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Abstract: Infrared (IR) small-target-detection performance restricts the development of infrared
search and track (IRST) systems. Existing detection methods easily lead to missed detection and
false alarms under complex backgrounds and interference, and only focus on the target position
while ignoring the target shape features, which cannot further identify the category of IR targets. To
address these issues and guarantee a certain runtime, a weighted local difference variance measure
(WLDVM) algorithm is proposed. First, Gaussian filtering is used to preprocess the image by using
the idea of a matched filter to purposefully enhance the target and suppress noise. Then, the target
area is divided into a new tri-layer filtering window according to the distribution characteristics of
the target area, and a window intensity level (WIL) is proposed to represent the complexity level of
each layer of windows. Secondly, a local difference variance measure (LDVM) is proposed, which
can eliminate the high-brightness background through the difference-form, and further use the local
variance to make the target area appear brighter. The background estimation is then adopted to
calculate the weighting function to determine the shape of the real small target. Finally, a simple
adaptive threshold is used after obtaining the WLDVM saliency map (SM) to capture the true target.
Experiments on nine groups of IR small-target datasets with complex backgrounds illustrate that the
proposed method can effectively solve the above problems, and its detection performance is better
than seven classic and widely used methods.

Keywords: infrared (IR) small target; new tri-layer filtering window; local difference variance
measure (LDVM); weighting function; window intensity level (WIL)

1. Introduction

Infrared (IR) imaging technology has been widely used in civilian fields such as car
navigation, diseased-cell diagnosis, industrial-flaw detection, physiological performance
of animal life processes, and plant monitoring [1]. It is worth noting that the infrared
search and track (IRST) system based on IR imaging technology has the advantages of
passive surveillance, all-weather use, and high spatial resolution, and uses the difference in
thermal radiation between the target and the background to achieve long-distance target
detection [2,3]. It has very important application value in military fields such as precision
guidance, early-warning systems, space-based surveillance, and geological analysis [4,5].
IR small-target detection plays a vital role in these applications. To find the target as
early as possible, long-distance detection and tracking are required, so the target has few
pixel and texture features and lacks shape and structure information [6]. Furthermore,
targets are usually immersed in complex backgrounds, and targets can be affected by a low
signal-to-clutter ratio (SCR) [7]. Therefore, IR small-target detection is still a difficult and
challenging task.

IR small-target detection methods in complex scenes can be divided into sequence
detection methods and single frame detection methods [8,9]. Compared with the sequence
detection method, the single frame detection method has a small amount of calculation and
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strong scene adaptability. Since real-time target detection becomes urgent in the military
application of an IRST system, research based on single frame detection method is very
necessary [10,11].

Existing single-frame detection methods can be divided into four categories. The first
category is based on filtering methods, which are divided into algorithms based on spatial
filtering and algorithms based on frequency-domain filtering. The algorithm based on
spatial filtering is simple in design, fast in calculation speed, and has better performance
in a uniform background, but it is easy to cause false detection in a complex background
and has poor robustness [12,13]. Although algorithms based on frequency-domain filtering
can suppress complex backgrounds, they have high computational complexity [14,15]. The
second category is based on low-rank sparse restoration methods, which have high detec-
tion performance under strong noise background conditions, but have high computational
complexity when dealing with large-scale images [16–19]. The third category is methods
based on deep learning, which can improve the detection accuracy of small targets to a
certain extent, but lack many datasets in various forms, which is challenging [20–24]. The
fourth category is methods based on the human visual system. This system is relatively
real-time and it is not easy to lose target features during the detection process and, but it is
easy to cause false positives in complex scenes [25–35]. Given the importance of real-time
detection and detection rate, this paper was inspired by the human visual system, a brief
overview of detection methods based on the human visual system follows.

