin not covered by any estimated segment compared to the total length of true segments in the size158

bin. Using this rate the TPBWT outperformed all other methods for segments ≥ 6 cM. For segments < 6 cM159

only Durbin’s PBWT outperformed the TPBWT. While the segments estimated by PBWT and TPBWT160

failed to cover less than 20% of the true segment lengths in the smallest bin (3–4 cM), the other methods161

failed to cover much higher percentages; in particular hap-IBD and Refined IBD missed approximately 50%162

of the true segment lengths. For long segments ≥ 18 cM TPBWT was nearly perfect (missed 0%), whereas163

hap-IBD and Refined IBD missed approximately 25% of the true segment lengths (Figure 6).164

2.1.3 Computational Speed165

IBD computation runtimes for different methods are shown in Figure 7. Refined IBD and iLASH were at166

least an order of magnitude slower than the four PBWT-based methods hap-IBD, RaPID, TPBWT, and167

Durbin’s original PBWT. The four PBWT-based methods all exhibited linear time complexity, while Refined168

IBD and iLASH took super-linear time. TPBWT was faster than all other methods except Durbin’s PBWT.169

While iLASH, hap-IBD, and Refined IBD were written as multithreaded programs to take advantage of170

machines with small numbers of CPU cores the runtimes compared here were for single-threaded operation171
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Figure 6: False negative and false positive IBD inference rates. Rates were calculated over simulated data and binned
by IBD segment sizes (see main text). The x-coordinate of each point is the lower bound of each size bin (e.g. 3 cM for the 3–4
cM bin). See Table 2 for parameter settings of the different methods. Left top: False negative rate by segment is the proportion
of true segments in a size bin that do not overlap any estimated segment compared to the total number of true segments in the
size bin. Left bottom: False negative rate by segment coverage is the proportion of the length of true segments in a size bin
not covered by any estimated segment compared to the total length of true segments in the size bin. Right top: False positive
rate by segment is the proportion of estimated segments in a size bin that do not overlap any true segment compared to the
total number of true segments in the size bin. The rate for RaPID in the 3–4 cM bin (cropped out of the plot) was 0.49. Right
bottom: False positive rate by segment coverage is the proportion of the length of estimated segments in a size bin not covered
by any true segment compared to the total length of true segments in the size bin. This rate for RaPID in the 3-4 cM bin
(cropped out of the plot) was 0.45.

using a single CPU core. This was done because any of the methods compared here must be parallelized over172

hundreds of CPU cores using batching approaches to process datasets with millions of samples in reasonable173

wall clock time (see Section 2.3 and Table 1).174

2.2 Performance of TPBWT Versus a Phase-Free Algorithm175

We compared the performance of TPBWT to an IBD inference algorithm that is robust to phasing errors176

because it uses unphased data. This algorithm was first described in Henn et al. (2012), and was developed177

independently by Seidman et al. (2020), who called it IBIS. We compared TPBWT to the 23andMe C++178

implementation of the IBIS algorithm that was used in Henn et al. (2012), which we refer to here as IBIS-179

like. The IBIS-like algorithm is known to have a high false positive rate for shorter IBD segments (Henn180

et al. 2012; Seidman et al. 2020). To account for this while comparing the accuracy of detecting IBD with181

IBIS-like and the TPBWT, we replicated the trio validation approach used in Henn et al. (2012). For each182
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Figure 7: IBD computation runtimes and complexity for different methods. IBD computed for 42,927 SNPs from
human chromosome 1. (Left) The x-axis is the number of haplotypes analyzed and the y-axis is the time in seconds taken to
infer IBD. All methods were run using 1 CPU core. See Table 2 for parameter settings of the different methods. The four
PBWT-based methods were at least an order of magnitude faster than the two non-PBWT-based methods; the original Durbin
(2014) PBWT was the fastest. Computation times for TPBWT on larger datasets (millions of samples) using the parallel
batching approach described in the main text are reported in Section 2.3 and Table 1. (Right) Runtime needed to compute IBD
for each haplotype in samples sizes of 400 to 20000 haplotypes relative to the time needed to compute IBD for each haplotype in
a sample size of 400. Slopes close to zero indicate linear time complexity, positive slopes indicate super-linear time complexity.

true IBD segment shared between a child and a distant relative, an overlapping IBD segment between the183

distant relative and one or more of the child’s parents should also be observed. If this is the case, we labeled184

the IBD segment “trio validated”. Segments that were not trio validated were either false positive segments185

in the child or false negative segments in the parents. For bins of IBD segment lengths we calculated the186

proportion of segments that were trio validated (hmean) using both TPBWT and IBIS-like, as detailed in187

Section 4.7.5. Since both Henn et al. (2012) and Seidman et al. (2020) showed that IBIS-like algorithms188

have high false positive rates for segments < 7 cM in length, we used 7 cM has the minimum segment length189

for the IBIS-like algorithm.190

The mean proportion of trio validated segments for bins of IBD segment lengths (hmean) is shown in191

Figure 8 panel A. For all bins of IBD segments > 6.75 cM TPBWT had trio validation rates of 1.0, which192

declined to 0.90 for segments in the 3.0–3.25 cM bin. IBIS-like had a trio validation rate of 1.0 for segments193

in the > 14.0 cM bin, which dropped to 0.89 for segments in the 10.0–10.25 cM bin and to 0.42 for segments194

in the 7.0-7.25 cM bin. This means over half of all the IBD segments in the 7–7.25 cM bin estimated by195

IBIS-like were either false positive segments in the child or (less likely) false negative segments in the parents.196

The trio validation rate for TPBWT remained high even for short segments.197

The number of segments detected by each method for bins of IBD segment lengths is shown in Figure 8198

panels B and C. Using TPBWT a total of 15.5 million segments were detected and using IBIS-like a total of199

1.1 million segments were detected. Figure 8 panel B shows that the vast majority of the segments detected200

by TPBWT were < 5.0 cM, and that most of these were trio validated. Using an IBIS-like method this201

large amount of IBD sharing can not be reliably detected. Figure 8 panel C zooms in on the counts of IBD202

segments and reveals that while IBIS-like detected more overall segments 7-8 cM in length than TPBWT,203

TPBWT detected a greater number of trio validated segments 7-8 cM in length than IBIS-like.204
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Figure 8: Trio validation test used to
compare IBD detection accuracy between
TPBWT and the phase-free IBIS-like algo-
rithm. IBD trio validation tests were performed by
computing the in-sample IBD among 13,000 indi-
viduals (1,000 child-parent trios and 10,000 distant
relatives). See main text for details. (A) The mean
proportion of trio validated segments for bins of
IBD segment lengths (hmean) is shown for TPBWT
(blue) and IBIS-like (green). For all bins of IBD
segments > 6.75 cM TPBWT had trio validation
rates of 1.0, which declined to 0.90 for segments in
the 3.0–3.25 cM bin. IBIS-like had a trio validation
rate of 1.0 for segments in the > 14.0 cM bin, which
dropped to 0.89 for segments in the 10.0–10.25 cM
bin and to 0.42 for segments in the 7.0-7.25 cM bin.
(B) The number of all segments (trio validated and
not trio validated) detected by each method for bins
of IBD segment lengths is shown in light green and
light blue. The number of trio validated segments
detected by each method for bins of IBD segment
lengths is shown in dark green and dark blue. The
vast majority of the segments detected by TPBWT
were < 5.0 cM in length, and most of these were
trio validated. (C ) Zoomed in counts of IBD seg-
ments reveals that while IBIS-like detected more
overall segments 7-8 cM in length than TPBWT,
TPBWT detected more trio validated segments 7-
8 cM in length than IBIS-like.

