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Fast and Robust Optic Disc Detection Using Pyramidal
Decomposition and Hausdorff-Based Template Matching

Marc Lalonde, Mario Beaulieu, and Langis Gagnon*

Abstract—We report about the design and test of an image processing
algorithm for the localization of the optic disk (OD) in low-resolution
(about 20 /pixel) color fundus images. The design relies on the combina-
tion of two procedures: 1) a Hausdorff-based template matching technique
on edge map, guided by 2) a pyramidal decomposition for large scale object
tracking. The two approaches are tested against a database of 40 images of
various visual quality and retinal pigmentation, as well as of normal and
small pupils. An average error of 7% on OD center positioning is reached
with no false detection. In addition, a confidence level is associated to the
final detection that indicates the “level of difficulty” the detector has to
identify the OD position and shape.

Index Terms—Ophthalmic imaging, image analysis, image segmentation,
template matching.

I. INTRODUCTION

The aim of this paper is to present the performance of a simple,
though fast and robust detection tool for the localization and segmenta-
tion of the optic disk (OD) in low-resolution color fundus images. Seg-
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menting the OD is a key pre-processing element in many algorithms
designed for “automatic” anatomical structures extraction and retinal
lesions detection, notably for

• vessel tree extraction, for which large vessels located in the
vicinity of the OD serve as seeds for vessel tracking [1]–[3];

• macula (fovea) detection, where the constant distance between
the OD and the macula center is used asa priori knowledge to
help positionning the macula [4];

• retinopathy-related lesions detection, to help improve the detec-
tion rate by masking the OD [5].

Curiously, not much literature exists on the problem of detecting the
OD without user intervention. Tolias and Panas use linguistic descrip-
tions to automatically specify the OD location, based on the hypoth-
esis that the OD is a bright region located either in the left-center or
right-center of the fundus image [1]. This assumption is not always
true in practice and certainly not for our image database. Kochneret
al. use Hough transform and steerable filters to automatically detect
the location and size of the OD [2]. Points belonging to the edges of
the main vessel branches are extracted using steerable filters (first-order
Gaussian filter kernels at varying orientations) and fitted to an ellipse
via a Hough transform. From this, an approximate location of the OD is
obtained on one end of the ellipse major axis. The location and size are
then refined using a hierarchical filtering scheme based on first-order
steerable filters. Although the approach is appealing, we have not re-
tained it because of 1) the prerequisite of detecting points belonging to
the main vessel branches which imposes an additionnal pre-processing
step; 2) the computer intensive Hough transform and more importantly;
3) the necessity to have image centered on the macula in order to see
the elliptical shape of the two main branches of the vessel tree.

Our approach attempts to respond to three user-specific and compu-
tational specifications:

1) robustness to the variable appearance of ODs (intensity, color,
contour definition, macula-centered and OD-centered images);

2) detection performance above 90%;
3) short computation time.

Furthermore, the technique being sought does not need to provide a pre-
cise identification of the OD contour because the result will not be used
for diagnosis purposes like e.g., contour feature extraction for glau-
coma grading. However, the method must be fast and robust enough
because other tools we are developing are dependent upon its perfor-
mance, namely macula detection and vessel extraction.

To reach this goal, we found that the combination of the following
independent image processing tools yielded satisfactory results: 1)
template-based matching technique on edge map using a Hausdorff
distance measure, guided by 2) scale tracking of large objects using
multiresolution image decomposition. Tools cooperation is achieved
through combination of confidence indexes associated with various
detected OD candidates.

The paper is organized as follows. Section II presents a description
of the two algorithms used as well as the way they are combined. Sec-
tion III provides a detailed report of performance measures resulting
from a test on a database of 40 images including images 1) of low vi-
sual quality; 2) macula-centered and OD-centered; 3) of various retinal
pigmentation as well as 4) of normal and small pupils. Conclusion,
comments and possible further works are mentioned in Section IV.