IR small-target detection algorithms based on the local-contrast method of the human
visual system have attracted much attention. These algorithms focus on the differences
between the target and the background surrounding it. For instance, Chen et al. [5] pro-
posed a local contrast measure (LCM) that uses nested windows with eight orientations
to suppress background edges; Han et al. [25] proposed an improved LCM (ILCM) that
uses the target area average to suppress pixel-sized noise with high brightness (PNHB);
Han et al. [26] proposed the relative LCM (RLCM) computed by combining ratio differ-
ences, and then generalizing it to the sub-block level [27]; Wei et al. [28] used the multi-scale
patch-based contrast measure (MPCM) algorithm to fuse the corresponding two directions
into a whole to capture the target; Han et al. [29] adopted a multi-scale three-layer local
contrast measure (TLLCM), used Gaussian filtering to enhance the target area, and took the
average value of several largest pixels in the surrounding area; Moradi et al. [30] proposed
absolute directional mean difference (ADMD), which uses an orientation method to sup-
press the structural background; and Zhang et al. [20] proposed a multi-scale strengthened
directional difference (MSDD) algorithm, which combines the local directional-intensity
measure and the local directional-fluctuation measure to effectively suppress the angular
clutter. Furthermore, in existing studies, many researchers are keen to employ weight-
ing functions on top of basic local-contrast algorithms to improve detection performance.
For example, Qin et al. [10] used the variance of the central unit as the weight function;
Deng et al. [31] improved the local entropy as the weight function; Nasiri et al. [32] used
the center and surrounding variance difference (VAR_DIFF) as the weighting function;
Liu et al. [33] proposed a weighted LCM, which defines a weighting function based on
the strong clutter edge features; Lv et al. [34] proposed the regional intensity level (RIL)
algorithm to assess the complexity level of each unit, taking the RIL difference between the
central unit and its surrounding background as a weighting function; and Han et al. [35]
proposed weighted strengthened LCM (WSLCM) and proposed an improved RIL (IRIL)
that replaces the maximum with the average of several maximum grayscale calculations.

The weighted LCM using more local information can reduce the false-alarm rate to a
certain extent. However, there are still some problems. First, current algorithms usually
directly compute the contrastive information between the target area and surrounding
areas, but when the target scale is small, the edge information cannot be captured for
effective enhancement. Second, some weighting algorithms increase the time of image
processing during detection. Third, the existing methods do not sufficiently consider the
shape of the true target, and the detection process is easily disturbed by noise.
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To better enhance targets of different scales in different complex scenes, ensure a certain
detection time, better preserve target shape characteristics, and reduce false-alarm rates, a
detection framework based on weighted local difference variance measure (WLDVM) is
proposed. First, the image is preprocessed by Gaussian filtering, and then according to the
distribution characteristics in the target area, the target area is divided into a new tri-layer
filtering window and the window intensity level (WIL) value of each layer of windows is
calculated. Second, the local difference variance measure (LDVM) and weighting function
are calculated by ratio and difference operations using the obtained position and WIL
value of each layer window. Finally, a simple threshold is used to segment the fused result
WLDVM to capture the true target. The contributions of this paper are as follows:

1. The new tri-layer filtering window is proposed. The target area is divided according
to its distribution characteristics and size, which can adapt to the detection of targets
of different scales and save detection time.

2. WIL is proposed. Each layer of window uses the mean of the two largest subblock
averages instead of the single largest subblock average to better capture the target
and suppress edge noise.

3. LDVM is proposed. Through the idea of local fluctuation, the target area is further
enhanced, and the high-brightness background is eliminated.

4. A detection framework based on WLDVM is proposed. The experimental results
using multiple sets of IR datasets show that the proposed algorithm has the best
detection performance and consumes less time.

2. Proposed Algorithm

Figure 1 shows the proposed WLDVM algorithm framework. First, the image is
preprocessed by Gaussian filtering, and the WIL values of each layer are calculated through
the new tri-layer filtering window. Then, according to the WIL value and location of each
layer, the idea of local fluctuation and background estimation is introduced to calculate
LDVM and weighting function. The true small target is the most prominent in the final
weighted result, which can be easily captured with a simple threshold segmentation.
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2.1. Gaussian Filtering Pre-Processing

Small targets in IR image usually have a low SCR and are susceptible to noise interfer-
ence because of the effects of long-distance and atmospheric transmission. These factors
make detection more difficult, requiring noise suppression and target enhancement. The
best filter for improving the target should have the same distribution as the target, accord-
ing to the matched filter theory [36] and given that small IR targets have Gaussian-like
properties and that Gaussian filters are excellent at suppressing high-frequency IR image
components including scattered noises, Gaussian noises, and PNHB [29,37]. In this study,
noise is reduced and small targets are enhanced using Gaussian filtering. The result of the
Gaussian filtering operation is expressed as

GI(x, y) =
1

∑
l=−1

1

∑
k=−1

G(l, k)I(x + l, y + k), G =
1

16

1 2 1
2 4 2
1 2 1

. (1)

where G is the Gaussian template and I is the original IR image.