2.3 Parallelized Performance on Large Cohorts205

Table 1 shows both wall clock and CPU runtimes for parallelized IBD analyses on large sample sizes. Wall206

clock time is the “real” time that the entire analysis took to run. CPU time is the sum of the computation207

time for all compute cores. The wall clock time taken to compute IBD for 1 million randomly sampled208

research consented 23andMe customers on chromosome 1 was 23.6 minutes when parallelized across 190209

CPU cores. Extrapolated to 23 chromosomes the wall clock time required was 48.8 minutes across 920 CPU210

cores, well within the capabilities of most HPC cluster facilities.211

For large sample size cohorts in biobank or DTC genetic databases out-of-sample IBD computation is an212

important application. For out-of-sample IBD analyses comparing 10k randomly sampled research consented213

23andMe customers to 1 million other customers on chromosome 1 the wall clock compute time required214

was 6.8 minutes across only 20 CPU cores. Extrapolated to 23 chromosomes and 10 million customers the215

time needed was 18.4 minutes using 920 CPU cores. These times assumed the haplotypes of the databased216

cohort (the 10 million individuals) had already been stored as TPBWT-compressed haplotypes. The time217

needed to TPBWT-compress a set of haplotypes is the same as the time needed to compute their in-sample218

IBD.219

2.4 Case Study: Haplotype Sharing in Mexico220

Haplotype sharing among 9,517 research consented 23andMe customers who self identified as having all 4221

grandparents from a single Mexican state revealed fine-scale population structure within Mexico (Figure 9).222

Each customer was genotyped on either the 23andMe v4 or v5 microarray chip; after quality control (see223

Section 4.8) the v4 chip had 453,065 SNPs and the v5 chip had 544,042 SNPs. To minimize the effect of224

close relatives we excluded any pair of individuals that shared more than 20 cM. Using a single CPU core225
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Figure 9: Genetic structure across regions of Mexico. (Left) Heatmap showing mean pairwise IBD haplotype sharing
across Mexican states. This is the mean sum of the length of IBD segments per pair, where each individual has all 4 grandparents
from the same Mexican state. Purple/black represents more sharing, yellow/white represents less sharing. Values are scaled by
row. Hierarchical clustering was performed using Ward’s method. The resulting dendrogram shows which states share more
IBD, on average, than other states. (Right) Population structure is revealed through seven geographic clusters of Mexican
states with elevated levels of haplotype sharing (labeled A–G).

the IBD compute had a runtime of approximately 20 minutes and revealed 26,606,706 IBD segments across226

all chromosomes.227

Hierarchical clustering of mean pairwise IBD sharing across Mexican states identified geographic clusters228

of states with elevated levels of haplotype sharing (Figure 9). Our results revealed that IBD sharing among229

Mexican states decays as geographical distance increases; this is similar to the pattern Martin et al. (2018)230

found when they clustered the IBD shared among municipal regions of Finland. Our clustering analysis231

identified clusters of Mexican states that share more IBD on average with one another than with other states;232

a major limitation of this state-level analysis is that it obscures underlying continuous genetic variation that233

does not follow state lines. Clustering analysis among Mexican states identified two large clusters of states;234

one cluster representing the states of the Yucatán peninsula and the southern Mexican states and another235

cluster representing Mexico City and the central and northern states. Within the southern cluster were two236

subclusters: a cluster representing the Yucatán peninsula (the states of Yucatán, Quintana Roo, Campeche,237

Chiapas, and Tabasco) and another cluster representing a group of southern states stretching between the238

Caribean and Pacific coasts (Guerrero, Oaxaca, Veracruz, Tlaxcala, and Puebla). The northern cluster239

also consisted of two clear subclusters: a distinct cluster of northeast states (Coahuila, Tamaulipas, and240

Nuevo León), a cluster of north central states (Chihuahua and Durango), and a cluster of states around241

the Gulf of California (Sinaloa, Sonora, Baja California, and Baja California Sur). Closely related to the242

Gulf of California cluster was a cluster of central Pacific coast states (Nayarit, Colima, Michoacán, Jalisco,243

Zacatecas, and Aguascalientes). The last cluster is in central Mexico surrounding Mexico City (Hidalgo,244

Querétaro, Guanajuato, San Luis Potosi, México, Federal District, and Morelos).245

We found mean pairwise IBD haplotype sharing to be highest within states and among geographically246

neighboring states (Figure 10). For example, mean IBD shared among individuals with all 4 grandparents247
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Figure 10: Mean pairwise identical-by-descent (cM) across Mexican states. Within each panel, each Mexican state
is colored by the mean pairwise IBD (in cM) shared between individuals with all 4 grandparents from that state and all 4
grandparents from the state specified in that panel. The pairwise IBD is the sum of IBD segments lengths shared between
two individuals. Geographically structured IBD sharing was found throughout Mexico. For example, mean IBD shared among
individuals with all 4 grandparents from Nuevo León was 13.4 cM. In contrast, mean pairwise sharing between individuals with
all 4 grandparents from Nuevo León and individuals with all 4 grandparents from Yucatán was 4.8 cM.

from Nuevo León was 13.4 cM, and the mean pairwise IBD shared between individuals with all 4 grandparents248

from Nuevo León and individuals with all 4 grandparents from neighboring Coahuila and Tamaulipas was 10.9249

and 11.9 cM, respectively. In contrast, mean pairwise sharing between individuals with all 4 grandparents250

from Nuevo León and individuals with all 4 grandparents from Yucatán was 4.8 cM. Similar geographically251

structured IBD sharing was found throughout Mexico (Figure 10).252

3 Discussion253

The positional Burrows–Wheeler transform (PBWT; Durbin 2014) was a significant advance in computa-254

tionally efficient haplotype matching algorithms. Its high sensitivity to error, though, has inspired a number255

of methods such as RaPID (Naseri et al. 2019b) and hap-IBD (Zhou et al. 2019) that build upon and extend256

PBWT in an attempt to increase inference accuracy. The templated positional Burrows–Wheeler transform257

(TPBWT) is similar to these methods in that it extends PBWT to be more robust to haplotyping errors and258

yet remains highly computationally efficient. However, the TPBWT outperforms these other state-of-the-art259
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Table 1: Compute times for parallelized IBD analyses with large sample sizes. Times are shown for in-sample IBD computes on 1 million individuals, out-of-sample IBD
computes on 10k individuals against 1 million, and out-of-sample IBD computes on 10k individuals against 10 million. The first two rows show the compute times measured
when IBD was estimated over 42,927 sites of human chromosome 1. The last three rows show those compute times extrapolated to 23 chromosomes with a total of 600k sites.
The last row additionally extrapolates the time for an out-of-sample analysis on 1 million to 10 million individuals. CPU time is the sum of the computation time for all
compute cores. Wall clock time is the “real” time that the entire analysis took to run.