II. A LGORITHM DESCRIPTION

The algorithm design relies on three assumptions. The first pertains
to the image acquisition. Since acquisition of ophthalmic images usu-
ally follows a fixed protocol, some information about the retina and its
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Fig. 1. Restricted search space corresponding to thea priori knowledge of the
OD position for OD-centered images(C), macula-centered left eye(L), and
macula-centered right eye(R).

structures can be deduced and exploited. The practitioner knows which
eye (left/right) is being imaged and whether the image is centered on
the macula or the optic disc (OD). Thisa priori information should be
exploited in order to guide the search for the OD in a specific portion
of the image (Fig. 1). The second assumption comes from observations
that the OD represents a bright region (not necessarily the brightest) in
an ophthalmic image of good quality. The last assumption relates to the
form of the OD, which always appears approximately circular.

The method we propose is decomposed into two stages.

• OD tracking through a pyramidal decomposition.
• OD contour search technique based on the Hausdorff distance.

Each stage generates a set of hypotheses. These hypotheses are ana-
lyzed and combined to provide the best solution.

A. Locating Potential OD Areas Using a Pyramidal Decomposition

Potential regions which might contain the optic disc are first found
by means of a pyramidal decomposition on the grayscale representa-
tion of the input color image (hue variability across subjects, particu-
larly those of different ethnic backgrounds, seems to reduce the use-
fulness of color cues in ophthalmic image analysis). For simplicity, the
green channel(G) of the original RGB image has been selected as the
grayscale representation, but other representations (e.g., the intensity
channel of the corresponding HSI image) could be used with similar
results. For implementation efficiency, the pyramid is created using a
simple Haar-based discrete wavelet transform for which the high-pass
and low-pass filters are[1;�1] and[1; 1] respectively [6].

Fig. 3 gives an example of a four- and five-level decomposition on
an image of our data set. As one can see, these resolution levels are
commensurate with the OD dimension as only a few bright pixels fall
into the original OD region.

Because of the small image size at the lowest resolution and the van-
ishing of small bright regions (which happen to be lesions such as exu-
dates) over the pyramid, the search for the OD region becomes a rapid
operation with few false candidates. This is further facilitated by re-
stricting the search to the portion of the original image according to the
a priori knowledge about the OD position as mentioned in Section II.

Pixels in the low-resolution image which have the highest intensity
values compared with the mean pixel intensity over the search area
yield possible region candidates in the original image. Within each of

these regions, smoothing is performed and the brightest pixel is selected
as a possible OD center point. A simple confidence value denoted by
CVR may be computed to assess the relevance of each hypothesis.
CVR is defined as the ratio between the average pixel intensity inside
a circular region of fixed radius centered on the brightest pixel and the
average intensity in its neighborhood. The measurement is designed
to “capture” one expected property of optic discs, namely a roughly
circular patch of bright pixels surrounded by darker pixels. Note that
the radius of the circular region is chosen to be approximately equal to
the expected radius of the optic disc in the image (the physical diameter
of the optic disc is about 1.5 mm on average). The neighborhood is
simply a rectangle slightly larger than the bounding box around the
circular region.

At this point, the intermediate result is a list of high-intensity pixel
coordinates representing the center of potential OD regions, along with
their confidence valuesCVR. The top ten candidates are retained for
further analysis.

B. Locating Potential OD Contours Using Hausdorff Distance

The search for the OD contour is performed using an algorithm based
on the Hausdorff distance and initially implemented for symbol recog-
nition in utility maps [7]. The key idea is that the areas identified by
the pyramidal decomposition method are explored for the presence of
a circular shape, as if the OD was a symbol in a map. The process goes
as the following.

1) Aggregate pyramidal candidate regions.
2) For each aggregated region:

a ) perform edge detection and do thresholding;
b ) perform Hausdorff-based matching;
c ) eliminate redundant solutions.

3) Compute confidence level for each solution.

1) Region of Interest (ROI) Aggregation:In order to limit the
number of ROIs, contiguous regions are aggregated into a single zone.
Typically, for a retinal image of good quality, one or two search zones
may result from this aggregation.