2.2. Construction of the New Tri-Layer Filtering Window

Traditional LCM and its improved algorithms adopt a double-layer filtering window,
the central unit captures the target area, and the surrounding units capture the background
area around the target, see Figure 2a. But when the scale of the true target area is smaller
than the central unit scale, the detected target will be enlarged. Therefore, Nasiri et al. [32]
made an improvement and proposed a three-layer nested window to divide the central unit
into two parts, namely the core layer and the reserve layer. The core layer captures the main
energy of the target area, and the reserve layer separates the target from its surrounding
units, see Figure 2b. Usually, PNHB in complex backgrounds is difficult to suppress because
its core layer differs significantly from surrounding layers.
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It is well known that the real target area has a compact two-dimensional Gaus-
sian shape distribution whose intensity weakens towards the surroundings, as shown
in Figure 2d, while PNHB does not possess such a distribution. In this paper, according to
the target area distribution characteristics in Figure 2d, a new tri-layer filtering window
is proposed to capture the target area, namely inner layer (T0 yellow area), middle layer
(T1 green area), and outer layer (T2 blue area), see Figure 2c. According to SPIE, the total
spatial extent of the small target is usually less than 80 pixels [5]. Therefore, the inner layer
is set to 1 × 1; through four directions and the middle layer and the outer layer are each
divided into four subblocks. The subblock of the middle layer is a symmetrical trapezoid
with a height of 2, an upper base of 1, and a lower base of 3. The subblock of the outer layer
is a symmetrical trapezoid with a height of 2, an upper base of 5, and a lower base of 7. The
proposed new tri-layer filtering window can adapt to the detection of targets of different
scales, and its total space is small, which will make the algorithm run faster.
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2.3. Calculation of the Window Intensity Level (WIL)

Apply the new tri-layer filtering window from top to bottom and left to right on the
Gaussian filtered image and follow the steps below to calculate the WIL value for each
layer of each pixel.

1. For the inner layer:

WILT0 = GIT0 (2)

where GIT0 is the pixel in cell T0 of the Gaussian filtered image GI.

2. For the middle and outer layers:

First, the average value of each subblock in the layer is calculated as the key parameter
for the next calculation:

MTij =
1

NTij
∑

NTij
k=1 GIk

Tij
i = 1, 2; j = 1, 2, 3, 4 (3)

where NTij is the total number of pixels in cell Tij, and GIk
Tij

is the gray value of the kth pixel
in cell Tij.

WILTi is the mean of the m largest MTij values in Ti area, that is,

WILTi =
1
m ∑m

l=1 Ml
Ti

i = 1, 2; m = 2 (4)

where Ml
Ti

is the lth largest MTij value in the Ti area. The distribution trend of the cloud
layer is a gradual process; the interior of the cloud layer changes slowly, and the gray value
of the edge fluctuates greatly, as shown in Figure 2e. With this type of edge it is easy to
cause the occlusion of the weak target, and the gray value of the inner layer of the small
target at the cloud edge is at least not much different from the average gray value of a
sub-block of other layers. To effectively enhance this type of small target to avoid missed
detection, m in Equation (4) needs to be greater than 1. When m is greater than 2, edge
clutter will be enhanced to cause false alarms, so 2 is the most suitable value for m.

2.4. Local Difference Variance Measure (LDVM)

The local contrast in the form of differences can eliminate the high-brightness back-
ground. The difference of WIL is defined by the difference between layers as

DoWIL =

{
WILTq −WILTp , p > q
0 , others

(5)

where WILTq indicates that the maximum value in WILTi is in the Tq layer and WILTp

indicates that the minimum value in WILTi is in the Tp layer. Clutter can be further
suppressed by non-negative constraints.