IBD Analysis
Type

Chromosomes
Number of
Samples

Steps Performed
Memory
Required
(per core)

CPU
Cores

CPU Time
(minutes)

Wall Clock
Time
(minutes)

In-sample 1 1M
1) In-sample IBD compute and TPBWT-compression for 20
batches of 50k samples

80 Gb 20 206.4 10.3

2) Out-of-sample comparisons among all compressed batches 80 Gb 190 2527.0 13.3
Total 2733.4 23.6

Out-of-sample 1
10k against
1M

1) TPBWT-compression of 10k samples 3.2 Gb 1 1.1 1.1

2) Compare compressed 10k to each compressed 50k batch 16.0 Gb 20 114.0 5.7
Total 115.1 6.8

In-sample 1–22, X 1M
1) In-sample IBD compute and TPBWT-compression for 20
batches of 50k samples

80 Gb 460 2889.6 10.3

2) Out-of-sample comparisons among all compressed batches 80 Gb 920 35378.0 38.5
Total 38267.6 48.8

Out-of-sample 1–22, X
10k against
1M

1) TPBWT-compression of 10k samples 3.2 Gb 23 15.4 1.1

2) Compare compressed 10k to each compressed 50k batch 16.0 Gb 460 1596.0 5.7
Total 1611.4 6.8

Out-of-sample 1–22, X
10k against
10M

1) TPBWT-compression of 10k samples 3.2 Gb 23 15.4 1.1

2) Compare compressed 10k to each compressed 50k batch 16.0 Gb 920 15960.0 17.3
Total 15975.4 18.4
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phase-aware algorithms due to two primary innovations: (1) the TPBWT adds an extra dimension to the260

data structures within the PBWT that masks out putative errors and extends haplotype matches through261

them, and (2) the TPBWT applies a phase correction heuristic that scans for certain patterns of haplotype262

sharing to identify and correct phase switch errors. The TPBWT’s phase correction method leverages the263

fact that the patterns of haplotype sharing within large cohorts of samples contain a great deal of information264

regarding the locations of phase switch errors.265

To compare the performance of TPBWT to other state-of-the-art phase-aware IBD inference methods we266

measured their false negative IBD detection rates in two different ways that together help characterize the267

nature of IBD inference error. The first, false negative rate by segment revealed that most methods did a good268

job of detecting the presence of a true IBD segment; as long as the true IBD segment was of adequate length269

then all the methods tested inferred a segment that overlapped the true segment. However, the second false270

negative rate by segment coverage showed that while inferred segments overlapped true segments, often the271

inferred segments were short fragments that did not adequately cover the entire length of the true segment.272

In this regard the TPBWT performed substantially better than the other methods compared here. The273

high false negative rates for the other phase-aware methods were due to estimating highly fragmented IBD274

segments which led to both an under estimate in the overall percentage of the genome shared as IBD and275

an over estimate in the number of IBD segments shared. These errors in IBD inference can significantly bias276

kinship coefficient calculations and negatively impact relationship and pedigree inference.277

Our results show that most state-of-the-art phase-aware IBD inference methods performed worse for278

close relatives compared to more distant relatives; specifically inference accuracy was better for first cousins279

and aunt-niece pairs compared to parent-child pairs (Figures 4 and 5). Because IBD segments are broken280

up by meiotic recombination they are expected to be longer for close relatives. Assuming genotyping and281

phase switch errors are uniformly distributed along the genome, true long IBD segments will on average282

contain more of these errors than true short IBD segments. This means estimates of long IBD segments283

are likely to be more negatively impacted by errors compared to estimates of short segments. This can284

make accurate inference of phase aware IBD among close relatives particularly problematic. Note that Zhou285

et al. (2019) found much lower false positive rates for hap-IBD than we report in Figure 6. While there286

are many differences in the datasets used to calculate these rates, one striking difference is that Zhou et al.287

(2019) evaluated the accuracy of hap-IBD on a dataset consisting of distantly related individuals, whereas288

our simulation tests focused on closely related individuals. The fact that the negative impact of phase switch289

errors on the accuracy of phase aware IBD estimates is more severe among closely related individuals may290

explain hap-IBD’s poorer performance in our tests compared to those by Zhou et al. (2019). We hope that291

our focus here on accuracy even among closely related individuals will contribute towards methods that292

make unbiased IBD estimates along the entire spectrum of relatedness.293

Another approach to making IBD inference robust to phasing errors is to simply use unphased data.294

In contrast to the limitations previously discussed with phase-aware IBD methods in accurately identifying295

IBD among closely related individuals, the major limitation in the accuracy of phase-free IBD methods296

is in accurately detecting short IBD segments shared among distantly related individuals. 23andMe has297

used the phase-free algorithm described in Henn et al. (2012) and Seidman et al. (2020) to compute IBD298

among millions of customers. This approach scans individual’s unphased data for long regions of compatible299

diplotypes (regions in which two individuals do not have sites with different homozygous genotypes). We300

show here that using this approach over half of all 7 cM IBD segments estimated were likely false positive301

segments. If phase-free IBD detection methods such as Henn et al. (2012) and Seidman et al. (2020) are302
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used, downstream quality control filtering of shorter segments should be applied (as is done at 23andMe).303

Regardless, using these phase-free approaches means that massive amounts of very short (< 7 cM) haplotype304

sharing among distantly related individuals can never be reliably detected. The TPBWT reliably detected305

segments down to 3-4 cM without any downstream quality control filtering on the segments.306

We show here that the TPBWT is not only more accurate and robust to error than other state-of-the-art307

IBD inference methods but also that it successfully scales to biobank and DTC genetic data sets with millions308

of samples. One of the most expensive computes for DTC genetic testing companies is calculating the IBD309

shared between new customers and the entire database of all customers. We presented an example computing310

IBD for 10,000 new individuals against an existing panel of 10 million individuals. For this compute the311

TPBWT takes 266.2 CPU hours which, when parallelized appropriately, takes 18.4 minutes of wall clock312

time.313

Additionally, we show that estimates of IBD sharing made using the TPBWT over the 23andMe database314

can uncover highly granular population structure. Previous studies of population structure in Mexico relied315

on relatively small sample sizes; data from 66 Mexican-American individuals (Gravel et al. 2013) or 1,000316

Mexican individuals (Moreno-Estrada et al. 2014). The scale of the 23andMe database provided a high317

resolution snapshot of the rich haplotype diversity within Mexico; the IBD sharing among 9,517 research318

consented 23andMe customers who self identified as having all 4 grandparents from a single Mexican state319

revealed geographically structured population structure in Mexico. Similar to patterns of IBD sharing at320

the sub-country level within Finland, our analysis shows that haplotype sharing within Mexico decays with321

increasing geographic distance (Martin et al. 2018). Expanding upon the IBD estimates presented here with322

in depth genetic ancestry analyses, as done in Gravel et al. (2013) and Moreno-Estrada et al. (2014), would323

help increase our understanding of the historical population sizes and migration patterns that led to the rich324

genetic diversity of Mexico.325

For very large biobank and DTC genetic data sets storage and retrieval of previously estimated IBD326

segments is as large of a computational problem as the initial inference of IBD sharing. Naseri et al. (2019a)327

presented an algorithm that extends PBWT to compute out-of-sample haplotype sharing between a target328

and a large panel of pre-indexed haplotypes in constant time. While the method is highly memory intensive,329

it may be that similar approaches combined with the TPBWT error handling methods introduced here could330

entirely replace the need to ever store IBD estimates.331

Our results highlight the fragility of most phased IBD inference methods; the accuracy of IBD estimates332

can be highly sensitive to the quality of haplotype estimation. Continued progress on better haplotype333

phasing methods will undoubtedly help the accuracy of IBD estimates. The two problems are fundamentally334

linked; indeed both IBD inference methods and phasing methods have benefited from the computational335

advantages of the PBWT data structure (Loh et al. 2016; Delaneau et al. 2019). Methods that extend PBWT336