2) Edge Detection:Edge detection is performed on the green band
of the original color image in each of the search zones. Since Hausdorff-
based matching requires binary images as inputs, the magnitude edge
image is thresholded following an approach based upon a Rayleigh
probabilistic modeling of the noisy edge distribution [8], [9]. Within
this framework, selecting the threshold requires choosing a probability
of misinterpreting a noisy edge as a true edge, which implies finding a
tradeoff between the risk of discarding valid edges and the risk of re-
taining too many noisy edges. The former situation prevents the Haus-
dorff matcher from spotting the OD while the latter increases compu-
tation time considerably (see below for an explanation) and raises the
probability of false matches. A similar issue is at the core of Rayleigh-
based constant false alarm rate (CFAR) detectors in radar imagery [10].

According to Ravidet al., the Rayleigh-based CFAR thresholdT
can be estimated according to

T (x) = P
�

FA
� 1

M

j=1

x
2

j (1)

where thexj ’s are the magnitudes ofM noisy edge samples used for
the estimation andPFA is the probability of false alarms (i.e., the proba-
bility that a noisy edge is viewed as a valid edge). Of course, since edge
maps contain both valid and noisy edges, a strategy must be sought in
order to estimateT using the noisy edges only. The procedure we use
goes as follows:

1) perform Canny edge detection in the region of interest with the
low (L) and high(H) Canny hysterisis thresholds set to capture
as many edges as possible (e.g.,L = 1 andH = 2);
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(a)

(b) (c)

Fig. 2. Example of edge map thresholding result. (a) Original grey level image (5112).(b) Edges obtained with low Canny thresholds. (c) Thresholded edge map.

2) reassign the high thresholdH to a value that captures 10% of all
edges found in Step 1 (withL = H=2 as usual) and perform a
Canny edge detection again, thus getting an edge map that con-
tains strong edges only;

3) subtract the second edge map from the first to get an approxima-
tion of the noisy edge mapIN ;

4) extractM edge pixels within a small window in the center ofIN
to computeT for a givenPFA,

5) get the thresholded imageIT usingT as the threshold.

The strategy of removing the strongest edges for the estimation of the
threshold relies on the assumption that these edges are likely associated
to the borders of anatomical structures. As an example, Fig. 2 shows
the result of processing a retinal image of fairly good quality. The final
binary edge map is used for the Hausdorff-based template matching.

3) Matching With Hausdorff Distance:The Hausdorff distance
H(A;B), defined as

H(A;B) = max(h(A;B); h(B;A)) (2)

h(A;B) = max
a2A

min
b2B

ka� bk (3)

provides a degree of mismatch between two sets of pointsA andB by
measuring the distance of the point ofA that is farthest from any point
ofB and vice versa [11]. In the current context,A represents the set of
black pixels in the binary imageIT (with white background) andB the
set of pixels in a white image that form a black circular template (diam-
eter�60 pixels for a 640� 480 image). Locating the OD amounts to
evaluating the Hausdorff distance between the template and the under-
lying arrangement of pixels inIT ; a perfect match yields a zero distance
which increases as the resemblance weakens. One remarkable property
of Hausdorff-based template matching is its robustness and good per-
formance in locating objects in images of cluttered scenes. This capa-
bility is certainly valuable for OD localization given the frequent lack
of precise disc borders and the presence of vessels coming out of the
disc.

In theory, the Hausdorff distance should be computed at each pixel
in IT but in practice, many optimizations help reduce the processing
time substantially [11], [7]. One of them is the use of a Voronoi sur-
face (distance transform). Not only does it allow a fast evaluation of
the Hausdorff distance at each location, but it also facilitates the im-
plementation of pruning techniques that eliminate areas of the search
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(a)

(b)

(c)

Fig. 3. Example of pyramidal low frequency subbands. (a) Portion
(512� 512) of the original grey level image (4782). (b) Image at the fourth
level. (c) Image at the fifth level. At this level, the OD is represented by very
few bright pixels.

space around points where the distance is much higher than a given
threshold. Pruning is particularly efficient when the input image con-
tains few sparse clusters of black pixels, which is the case when the
edge intensity threshold is set appropriately in the previous edge map
binarization stage.