Through the above calculation, there are cases where pixels are suppressed at the
edges inside the target area. To prevent these pixels from being suppressed by further
calculations, this paper enhances areas with large local fluctuations by computing the mean
filtering of the square of the image minus the square of its mean filtering. The LDVM of
each pixel is defined as

LDVM(x, y) = M2L(x, y)− (ML(x, y))2 (6)

where M2L and ML are defined as

M2L(x, y) =
2

∑
l=−2

2

∑
k=−2

MF(l, k)(DoWIL(x + l, y + k))2 (7)
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ML(x, y) =
2

∑
l=−2

2

∑
k=−2

MF(l, k)DoWIL(x + l, y + k) (8)

where MF is a 5 × 5 normalized mean filtering template. Obviously, the gray value of the
local area of the pixels at the edges inside the target area fluctuates greatly, so these pixels
are effectively enhanced.

2.5. Weighting Function

The local contrast in the form of ratio can enhance the true target. The ratio of WIL is
defined by the difference between layers as

RoWIL(x, y) =
{

WILTq /WILTp , p > q
0 , others

. (9)

Mean filtering can reduce the sharp change of image gray value to achieve the purpose
of smoothing the image. In this paper, the background estimation is performed by mean
filtering as

BE(x, y) = ∑2
l=−2 ∑2

k=−2 MF(l, k)GI(x + l, y + k) (10)

Although RoWIL as an enhancement factor can effectively enhance the target area,
there is still a lot of background clutter. In this paper, background estimation is used to
calculate the weight function of each pixel in the form of ratio difference combination to
suppress part of the background clutter, which is defined as

W(x, y) = max{0, RoWIL(x, y)GI(x, y)− BE(x, y)} (11)

In general, the weight of the true target is very large, and its surrounding local
background is completely suppressed, so the weighting function fully considers the shape
of the target.

2.6. Weighted Local Difference Variance Measure (WLDVM)

The LDVM and weighting function are fused to obtain the WLDVM of the current
pixel, that is

WLDVM(x, y) = W(x, y)LDVM(x, y). (12)

The calculation of LDVM can better eliminate the high-brightness background and
make the whole target appear high-brightness. The operation result of the weighting
function can fully consider the shape of the target. The WLDVM algorithm preserves
the shape of the original target, the target is effectively enhanced, and the background is
effectively suppressed. In most cases the target size is unknown and multi-scale detection
is required. In this paper, multi-scale detection is not required, and efficient detection can
be performed, which greatly saves detection time.

2.7. Threshold Operation

The saliency map (SM) of each IR image can be obtained by computing WLDVM and
the different results produced by the pixels of different situations are analyzed.

1. For a pixel in the real target area, since the target area often presents a compact two-
dimensional Gaussian shape, its DoWIL will be large and RoWIL > 1, and its LDVM
and weight will be very large. Hence, the resulting value of WLDVM will be large.

2. For a pixel in the pure background area, since the pure background area is often con-
tinuous and evenly distributed, its DoWIL ≈ 0 and RoWIL ≈ 1, then its LDVM ≈ 0
and W ≈ 0. Therefore, WLDVM ≈ 0.

3. For a pixel at the edge of the background, its DoWIL may be greater than 0 but less
than that of the true target, so its LDVM is much less than that of the true target;
in addition, RoWIL may be greater than 1, but its enhancement effect is not much
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different from the local background estimation, so the corresponding W will be less
than the true target’s W. Hence, its WLDVM is much less than that of the true target.

4. For a pixel in the PNHB area, its DoWIL will be less than that of the true target, and
thus its LDVM will be less than the true target’s LDVM; in addition, its W will be less
than the true target’s W. Hence, its WLDVM is much less than that of the true target.

As can be seen from this discussion, the true target area will be the most salient in SM,
so a simple threshold operation is used to extract it, the threshold is defined as

Th = λmaxSM + (1− λ)meanSM (13)

where maxSM is the maximum gray value of SM, and meanSM is the average gray value
of SM. λ is an experimental constant between 0 and 1. In the experimental part, the value
of λ is analyzed in detail, and the experiment shows that λ can take any value between
0.5 and 0.6.