(perhaps incorporating TPBWT-like error handling) to jointly infer IBD and haplotype phase over biobank-337

scale data sets seem particularly promising. The approach used by the TPBWT to handle missing data is338

effectively an imputation approach; extending it for more robust imputation would be fruitful. Any TPBWT-339

based algorithms for phasing and/or imputation could be designed to run directly over TPBWT-compressed340

haplotypes making large scale reference-based estimates computationally tractable. One unresolved challenge341

for any PBWT-based inference algorithm is appropriately propagating uncertainty; approaches that integrate342

probabilistic approaches with the efficiency of PBWT are an exciting way forward.343
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4 Materials and Methods344

Inferring IBD segments is challenging primarily due to two types of error that break up IBD segments into345

short fragments: genotyping and phase switch errors. These errors are particularly problematic when de-346

tecting IBD among individuals that are closely related (e.g. first, second, and third degree relatives) since347

long IBD segments are more likely to be fragmented by these errors. In this work we describe algorithms348

to compute phase aware IBD segments that are robust to these errors based on a procedure called the tem-349

plated positional Burrows–Wheeler transform (TPBWT). This is the positional Burrows–Wheeler transform350

(PBWT; Durbin 2014) with substantial modifications to robustly handle genotyping errors and missing data.351

Two primary innovations distinguish the TPBWT from the PBWT that increase IBD inference accuracy352

while retaining the speed of the PBWT. First, the TPBWT adds an extra dimension to the data structures353

within the PBWT that “templates” or masks the haplotypes, enabling haplotype matches to be extended354

through errors. This idea of using templates was borrowed from some short read alignment and homology355

search algorithms (Ma et al. 2002; Li et al. 2008). Second, the TPBWT applies a heuristic that scans for356

patterns of haplotype sharing to identify the locations of phase switch errors and correct them. Details of357

each step are given in the sections below.358

4.1 Templated Positional Burrows–Wheeler Transform (TPBWT)359

We will first describe the intuition motivating the TPBWT and then describe the implemented algorithm360

in detail. One naive approach for extending PBWT to report matching haplotypes that include some error361

would be to construct multiple replicates of the PBWT data structure. Each of these PBWTs would be362

built by masking the haplotype alignment using a different repeating template: for example one PBWT363

could be built that masks out (skips) all the odd positions in the haplotypes, and a second PBWT could364

be built that masks out all the even positions in the haplotypes. Each PBWT could then be individually365

swept through identifying exact subsequence matches following algorithm 3 in Durbin (2014). The matching366

subsequences from each independent PBWT could be merged using a post-hoc algorithm to produce all367

matching subsequences within the full (unmasked) haplotype alignment. We could modify how sensitive to368

error this approach is by changing the arrangement and number of templates/PBWTs; in our trivial example369

of even/odd templates the two templates guarantees that all matches across any two site window will be370

found as long as there is no more than one error within the window. This is because given any possible371

location of a single error in the original haplotype alignment at least one of the two PBWT replicates will have372

that error masked out and therefore still deliver the match correctly. This arrangement of templates would373

fail if two errors happened to be adjacent to one another in the haplotype alignment. However, for large374

datasets, the major bottleneck in terms of computational complexity for this naive approach to “templating”375

the PBWT is the post-hoc algorithm required to merge segments from the PBWT replicates. For every pair376

of haplotypes sharing IBD the results from each of the individual PBWTs must be scanned through and377

merged, which has a worst-case time complexity of O(N
(
M
2

)
). For datasets of non-trivial size (thousands of378

individuals and greater) much more time will be spent on the post-hoc merging of segments than was spent379

on the PBWT replicates. Moreover, this naive approach does not share information across the multiple380

independent PBWT replicates regarding the location of errors. Our goals in developing the TPBWT were381

to (1) improve accuracy with an algorithm that shares information across “templated” PBWTs so they are382

no longer independent and, (2) improve the computational efficiency of IBD inference by avoiding the need383

for post-hoc merging/filtering algorithms.384
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Algorithm 1 TPBWT algorithm to find matching subsequences. The algorithm scans left-to-right
along all N sites in the haplotype alignment. Here t represents the number of templates defined within the
templating function T and M is the number of haplotypes. T (j, k) denotes the value of T for template j at
position k. Additionally Aj,k,i is the allele at position k for haplotype ppaj,k,i and K is the next k for which
T (j, k) = 1, where i is the current template. m0 and m1 are temporary lists used to store currently matching
haplotypes. p0, p1, d0, d1 are temporary lists used to assemble ppaj,k and divj,k. Ps and Pe are each two
dimensional arrays that store the current start and end positions of matches between all haplotypes.

for j = 0 to t− 1 do

for i = 0 to M − 1 do

ppaj,0,i ← i // initialise positional prefix array
divj,0,i ← 0 // initialise divergence array

end for

end for

for k = 0 to N − 1 do // iterate through all sites
for j = 0 to t− 1 do // iterate through all templates
if T (j, k) = 1 then // templating function
s0 ← K, s1 ← K
create empty lists m0,m1, p0, p1, d0, d1
for i = 0 to M − 1 do // iterate through all haplotypes
if divj,k,i ≥ k − Lm then

if length(m0) > 0 and length(m1) > 0 then

update Ps and Pe for all ppaj,k,m0
and ppaj,k,m1

and output segments
end if

empty arrays m0,m1

end if

if divj,k,i > s0 then

s0 ← divj,k,i
end if

if divj,k,i > s1 then

s1 ← divj,k,i
end if

if Aj,k,i = ? then // check for missing data
Aj,k,i = Aj,k,i−1 or Aj,k,i+1 // extend the current longest match

end if

if Aj,k,i = 0 then // check allele at site k for haplotype ppaj,k,i
p0 append ppaj,k,i
d0 append s0
m0 append i
s0 = 0

end if

if Aj,k,i = 1 then

p1 append ppaj,k,i
d1 append s1
m1 append i
s1 = 0

end if

end for

if divj,k,i ≥ k − Lm then // check for matches with last haplotype
if length(m0) > 0 and length(m1) > 0 then

update Ps and Pe for all ppaj,k,m0
and ppaj,k,m1

and output segments
end if

end if

ppaj,K = concatenate p0 and p1 // assemble ppa and div for K
divj,K = concatenate d0 and d1

end if

end for

end for
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By substantially modifying Durbin (2014)’s PBWT data structure we can utilize the concept of “tem-385

plating” the PBWT described above to handle errors yet still return subsequence matches in linear time,386

passing through the data only once and avoiding the need for a post-hoc merging algorithm (see Algorithm387