In order to account for ODs of varying size, several templates are
actually used with a diameter ranging from 54 to 72 pixels. When the
Hausdorff distance between a template andIT is found to be lower

than a specified threshold (typically three), a percentage of match is
computed and if this rate is reasonable (i.e., a certain proportion of the
pixels template are found to overlap edge pixels inIT , at this location),
then the location is retained as the center point of a potential OD can-
didate. The minimum proportion threshold is set low so as to prevent
missing the OD in situations where edge detection and the subsequent
thresholding failed to recover the complete contour.

Two confidence values are assigned to each Hausdorff candidates.
The first, denoted byCVH , is the proportion of template pixels over-
lapping edge pixels in the thresholded edge mapIT . The second, de-
noted byCVR, is defined in a similar fashion to that of the pyramidal
decomposition candidates, i.e., the ratio between the average pixel in-
tensity over the template candidate and the average intensity over its
neighborhood. Again, this indicator is a measure of how well the candi-
date is aligned with the OD from a pixel-intensity point of view: better
aligned candidates having higherCVR.

C. Determining the Best Candidate

The most likely OD position and radius are found by determining the
candidate with the highest overall (global) confidence. The calculation
of the global confidence is chosen to follow the rule combination of
the Dempster–Shafer theory of evidence which provides a human-like
framework to represent, combine and establish a general level of cer-
tainty in decision systems, from incomplete or imperfect knowledge
[12]. Following Dempster–Shafer theory, the global confidence value
CVG is calculated as

CVG = CVH � CVR + CVH � (1� CVR)

+CVR � (1� CVH) (4)

Note that the coarse solutions generated at the pyramid decomposition
stage obviously get a low global confidence index since the only con-
tributor is theCVR indicator. In some situations, however,CVR is high
enough to top bad Hausdorff candidates.

III. RESULTS

A. Data Set

A collection of 40 low-resolution fundus images (of about 20
�/pixel) from 27 persons were acquired using a nonmydriatic Canon
color camera CR6-45NM (Table I). An apparent image quality (IQ)
index has been evaluated to help interpret the final detection results.
Of these 40 images, 16 can be qualified as being of good visual
quality (IQ = G), 16 as fair(IQ = F ) and eight as bad(IQ = B).
Color images of bad quality are those that are blurred and/or have
abnormal dark or bright regions. Of course, bad quality images could
be discarded by the physician during a diagnosis process but we
wanted to keep them in our dataset in order to assess the robustness
of the algorithm. Often, regardless of the overall image quality, OD
appearance may also be good or bad with respect to the sharpness of
its contour and its brightness. These assessments are referred to as
OD contour quality (ODCQ) and OD brightness quality (ODBQ) in
Table I.

B. Detection Performance

Performance evaluation was made possible by the creation of ground
truth (or gold standard) with the help of a paint program (i.e., by man-
ually tracing the OD contour) and by the compilation of performance
“measures” such as:

• a matching scoreS equal to the common area between the true
OD regionT and the detected oneD, and defined as

S =
Area(T \D)

Area(T [D)
(5)
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TABLE I
PERFORMANCEMEASURES OF THEPROPOSEDMETHOD WITH RESPECT TOGROUND TRUTH (SEE TEXT FOR DETAILS). COLUMN 1: IMAGE LABEL. COLUMNS 2

AND 3: OD CONTOUR AND BRIGHTNESSQUALITY (ODCQAND ODBQ, RESPECTIVELY; G STANDS FORGOOD, F FORFAIR AND B FORBAD. COLUMNS 4 TO 6:
CONFIDENCELEVELSC AND C OF THETWO BEST PARTICIPANTS IN THE GLOBAL RESULT. COLUMNS 7: MATCHING SCORESS FORP = 0.1. COLUMN 8:

ERROR� IN THE OD DETECTEDCENTER POSITION. COLUMN 9: APPARENTOD DETECTION QUALITY (ODDQ)

• the distance� between the centers of the regionsT andD;
• a qualitative evaluation of the final ODDQ.