3. Experimental Results

To demonstrate the detection performance of the proposed algorithm, nine groups of
IR datasets were used, including three sets of real IR sequences (datasets 1, 3, and 4), five
sets of simulated IR sequences (datasets 2, 5, 6, 7, and 8), and one non-sequential dataset
(dataset 9). Datasets are shown in [5,38–43]. The targets in dataset 1 are all immersed in
very complex dense cloud cover and most of the targets have very low contrast. The targets
in dataset 2 are all immersed in a dimly lit background. The target in dataset 3 moves from
the cloud layer to the cloudless area, some targets have low contrast, and the background
contains a lot of noise. The aircraft target in dataset 4 is large in scale and immersed in a
cloudless area with a few thin clouds in the background. The target in dataset 5 moves
from a cloudless dark background area into thin cloud cover. The target in dataset 6 is
immersed in a complex air and sea background, which contains many PNHBs. Targets
in dataset 7 move from a background containing buildings. The targets in dataset 8 are
immersed in complex and changing land backgrounds. Dataset 9 consists of representative
images of different sequences, with both targets and backgrounds differing between images.
Additional details are shown in Table 1.

Table 1. Details of the nine datasets.

Number of
Images Image Size Target Size Target

Number Dataset Type Target Detail Background
Detail

Dataset 1 [38] 170 250× 250 6× 6 1 Real sequence
Point target,
incomplete
occlusion

Complex clouds,
complex

background

Dataset 2 [39] 429 250× 250 6× 6 1 Simulated
sequence

Point target,
low contrast

Heavy noise,
dim background

Dataset 3 [5] 30 256× 200 4× 6 to 5× 8 1 Real sequence Fast-moving,
low contrast

Heavy noise,
dense clouds

Dataset 4 [40] 39 256× 200 4× 14 to 7× 15 1 Real sequence Aircraft target,
fast-moving

Changing
background,
thin clouds

Dataset 5 [41] 50 302× 202 4× 8 1 Simulated
sequence

Point target,
incomplete
occlusion

Remaining almost
the same

Thin clouds

Dataset 6 [41] 50 238× 158 4× 8 1 Simulated
sequence

Point target,
fast-moving

Heavy noise,
complex

background

Dataset 7 [41] 50 256× 239 4× 8 1 Simulated
sequence

Point target,
low contrast

Multiple buildings,
heavy noise

Dataset 8 [42] 100 256× 256 5× 5 1 Simulated
sequence

Point target,
continuously

moving

Heavy noise,
land background

Dataset 9 [43] 152 Variety 3× 3 to 11× 11 1 Non-
sequential Variety Variety
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First, we analyzed the effect of λ value on detection performance. Table 2 shows the
number of false-alarm images NFA and the number of missed images NMD corresponding
to different datasets under different values of λ, where λ increases from 0 to 1 with a
step size of 0.1. The experiments showed that when the value of λ was between 0.5 and
0.6, small targets in different complex scenes could be effectively captured, there were no
missed detections and false alarms in any dataset, and high classification accuracy could
be obtained.

Table 2. The number of false-alarm images NFA and the number of missed images NMD of different
datasets under different λ values.

NFA

Dataset λ=0 λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 λ=1

1 68 7 4 3 1 0 0 0 0 0 0
2 130 0 0 0 0 0 0 0 0 0 0
3 30 3 1 1 0 0 0 0 0 0 0
4 39 0 0 0 0 0 0 0 0 0 0
5 50 2 0 0 0 0 0 0 0 0 0
6 50 11 3 0 0 0 0 0 0 0 0
7 50 30 0 0 0 0 0 0 0 0 0
8 100 100 57 14 4 0 0 0 0 0 0
9 125 20 6 2 1 0 0 0 0 0 0

NMD

1 0 0 0 0 0 0 0 0 37 118 170
2 0 0 0 0 0 0 0 0 40 294 429
3 0 0 0 0 0 0 0 3 8 24 30
4 0 0 0 0 0 0 0 0 5 27 39
5 0 0 0 0 0 0 0 1 9 24 50
6 0 0 0 0 0 0 0 0 0 27 50
7 0 0 0 0 0 0 0 0 3 29 50
8 0 0 0 0 0 0 0 6 54 92 100
9 0 0 0 0 0 0 0 11 32 83 152

Then, seven LCM-based algorithms were selected from multiple perspectives for
comparison with the proposed algorithm, including LCM [5], MPCM [28], RLCM [26],
TLLCM [29], VAR_DIFF [32], ADMD [30], and WSLCM [35]. Among them, VAR_DIFF and
TLLCM are local-contrast algorithms based on tri-layer windows, and the rest are local-
contrast algorithms based on double-layer windows; RLCM, TLLCM, and WSLCM are
local-contrast methods using ratio difference joint operations; and VA_DIFF and WSLCM
are local-contrast algorithms that use the weighting function.