1). In the PBWT, at each position k within the haplotype alignment two arrays are constructed: ppak the388

positional prefix array and divk the divergence array (Durbin 2014). ppak is a list of the haplotypes sorted so389

that their reversed prefixes (from k− 1 to 0) are ordered. This ordering ensures that haplotypes that match390

through position k−1 will end up adjacent to one another in ppak. The divergence array divk keeps track of391

where those matches began, the ith element in divk represents the beginning of the match between the ith392

element in ppak and the i− 1th element in ppak. The TPBWT adds an extra dimension to the PBWT that393

allows errors to be masked out and haplotype matches to be extended through them. The one-dimensional394

arrays in the PBWT (the positional prefix array and divergence array) become two-dimensional arrays in395

the TPBWT. While the PBWT-based algorithm to find matching subsequences passes once through the N396

by M two-dimensional haplotype alignment, the TPBWT-based algorithm passes once through a N by M397

by t three-dimensional structure where t is the number of templates.398

To create the TPBWT and find matching subsequences (Algorithm 1), we construct a separate ppaj,k399

and divj,k for each template j used at site k. We formalize a set of templates as an indicator function T (j, k)400

with the value 0 when the template j skips over site k and 1 if template j processes site k. As the haplotype401

alignment is passed through, T (j, k) is called for each template j; if T (j, k) is 1 then ppaj,k and divj,k are402

assembled accordingly. If we use a single template and set T (j, k) to always equal 1, the TPBWT collapses403

down to the PBWT. When a matching subsequence of at least Lm sites terminates at site k under template404

j the start and end positions of the match are stored in auxillary data structures Ps and Pe, respectively. Ps405

and Pe are both M by M two dimensional arrays in which the position x, y holds the start/end positions of406

the match between haplotype x and haplotype y. If another subsegment shared between x and y has already407

been stored in Ps and Pe, we check to see if the new matching subsegment overlaps and possibly extends408

the existing subsegment. An overlapping subsegment may already have been stored from another template;409

these two subsegments may be fragments of a single long IBD segment that was broken up by errors. If410

the two subsegments do not overlap, we check if the old matching segment has a genetic length (in cM) of411

at least Lf and then report it. The new matching subsegment is then stored in its place. Moreover, we412

use the arrangement of subsegments within each template to identify possible phase switch errors (described413

in Section 4.2 below); when a switch error is corrected in one template it immediately affects the output414

from the other templates. In this way matching subsegments from each template are merged and extended415

directly through errors with a single pass through the N by M by t three-dimensional structure. Note that416

Lm is the length of a matching subsegment in the number of sites required to extend a putative IBD segment417

whereas Lf is the full length in cM for a “good” IBD segment to be called. This formulation allows the418

user to set Lm to a low value so the algorithm sensitively detects and merges together subsegments of IBD419

fragmented by error, but only report IBD segments if they extend past a certain genetic length (Lf ) thus420

avoiding short runs of IBS to be called false positive IBD.421

The TPBWT is more accurate than using multiple independent masked PBWT runs that are post-hoc422

merged together. Within the TPBWT, each individual “templated” PBWT shares information with the423

other “templated” PBWTs regarding the location of errors that improves estimates in a way not possible424

when using multiple independent PBWT runs. As described above, the TPBWT uses arrays Ps and Pe to425

store fragments of IBS and merge them together, using a heuristic (detailed in Section 4.2) to identify and426

fix phase switch errors. When a phase switch error is identified using one template, the haplotypes of the427
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individual are swapped in all future sites visited by all templates. Thus, phase switch errors identified in one428

template effectively modify the ordering of haplotypes in the positional prefix arrays of the other templates;429

this dependency across templates means that the TPBWT identifies and merges together fragments of IBS430

that may not have been identified in the first place if using multiple independent PBWTs. Moreover, this431

means that phase switch errors are fixed consistently throughout the entire cohort; phase switch errors432

corrected in one individual are consistent across all the IBD that individual shares with all other individuals.433

This consistency helps ensure that IBD segments can be correctly triangulated within the cohort; if individual434

A shares a segment with individual B, and individual A shares an overlapping segment with individual C,435

then individuals B and C should also share an overlapping segment. This is in contrast to phase corrections436

that are applied pairwise (e.g. Browning and Browning 2011) and so do not guarantee consistency within437

the cohort.438

The TPBWT’s sensitivity to error and speed is modified by the choice of T (j, k). Depending on T (j, k),439

the TPBWT has a worst-case time complexity of O(NMt) where t represent the number of templates440

defined within T (j, k); thus the method represents a linear tradeoff between speed and sensitivity to error.441

In practice genotyping error rates from modern microarrays are low enough that we find an arrangement of442

six templates is adequate; these templates can be represented as ØhØh, hØhØ, ØØhh, hhØØ, ØhhØ, and443

hØØh, where sites at Ø will be masked out (T (j, k) = 0) and only sites at h will be processed (T (j, k) = 1).444

The choice of these six specific templates guarantees that all matches across any given four site window will445

be found as long as there are no more than two errors within the window. This is because given any possible446

arrangement of two errors across four sites in the original haplotype alignment at least one of the templates447

will mask out those errors and therefore still deliver the match correctly. Even with a genotyping error rate448

as high as 0.001 the probability of three errors within a four site window is 3.996 × 10−9 (assuming error449

independence). Using this set of templates, the TPBWT has a computation time of about half O(NMt)450

because N becomes N/2 since each template only processes 2 out of every 4 positions in the alignment. More451

templates could be utilized to ensure matches across longer windows; indeed
(
n
k

)
templates are required to452

ensure all matches across windows of size n with no more than k errors per window. Similarly with fewer453

templates the algorithm will run more quickly but be more sensitive to error; when t = 1 and T (j, k) is set454

to always equal 1 the TPBWT collapses down to the PBWT.455

The accuracy of the algorithm with a given set of templates depends on the density of sites and their456

informativeness in the dataset. For example, consider the case in which a single template hØØØØØØØØØ457

is utilized to detect IBD; in this case only one tenth of the data is considered when identifying matching458

subsequences. This choice of templates may provide adequate performance for data with a very high density459

of informative sites but may negatively affect performance when there is a low density of informative sites.460

In this case the IBD segments that are correctly identified may be erroneously lengthened and there may be461

a much higher false positive rate in the IBD segments detected.462

Our TPBWT is further detailed as pseudocode in Algorithm 1. The algorithm requires 4 parameters:463

(1) T (j, k) which defines the number and arrangement of templates to be used, (2) Lm is the minimum464

number of sites that a subsegment must span within the haplotype alignment to be merged and extend other465

subsegments, (3) Lf is the final minimum length (in cM) that a segment must have to be reported by the466

algorithm, and (4) Mt is the maximum length of a run of missing sites to extend a match through. The467

algorithm handles missing data by extending the current longest match; implicitly imputing the missing sites468

using haplotype matching. For template j at site k the longest matching haplotype to haplotype ppaj,k,i469

will be either ppaj,k,i−1 or ppaj,k,i+1, so if missing data in ppaj,k,i is encountered we simply assume the470
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haplotype continues to extend the longest match. Note that the “imputation” performed here is local by471

template; ppaj,k,i−1 and ppaj,k,i+1 may differ for each template j and so the allele “imputed” may differ for472

each template. Matches are extended forMt consecutive missing sites after which they are terminated. Note473

that the way the algorithm extends matches through runs of missing data Mt sites in length is ommitted474

in Algorithm 1 for space considerations. One additional detail is not shown in Algorithm 1; after passing475

through all sites in the haplotype alignment we loop through the haplotypes once last time to report any476

“trailing” matches (matches that extend all the way through the end of the haplotypes). At this point any477

matches left in Ps and Pe of length Lf or greater are now reported.478

4.2 Phase Correction Within the TPBWT479

As described above, the TPBWT handles haplotype error (miscalls) and missing data. It is also robust to480