Table I provides details about these performance measures for each
image in our database. One can see that our procedure correctly po-
sitioned the best template candidate within the true OD area on all the
images of the database (0% false detection rate). Of course, the OD po-
sitionning is not always perfect but the global performace reaches our

goal: the average OD area overlap and center position difference being
S = 80% and� = 4.6 pixels, respectively. A mean overlap of 80%
is considered good when taking into account that the ground truth has
been traced by hand and that the template matching is not fully elastic
(only the template radius can be adjusted). A mean position error of
4.6 pixels corresponds to a relative error of 7% assuming a mean OD
diameter of 65 pixels in our images.
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Fig. 4. Examples of OD detection on good-quality images. (top): 2781 and 4783; (bottom) 5233 and 5491. Only green band is displayed.

The ODDQ is the apparent quality of the detection result as evaluated
by a human. ODDQ turns out to be good(G) for 34 images and fair(F )
for the remaining six images (Table I). No detection can be qualified
as bad. In all cases, the detector correctly pinpointed the OD region but
slightly mis-centered the template for six of them.

Note that there is not necessarily a correlation between the ODDQ
and the global confidence levelCG. In fact,CG is more closely cor-
related with the IQ, ODCQ and ODBQ, meaning that a detection on
a bad (good) quality image should be qualified by a low (high) confi-
dence level regardless of the ODDQ. A low confidence value does not
necessarily mean that the detection is apparently bad; it only provides
an indicator for assessing the “level of difficulty” the detector had to
identify the OD. This information is very useful in the context of com-
puter-aided diagnosis as it can be combined with other informations
to establish a general reliability index on a disease assessment, for in-
stance.

The fact thatCG is always greater thanmax(CH ; CR) results from
two important hypotheses at the basis of the Dempster–Shafer theory:
1) evidence (or confidence) associated to a declaration is not a proba-
bility but rather a fuzzy variable and 2) evidence to a declarationdoes
not imply complementary evidence to its negation (e.g., 60% of confi-
dence that the detection is the correct OD does not imply that the re-
maining 40% is associated to non-OD detection). In Dempster–Shafer
theory, the complementary evidence corresponds to the level of igno-
rance we have about a detection and part of this ignorance is responsible
for increasing the global confidenceCG [12].

Figs 4 and 5 show examples of OD detections on representative im-
ages of the data set. The images show the green band on which the
pyramidal and Hausdorff procedures are performed. Images in Fig. 4
are examples of good-quality images with good detections. Images in
Fig. 5 are examples of fair- and bad-quality images with good or fair

detections. A fair detection corresponds essentially to slightly mis-cen-
tered templates. These results are the most indicative of the robustness
of the proposed approach.

C. Computational Performance

In addition to its robustness, another important advantage of the pro-
posed approach is its fast computational time. In fact, the CPU time
needed to process one image (640� 480 pixels in size) on a Pentium III
PC (700 MHz) running Solaris 7 is about 1 s for the pyramid stage and
about 0.6 s (with a standard deviation of 0.3 s) for the Hausdorff stage.
Computation time for the Hausdorff stage is dependent upon image
content and it turns out to be smaller for lower values ofPFA because
of the sparser edge map (pruning of the search space is more signifi-
cant, hence the increase in processing speed).

IV. DISCUSSION ANDCONCLUSION

We have reported about an OD segmentation algorithm in color
fundus images which requires low computational search time, per-
forms with a low false alarm rate and provides a confidence level on
the detection that indicates the “level of difficulty” the detector has
to identify the OD position and shape. The segmentation proceeds
through the cooperation between (1) large scale object positioning
using a multiresolution image decomposition and (2) template
matching technique on edge maps using a Hausdorff distance measure.
The use of complementary search techniques helps provide a reliable
confidence level associated to the final detection result, which is a
very useful information in the context of computer assisted diagnosis.
Finally, one can mention the following observations/comments.

• The pyramid-based stage has a quite good success in pinpointing
the OD region when thea priori knowledge about the OD position
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Fig. 5. Examples of OD detection on fair- and bad-quality images. (top) 5011 and 5014; (middle) 5021 and 5191; (bottom) 5227 and 5231.

is used. However, the position found is sometimes quite far from
the true OD center and the pyramid approach is of no help in
identifying the OD contour.