To analyze different methods intuitively, Figure 3 shows the SMs of different algo-
rithms. Each dataset’s original image sample may be found in the first column. The target
size was variable, the backdrop was intricate, and there were various levels of noise present.
As shown in the second column of the figure, LCM enhanced the target and made the target
area larger, while enhancing the noise, and the background suppression effect was not good.
As shown in the third column of the figure, MPCM enhanced the target but did not preserve
the target shape very well and had a certain suppression effect on the background and
noise, but when the background was more complex, the detection effect was not good. As
shown in the fourth column of the figure, RLCM enhanced the target and made the target
area larger and had a general effect on background and noise suppression. As shown in the
fifth column, TLLCM had a mediocre level of noise and background suppression efficiency,
but the detection effect was poor when the background was complicated. As shown in
the sixth, seventh, and eighth columns of the figure, VAR_DIFF, ADMD, and WSLCM had
better background suppression effects, but when the background was complex, the noise
suppression effect was average, and the detection performance was unstable. As shown in
the ninth column of the figure, the proposed method effectively improved the target SCR
and better preserved the target outline, could better suppress the background and noise,
and the detection performance was the best.
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MPCM. (d1–d9) RLCM. (e1–e9) TLLCM. (f1–f9) VAR_DIFF. (g1–g9) ADMD. (h1–h9) WSLCM. (i1–i9)
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(g1–g9), (h1–h9), and (i1–i9), respectively.

To illustrate the detection performance of these algorithms, the indicator’s signal-to-
clutter ratio gain (SCRG) and background suppression factor (BSF) before thresholding are
used simultaneously, and defined as

SCRG =
SCRout

SCRin
, BSF =

σin
σout

, SCR =
|mt −mb|

σb
. (14)

where SCRin is the SCR value of the original image, SCRout is the SCR value of the SM,
δin is the standard deviation of the non-target area in the original image and δout is the
standard deviation of the non-target area in the SM, and mt is the mean of the target
area, mb and σb are the mean and standard deviation of the local background area around
the target, respectively. It can be seen in Table 3 that VAR_DIFF had one set with the
highest SCRG value, WSLCM had two sets with the highest SCRG value, and the proposed
algorithm had six sets with the highest SCRG value and the highest average SCRG value.
The results show that the proposed method achieved more significant target enhancement
before thresholding than other methods. VAR_DIFF had one set with the highest BSF value,
WSLCM had five sets with the highest BSF value, and the proposed algorithm had three sets
with the highest BSF value and the highest mean. It shows that the background-suppression
ability of the proposed algorithm is equivalent to that of the WSLCM algorithm, and better
than that of other algorithms.
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Table 3. SCRG and BSF of different detection algorithms.

SCRG

Dataset LCM MPCM RLCM TLLCM VAR_DIFF ADMD WSLCM Proposed

1 0.6001 2.0229 0.7273 2.2439 28.3396 25.9264 26.8277 44.0452
2 0.3256 2.2193 0.6574 1.6246 14.1093 11.7270 25.3549 27.8967
3 0.6322 1.0671 0.7903 1.0808 0.9182 16.6085 30.5386 105.4981
4 0.2055 0.2958 0.2443 0.8030 6.9673 0.3418 3.8525 18.2806
5 0.8549 0.6388 0.7918 0.8555 4.5399 23.1745 21.2844 51.1140
6 0.7983 1.1333 0.9134 1.2898 5.3268 21.8810 52.8131 38.8965
7 0.3171 1.6963 0.4042 0.7671 1.4541 3.2991 15.9780 9.5035
8 0.4021 3.4164 0.6887 1.5680 2.5136 10.5827 30.0565 39.5189
9 0.3886 1.8286 0.7166 1.9683 24.2053 12.2716 21.7523 23.6554