“blip” phase switch errors in which the phase at a single site is swapped. However, phase switch errors481

spaced out along the chromosome will cause long regions of the haplotypes to be swapped and fragment IBD482

segments as illustrated in Figure 1. To handle these errors the TPBWT applies a phase correction heuristic483

that scans for certain patterns of haplotype sharing to identify and correct phase switch errors (see Figure484

11). Note that for haploid data sets such as human male sex chromosomes this heuristic can be turned485

off. Large cohorts of samples have patterns of haplotype sharing that are highly informative regarding the486

location of phase switch errors. The phase switch errors in an individual will fragment all IBD segments487

shared with that individual at the position of the switch error. Each IBD segment that spans the switch error488

will be broken into two fragments at the position of the error: these fragments will be on complementary489

haplotypes within the individual with the error and yet remain on the same haplotype within the other490

individual. For some closely related pairs (parent–child) this pattern of haplotype sharing may be the result491

of actual recombination patterns, however for the vast majority of more distantly related individuals the492

pattern can be used to identify phase switch errors.493

As the TPBWT scans left to right through the haplotype alignment finding new IBD segments it keeps494

track of previously found IBD segments shared among pairs of haplotypes in Ps and Pe. When a new495

segment shared between two individuals P and Q is found to be adjacent to an existing segment (either496

slightly overlapping or with a small gap between them) there are a number of possible scenarios (Figure 12).497

If the new segment is on the same haplotypes as the existing segment, then possibly the two segments are498

fragments of a longer segment broken up by error and should be merged. If the new segment begins near the499

end of the existing segment and the new segment is not on the same haplotypes as the old segment, then500

possibly there was a phase switch error in both individuals. If the new segment begins near the end of the501

existing segment and the new segment is on the same haplotype as the existing segment in individual P but502

the complementary haplotype in individual Q, then possibly there was a phase switch error in individual Q.503

And of course, the opposite pattern could exist suggesting a phase switch error in individual P .504

If a phase switch error has been identified in either individual P , Q, or both, then the TPBWT will505

swap the haplotypes for the individuals containing the error (Figure 11). Now the new IBD segments merge506

and extend the fragments on the complementary haplotype that were broken up by the phase switch error.507

When the arrangement of IBD segments on the complementary haplotypes again suggests another phase508

switch error has been encountered the algorithm stops swapping the individual’s haplotypes. This process509

continues to the end of haplotypes “stitching” short stretches of IBD fragmented by errors back into the510

correct long IBD segments. Note that in the TPBWT, when the complementary haplotypes of an individual511

are swapped due to a phase switch error the two haplotypes are swapped for all templates simultaneously.512
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Figure 11: Diagram of the TPBWT
phase correction heuristic. As the TPBWT
sweeps along the haplotypes identifying IBS
matches it uses a heuristic to identify and fix
putative phase switch errors. (A) The two hap-
lotypes (0 and 1; dotted lines) of a focal per-
son and the IBD segments (grey bars) they
share with four other individuals in the hap-
lotype alignment are plotted. The focal person
has two phase switch errors (red dashed lines)
that break up long IBD segments. (B) As the
TPBWT scans left to right along the chromo-
some, it keeps track of IBD segments shared
among all pairs of individuals. When a phase
switch error is encountered in the focal person
all IBD segments shared with the focal person
are fragmented at the position of the switch
error. (C ) As the TPBWT continues to scan
left to right, another IBD segment is found. If
the new segment begins near the end of all the
old segments but on the complementary haplo-
type of the focal person (considering the possi-
ble scenarios in Figure 12), then the TPBWT
infers a phase switch error to have occurred.
(D) Since a phase switch error is inferred within
the focal person, the focal person’s haplotypes
are now swapped so new IBD segments now
merge and extend the fragments on the com-
plementary haplotype that were broken up by
the phase switch error. (E) When the arrange-
ment of IBD segments on the complementary
haplotypes again suggests another phase switch
error has been encountered the algorithm stops
swapping the focal person’s haplotypes. (F )
The TPBWT continues to the end of haplo-
types after successfully identifying phase switch
errors and “stitching” IBD fragments back into
the correct long IBD segments.

In this way, information regarding errors identified using one template is shared with the other templates513

to improve phase correction and thus IBD detection overall. Additionally, as noted earlier, this means that514

phase switch errors are fixed consistently throughout the entire cohort; when a phase switch error is identified515

and corrected for an IBD segment shared between two individuals any other IBD segments shared with other516

individuals affected by the same switch error will also be corrected.517

Gaps between subsegments are commonly caused by consecutive phase switch errors that fragment long518

IBD segments. If the distance between the consecutive phase switch errors is less than the length threshold519

needed to be considered an IBD subsegment, then the fragment of IBD will be dropped causing a gap. For520

this reason we merge subsegments that are separated by a distance less than that length (determined by521

parameter Lm). Note that Lm is the minimum length threshold (in the number of sites) for a subsegment522

to be merged into the putative IBD segment stored in Ps and Pe. The putative IBD segments in Ps and Pe523

must still exceed length Lf (in cM) if they are to be reported to the user as a “good” IBD segment.524

4.3 TPBWT-Compressed Haplotypes525

Durbin (2014) described how to leverage shared haplotype structure identified by PBWT to efficiently526

compress the haplotypes. At each position the haplotypes are sorted by the PBWT so that those with527

similar prefixes are adjacent to one another. Linkage disequilibrium causes correlation among sites close to528
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Figure 12: Possible scenarios considered by the TPBWT for adjacent IBD segments. IBD segments that slightly
overlap or have a short gap between them may arise either through actual recombination patterns or phase switch errors. (A)
Shown are the two haplotypes (0 and 1; dotted lines) of two related individuals (P and Q) for a single chromosome. An IBD
segment shared by P and Q is shown in grey. (B) As the TPBWT scans left to right along the chromosome, another IBD
segment (orange) is found. If the new segment begins within a small interval near the end of the old segment (light grey box)
and the new segment is on the same haplotypes as the old segment, then possibly the two segments are fragments of a longer
segment broken up by error and should be merged. (C ) If the new segment begins near the end of the old segment and the new
segment is not on the same haplotypes as the old segment, then possibly there was a phase switch error in both individuals. (D)
If the new segment begins near the end of the old segment and the new segment is on the same haplotype as the old segment
in individual P but the complementary haplotype in individual Q, then possibly there was a phase switch error in individual
Q. (E) If the new segment begins near the end of the old segment and the new segment is on the same haplotype as the old
segment in individual Q but the complementary haplotype in individual P , then possibly there was a phase switch error in
individual P .