Mean 0.5027 1.5909 0.6593 1.3557 9.8193 13.9792 25.3842 39.8232

BSF

1 0.3185 1.6783 0.8350 0.6472 115.0330 12.6716 372.7078 1144.7466
2 0.9805 3.6617 2.0815 1.7074 212.7321 17.2603 758.0712 3894.0449
3 2.1748 6.4061 2.3868 1.8011 38.5715 23.4905 37.8834 35.9936
4 2.2214 11.2676 5.7276 3.3599 100.8143 28.1395 3704.5536 572.1345
5 0.5851 2.7340 1.3340 0.8581 30.9868 21.4587 125.5700 151.6036
6 1.0318 4.0402 1.3912 1.1269 22.3591 105.0573 165.3070 89.8998
7 0.4319 1.8672 0.6975 0.5215 8.7144 14.0430 144.6582 18.4970
8 1.4764 6.7578 2.5375 2.3804 29.9505 22.9731 241.0814 38.1197
9 1.4103 8.2744 3.5525 2.5970 974.0334 117.4275 2401.4376 2206.5812

Mean 1.1812 5.1875 2.2826 1.6666 170.3550 40.2802 883.4745 905.7357

Figure 4 depicts the receiver operating characteristic (ROC) curves for different algo-
rithms to evaluate the target-enhancement ability and background-suppression ability after
thresholding, where the false-positive rate (FPR) and the true-positive rate (TPR) are the
horizontal and vertical coordinates of the ROC curve [44], respectively, and are defined as

FPR =
N f alse

Npixel
, TPR =

Ndetected
Nture

. (15)

where N f alse is the number of detected false targets, Npixel is the total number of pixels
in the whole image, Ndetected is the number of detected true targets, and Nture is the total
number of true targets.

In the ROC curve, the more the curve shifts to the upper left corner, the better the
detection performance will be. Under the same FPR, the larger the TPR, the better the
performance of the algorithm. As can be seen from Figure 4, when FPR = 10−5:

• LCM had a TPR greater than 0.9 and less than 1 in dataset 4, and performed poorly in
other datasets;

• MPCM had a TPR greater than 0.9 and less than 1 in dataset 5, and performed poorly
in other datasets;

• RLCM achieved the highest TPR in dataset 2, and performed poorly in other datasets;
• TLLCM achieved the highest TPR in dataset 2, TPR greater than 0.9 and less than 1 in

dataset 8, while performing poorly in other datasets;
• VAR_DIFF achieved the highest TPR in datasets 2 and 4, TPR greater than 0.8 and less

than 1 in datasets 1, 7, 8, and 9, and performed poorly in other datasets;
• ADMD achieved the highest TPR in dataset 7, while performing poorly in other

datasets;
• WSLCM achieved the highest TPR in datasets 2, 4, 6, 7, and 8, and the TPR was greater

than 0.8 and less than 1 in datasets 1, 3, 5, and 9;
• The proposed algorithm achieved the highest TPR in all nine datasets.
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Obviously, the proposed algorithms achieved satisfactory results, but the existing
algorithms were affected by varying degrees of background clutter, resulting in algorithm
instability. Compared with existing algorithms, the proposed algorithm was more stable,
could effectively handle different scenarios, and had the best detection performance.

Table 4 reports the full specification of the implementation environment. The mean
runtime was used to demonstrate the computational complexity of different detection
algorithms. As can be seen in Table 5, the VAR_DIFF algorithm was faster than other exist-
ing algorithms, and the proposed algorithm was second only to the VAR_DIFF algorithm.
Although our method was not the most time efficient, it was still relatively fast.

Table 4. The implementation environment.

Operating System Windows (Windows 10 21H1, x64)

MATLAB version MATLAB R2020a
CPU Intel Core i7-10875H @ 2.30 GHz

Memory 16.0 GB
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Table 5. Comparison of the mean runtime of different algorithms.

Method LCM MPCM RLCM TLLCM VAR_DIFF ADMD WSLCM Proposed

Time (s) 0.0274 0.0312 1.1384 0.3216 0.0068 0.0167 1.4780 0.0153

It can be seen from all the above experimental results that none of the existing al-
gorithms could preserve the shape characteristics of the target well. Among them, LCM
diffused the target, RLCM diffused the smaller scale target; and LCM, MPCM, RLCM, and
TLLCM had poor background suppression. Although VAR_DIFF, ADMD, and WSLCM
had strong background suppression capabilities, the detection rate of ADMD was aver-
age, and VAR_DIFF and WSLCM had missed detection in scenes with low SCR targets.
Although only WSLCM had a relatively low false-alarm rate among existing algorithms,
the detection of the WSLCM algorithm is particularly time-consuming; however, the pro-
posed algorithm can preserve the target shape well, has strong background suppression
ability, high detection rate, low false-alarm rate, and faster detection speed. In general, the
proposed algorithm can effectively preserve the shape features of targets of different scales
and types, and can adapt to detection in different scenarios, which further guarantees the
speed of the algorithm based on effective detection. Therefore, the proposed algorithm
performs better overall.

Furthermore, to evaluate the robustness of the proposed algorithm against noise,
different types of noise were added to dataset 3 which already contained different degrees
of noise for performance comparison. Figure 5 shows representative images of the original
IR dataset 3 and images with different types of noise added. Five types of noise were
added in the experiment, including Gaussian white noise with a variance of 0.001, Poisson
noise, Rayleigh noise with a variance of 15, multiplicative noise with a variance of 3,
and uniform noise with a minimum of −14 and a maximum of 14. Table 6 shows the
adaptive threshold calculation formulas corresponding to different algorithms and the
range of experimental constants. VAR_DIFF and ADMD do not give specific threshold
formulas, so the other 5 algorithms were selected for comparison, and the middle value
of the applicable range of the constant was used as the constant value in the experiment,
the specific information is shown in Table 6. Figures 6 and 7, respectively, show the
number of missed images and the number of false-alarm images after different detection
algorithms pass the corresponding threshold operation under different noise-type datasets.
The experimental results show that the proposed algorithm did not miss detection under
the influence of different types of noise. Although the proposed algorithm had false alarms
under the influence of Poisson noise and Rayleigh noise, other algorithms had missed
detection and false positives under the influence of different noises. Overall, compared
with other methods, the proposed algorithm could successfully suppress most of the noise
and had strong robustness against noise.
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Table 6. Threshold calculation formulas of different algorithms.

Formula for Threshold Calculation Range of
Experimental Constant

Constant Value Used in
the Experiment

LCM [5] Th = µSM + kσSM
µSM : Mean of SM
σSM : SM standard deviation
k: Experimental constant

k ∈ [3, 5] k = 4
MPCM [28] k ∈ [3, 14] k = 8.5
RLCM [26] k ∈ [2, 9] k = 5.5

TLLCM [29] Th = λmaxSM + (1− λ)meanSM
maxSM: Maximum of SM
meanSM: Mean of SM
λ: Experimental constant between 0 and 1

λ ∈ [0.7, 0.9] λ = 0.8
WSLCM [35] λ ∈ [0.6, 0.9] λ = 0.75

Proposed λ ∈ [0.5, 0.6] λ = 0.55
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Figure 6. The number of missed images in different algorithms under the influence of noise.
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4. Conclusions

This paper proposes an IR small-target detection algorithm based on WLDVM. The
proposed algorithm performs preprocessing operations through the idea of matched filter-
ing, which can reduce noise and enhance small targets to a certain extent. The distribution
characteristics of the target area are fully utilized to divide the window area, which can
adapt to the detection of small targets of different scales. LDVM can more effectively high-
light the target area and eliminate the bright background, thereby effectively improving
the detection rate and reducing the false-alarm rate. The weighting function can improve
the adaptability to complex backgrounds and can preserve the shape features of targets
of different scales. The fused results can further reduce the missed-detection rate and
false-positive rate in complex scenes, thus achieving strong robust detection. Experiments
show that the algorithm has good anti-noise ability and is robust to objects of different
scales and categories under complex backgrounds. Compared with other methods, the
proposed method has obvious advantages in quantitative results such as BSF, SCRG, and
the mean runtime, and can better preserve the shape features of targets visually. In future
work, we will further study the application of this method in the recognition of IR target
categories such as tanks, warships, and aircraft.
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