one another on the chromosome and so haplotypes that share an allele at the current position will often529

share an allele at the next position. This creates long runs of the same allele in the PBWT sorted haplotype530

order which can be run-length encoded.531

We use a similar run-length compression with the TPBWT. However, the compression scheme is slightly532

less efficient than with PBWT since at each position we may have multiple haplotype orderings that must533

be encoded. For example if site k is processed by three templates, than site k will have three haplotype534

orderings in ppaj,k and so is run-length compressed three separate times. While this still results in significant535

file size reductions the primary benefit is that parsing a TPBWT-compressed haplotype file can be much536

faster than parsing other representations of the haplotypes. This is because in Algorithm 1 at site k the537

allele of each haplotype is queried when the haplotype is encountered in ppaj,k. If those alleles are already538

run-length encoded using the haplotype order ppaj,k then we can modify Algorithm 1 so that alleles are539

only queried when they are at the beginning of a new allele run rather than for every haplotype. This can540

dramatically reduce the time needed to parse haplotypes from a file during an IBD analysis. However, since541

generating the TPBWT-compressed haplotypes takes the same time as computing the IBD shared among542

those haplotypes the TPBWT-compressed haplotypes are not necessarily useful for in-sample IBD analyses543

unless one is trying to save disk space. Rather we find that the TPBWT-compressed haplotypes are most544

useful for algorithms that utilize the TPBWT data structure to make estimates other than in-sample IBD,545

for example out-of-sample IBD analyses.546

4.4 Out-of-Sample Analyses547

A common application for the large sample size cohorts in biobank or DTC genetic databases is out-of-548

sample IBD computation, for example when comparing new samples to an existing large set of samples. For549
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these analyses we use a modified form of Algorithm 1 in which the two haplotype alignments are essentially550

treated as one; the algorithm passes through both sets of samples at the same time and only reports the IBD551

segments shared among old and new samples. For this approach a major bottleneck is the memory used to552

store Ps and Pe. If we have two sets of samples X and Y , each with MX and MY haplotypes respectively,553

then Ps and Pe will be MX + MY by MX + MY in size. This would be prohibitive for very large sample554

sizes. However since we are only interested in the matches between X and Y and not the matches within555

either dataset we modify Ps and Pe to be MX by MY in size, substantially reducing the memory required556

for out-of-sample analyses.557

This algorithm can be highly efficient if both sets of samples have already been TPBWT-compressed. In558

this case, in our two sets of samples X and Y at site k we will already have run-length encoded the alleles559

according to two positional prefix arrays ppaXj,k and ppaYj,k, respectively. For the out-of-sample analysis we560

need to look up alleles ordered by the positional prefix array of the combined sample sets ppaX+Y
j,k . Here561

we take advantage of the fact that ppaX+Y
j,k is the linear sum of the two totally ordered sets ppaXj,k and562

ppaYj,k. This means that within ppaX+Y
j,k the haplotypes from X will follow the order found in ppaXj,k and563

the haplotypes from Y will follow the order found in ppaYj,k. Instead of querying the allele for every single564

haplotype in ppaX+Y
j,k we now need to only query alleles if they are at the beginning of a new allele run565

encoded by ppaXj,k or ppaYj,k.566

4.5 Implementation567

The TPBWT is available for non-commercial use as the Python package phasedibd in the code repository568

https://github.com/23andMe/phasedibd. It is implemented in Cython (Behnel et al. 2011) and compiles569

into both Python 2.7 and Python 3 (Van Rossum and Drake Jr 1995; Van Rossum and Drake 2009).570

4.6 Parallelization For Large Sample Sizes571

Our software implementation allows for a number of highly flexible parallelization schemes that enable fast572

and efficient IBD computes over extremely large cohorts. Scaling up to large sample sizes we use a simple573

batch method that utilizes TPBWT-compressed haplotypes. For each chromosome:574

1. Divide the M haplotypes into b equally sized batches (one VCF file for each batch).575

2. In parallel, on b CPU cores, compute the IBD shared among the haplotypes within each batch. During576

this compute write the TPBWT-compressed haplotypes to b binary files.577

3. Use
(
b
2

)
CPU cores to compute the out-of-sample IBD shared between batches. This utilizes the578

TPBWT-compressed haplotypes to increase the efficiency of each out-of-sample IBD compute.579

See an example with compute times in the Results section.580

Similar batching approaches are useful for running large out-of-sample analyses; for example when new581

samples have been acquired and must be run against a large panel of existing samples. If the existing samples582

have already been TPBWT-compressed in batches, the new samples can be easily compared to the existing583

samples in parallel. These massively parallel out-of-sample analyses over TPBWT-compressed haplotypes584

can result in substantial decreases in wall-clock compute time needed for biobank-scale data sets.585
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4.7 Simulation Study and Comparisons to Other Methods586

To assess the accuracy of IBD inference methods we utilized both randomly sampled sets of genotyped587

research consented 23andMe customers and simulated haplotype data sets in which the IBD segments shared588

were perfectly known. For the simulated haplotypes we introduced realistic levels of genotyping and phasing589

errors to test the impact of these errors on inference.590

4.7.1 Simulating Haplotypes591

We simulated haplotypes inherited with recombination over 400 replicated pedigrees. Each pedigree had three592

generations and included at least one pair of each type of close relatives that were used for the simulation593

study: parent-child, grandparent-grandchild, aunt-niece, first cousins, and siblings. Each pedigree founder594

consisted of a randomly sampled and unrelated research consented 23andMe customer. Recombination was595

simulated using a Poisson model with a rate of 1 expected crossover per 100 cM. This resulted in simulated596

haplotypes for 2000 closely related pairs of individuals with perfectly known IBD segments, 400 pairs of each597

relationship type: parent-child, grandparent-grandchild, aunt-niece, first cousins, and siblings.598

4.7.2 Simulating Genotyping Errors599

We incorporated a simple model of genotyping error into our simulated data sets. At each position along600

the simulated chromosomes we introduced error into the genotype call with a probability of 0.001. When a601

site was selected for an error, half of the genotype call would be “flipped” with equal probability (e.g. a 0/0602

genotype would be converted to a 1/0 or a 0/1 genotype with equal probability).603

4.7.3 Simulating Phasing Errors604

We introduced errors due to statistical phasing into our simulated haplotype datasets. We first converted605

all the simulated haplotypes into their respective diploid genotypes and then used the statistical haplotype606

phasing method Eagle2 (Loh et al. 2016). For the phasing reference panel we used an internal 23andMe607

phasing panel that included about 200000 non-Europeans and about 300000 Europeans. This resulted in608

simulations that had a mean switch error rate of 0.25%, comparable to switch error rates measured elsewhere609

(Choi et al. 2018).610

4.7.4 Comparing Performance of TPBWT to Other Phase-Aware Algorithms611

Table 2 outlines the parameter settings used for the different phase-aware methods. To avoid the possibility of612

erroneously conflating very short nearby IBD segments into long segments we only estimated IBD segments613

at least 3 cM or longer (Chiang et al. 2016) for all methods except Durbin’s PBWT which does not use614

genetic distance. PBWT requires the minimum number of sites in a segment to be specified; we set this to615

be 200 sites. TPBWT requires both a minimum segment length in genetic distance and a minimum number616

of sites; we set these to be 3.0 cM and 200 sites, respectively. The same parameter settings were used in all617

comparative analyses.618

To compare the accuracy of IBD estimates made by each phase-aware method we used the simulated619

datasets described above and calculated the error in two summary statistics: the proportion of the genome620

that is IBD between two individuals and the number of IBD segments shared among the two individuals.621

These two statistics are particularly informative when estimating relatedness or other demographic quantities622
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Table 2: Algorithm parameter values used for the IBD inference methods during the analysis of simulated data. Additionally
the same TPBWT parameter values were used for the empirical analysis of geographic patterns of haplotype sharing within
Mexico.

Software Parameters

TPBWT default templates, L m=200 L f=3.0

PBWT (64c4ffa; Durbin 2014) -longWithin 200

hap-IBD v1.0 (Zhou et al. 2019) default options, except nthreads=1 min-output=3

RaPID v1.7 (Naseri et al. 2019b) -w 3 -r 10 -s 2 -d 3.0

Refined IBD v16May19 (Browning and
Browning 2013)

default options, except nthreads=1 length=3.0

iLASH (b26a8fa; Shemirani et al. 2019) perm count 12 shingle size 20 shingle overlap 0

bucket count 4 max thread 1 match threshold 0.99

interest threshold 0.70 min length 3.0 auto slice 1

cm overlap 1.4

from IBD segments. We calculated the percent of the genome that was erroneously inferred to be IBD for a623

simulated pair of close relatives as (λ̂− λ)/γ where λ is the true total amount of the genome that is IBD, λ̂624

is the estimated amount of the genome that is IBD, and γ is the genome length. We calculated the number625

of erroneous IBD segments estimated for a simulated pair of closes relatives as (η̂ − η) where η is the true626

number of IBD segments and η̂ is the estimated number of IBD segments.627

To further compare the methods’ performance we additionally calculated false positive and false negative628

rates of inferring IBD segments by their length. Rates were calculated for bins of IBD segment lengths:629

3–4, 4–5, 5–6, 7–8, 9–10, 10–11, 12–15, 15–18, and > 18 cM. To thoroughly explore these rates and their630

effects on IBD estimates, we calculated each rate in two different ways. False negative rate by segment is631

the proportion of true segments in a size bin that do not overlap any estimated segment compared to the632

total number of true segments in the size bin. False negative rate by segment coverage is the proportion of633

the length of true segments in a size bin not covered by any estimated segment compared to the total length634

of true segments in the size bin. False positive rate by segment is the proportion of estimated segments in635

a size bin that do not overlap any true segment compared to the total number of true segments in the size636

bin. False positive rate by segment coverage is the proportion of the length of estimated segments in a size637

bin not covered by any true segment compared to the total length of true segments in the size bin.638

To compare the computation time needed for each phase aware method we randomly sampled sets of639

research consented 23andMe customers genotyped on the 23andMe v5 microarray chip. We removed SNPs640

with < 85% genotyping rate, SNPs with MAF < 0.001, SNPs with low trio concordance (effect < 0.6 and641

p-value < 1e-20), and SNPs with allele counts of 0 within the samples selected for the phasing reference642

panel. After this quality control filtering a total of 544,042 SNPs were used. Haplotypes were phased using643

Eagle2 (Loh et al. 2016) with a reference panel containing 286,305 samples. IBD was computed for 42,927644

SNPs from human chromosome 1. Though iLASH, hap-IBD, and Refined IBD are multithreaded programs645

the runtimes compared in this test were for single-threaded operation on a single CPU core. Note all IBD646

inference can be trivially parallelized using batching approaches (see Section 2.3 and Table 1).647

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2020. ; https://doi.org/10.1101/2020.09.14.296939doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.14.296939
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.7.5 Comparing Performance of TPBWT to a Phase-Free Algorithm648

We compared the performance of TPBWT to the IBIS-like IBD inference algorithm that uses unphased649

data. To compare the accuracy of detecting IBD with the IBIS-like algorithm and the TPBWT, and since650

unphased approaches are expected to have higher false positives especially on shorter segments, we replicated651

the trio validation approach used in Henn et al. (2012). We randomly sampled 1,000 child-parent trios and652

10,000 individuals not in any of the trios from research consented 23andMe customers. Each customer was653

genotyped on the 23andMe v5 microarray chip. We removed SNPs with < 85% genotyping rate, SNPs with654

MAF < 0.001, SNPs with low trio concordance (effect < 0.6 and p-value < 1e-20), and SNPs with allele655

counts of 0 within the samples selected for the phasing reference panel. After this quality control filtering656

a total of 544,042 SNPs were used. We computed IBD among all 13,000 individuals using TPBWT and657

IBIS-like. For the TPBWT compute the haplotypes were phased using Eagle2 (Loh et al. 2016) with a658

reference panel containing 286,305 samples. Since both Henn et al. (2012) and Seidman et al. (2020) showed659

that IBIS-like algorithms have high false positive rates for segments < 7 cM in length, we used 7 cM has the660

minimum segment length for the IBIS-like algorithm.661

For each observed IBD segment shared between a child and a distant relative, we labeled each segment as662

either “trio validated” or “not trio validated”. Segments were trio validated if an overlapping segment was663

observed to be shared between the distant relative and one or more of the child’s parents. Segments were664

not trio validated if no overlapping segment was found between the child’s parents and the distant relative.665

For bins of IBD segment lengths we then calculated hmean, which is the proportion of IBD segments in that666

length bin that were trio validated. Segments that were not trio validated were either false positive segments667

in the child or false negative segments in the parents.668

4.8 Case Study: Haplotype Sharing in Mexico669

To demonstrate the utility of the IBD estimates made using the TPBWT and the 23andMe database we670

performed a brief case study to examine the geographic patterns of haplotype sharing within Mexico. We671

identified 9,517 research consented 23andMe customers who self reported that all 4 of their grandparents were672

from the same Mexican state. Each customer was genotyped on either the 23andMe v4 or v5 microarray chip.673

We removed SNPs with < 85% genotyping rate, SNPs with MAF < 0.001, SNPs with low trio concordance674

(effect < 0.6 and p-value < 1e-20), and SNPs with allele counts of 0 within the samples selected for the675

phasing reference panel. After this quality control filtering the v4 chip had 453,065 SNPs and v5 chip had676

544,042 SNPs. Haplotypes were phased using Eagle2 (Loh et al. 2016). Individuals on the v4 chip were677

phased with a reference panel containing 691,759 samples. Individuals on the v5 chip were phased with a678

reference panel containing 286,305 samples.679

IBD sharing among the 9,517 individuals was computed using the TPBWT with the parameters described680

in Table 2. IBD estimates among individuals on the same genotyping chip were made using the in-sample681

method described above, and estimates made among individuals on different chips was made using the out-682

of-sample approach described above over the intersection of chip SNPs (only the SNPs present in both the683

v4 and v5 genotyping chips). Hierarchical clustering of the mean pairwise IBD haplotype sharing across684

Mexican states was performed using Ward’s method (Ward Jr 1963) in R (R Core Team 2013). To remove685

close relatives we excluded any pair of individuals that shared more than 20 cM. Geographic maps of the686

mean pairwise IBD shared across Mexican states were made using the R packages mxmaps, ggplot2, and687

viridis (Valle-Jones 2019; Wickham 2016; Garnier 2018).688
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5 Data Availability689

The data underlying this article cannot be shared publicly to protect participant privacy and in accordance690

with the IRB-approved protocol under which the study was conducted. Upon request, de-identified summary691

statistics will be shared for use in research through a data transfer agreement.692
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Johan G Eriksson, Tõnu Esko, Giulio Genovese, Aki S Havulinna, et al. Haplotype sharing provides insights755

into fine-scale population history and disease in finland. The American Journal of Human Genetics, 102756

(5):760–775, 2018.757

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2020. ; https://doi.org/10.1101/2020.09.14.296939doi: bioRxiv preprint 

https://CRAN.R-project.org/package=viridis
https://CRAN.R-project.org/package=viridis
https://CRAN.R-project.org/package=viridis
https://doi.org/10.1101/2020.09.14.296939
http://creativecommons.org/licenses/by-nc-nd/4.0/


Andrés Moreno-Estrada, Christopher R Gignoux, Juan Carlos Fernández-López, Fouad Zakharia, Martin758
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