• The Hausdorff-based approach has very good success in finding
the OD contour, thus the OD center, fast and reliably. However,
it fails on images where OD contour is very diffuse.

• Each method compensates for a weakness of the other and
combining both helps acieve a very satisfactory detection
performance, even on poor quality images, along with a reliable
detection confidence level. This is particularly important in the
context of automatic image analysis for which a high confidence
level solution is often a prerequisite for the reliability of addi-
tional image analysis stages.

• As one should expect, the performance of the approach proposed
here is dependent upon the completeness of the thresholded edge
map, meaning that thresholding must remove noisy edges and

yet preserve the OD contour. One should be aware, however, that
there is a direct link between the completeness of the edge map
and the similarity of the noisy edge distribution with the Rayleigh
model. Whenever an input image is of dubious quality, there is a
substantial risk that its noisy edge distribution would be markedly
different from the model, leading to an improper threshold selec-
tion and a severely broken thresholded edge map.

In situations where better accuracy would be needed for the OD con-
tour, the proposed method could serve advantageously as an initializa-
tion stage for more refined techniques such as deformable templates or
active contours (see [13] for instance). It is well known that a signifi-
cant drawback of Lagrangian-formulated active contours (as opposed
to level-set methods) is the penalty regarding the quality of the final
contour and the algorithm convergence speed when the initial snake is
far from the final state. The procedure presented here could serve as a
preparation stage for those algorithms.
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Although the focus of the paper is on optic disc detection, other ap-
plications that require the localization of a rigid shape may be solved
efficiently by the proposed combination of techniques, namely a rough
positioning of the object and a more refined Hausdorff-based search in
a “probabilistically” thresholded edge map, with hypothesis manage-
ment within the framework provided by the evidence theory. Tumor
detection in X-rays or microcalcifications in mammograms might be
some examples of other applications. We plan to evaluate different con-
texts in the near future and also to investigate possible generalizations
of our approach for the detection of nonrigid shapes.

ACKNOWLEDGMENT

The authors would like to thank Dr. M.-C. Boucher of the Départe-
ment d’ophtalmologie at Hôpital Maisonneuve-Rosemont of Montréal
for providing the image dataset.

REFERENCES

[1] Y. A. Tolias and S. M. Panas, “An unsupervised fuzzy vessel tracking
algorithm for retinal images,”Proc. 6th IEEE Int. Conf. Fuzzy Systems
(FUZZ-IEEE’97), vol. 2, pp. 325–330.

[2] B. Kochner, D. Schuhmann, M. Michaelis, G. Mann, and K.-H.
Englmeier, “Course tracking and contour extraction of retinal vessels
from color fundus photographs: Most efficient use of steerable filters
for model based image analysis,” inProc. SPIE Medical Imaging 1998,
pp. 755–761.

[3] M. Lalonde, L. Gagnon, and M.-C. Boucher, “Non-recursive paired
tracking for vessel extraction from retinal images,” inProc. Conf.
Vision Interface 2000, May 2000, pp. 61–68.

[4] M. Beaulieu, “Algorithme de detection de la macula sur les images de
la retine,” Centre de recherche informatique de Montréal, Montréal,
Canada, Tech. Rep. CRIM-00/07-05, July 2000. In French.

[5] L. Gagnon, “Rapport d’avancement patrimoine VAI,” Centre de
recherche informatique de Montréal, Montréal, Canada, Tech. Rep.
CRIM-00/06-04, June 2000. In French.

[6] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell., vol.
11, pp. 674–693, July 1989.

[7] E. Reiher, Y. Li, V. D. Donne, M. Lalonde, C. Hayne, and C. Zhu, “A
system for efficient and robust map symbol recognition,” inProc. Int.
Conf. Pattern Recognition, vol. 3, Aug. 1996, pp. 783–787.

[8] H. Voorhees and T. Poggio, “Detecting textons and texture boundaries
in natural images,” inProc. 1st Int. Conf. Computer Vision, 1987, pp.
250–258.

[9] E. R. Hancock and J. Kittler, “Adaptive estimation of hysteresis thresh-
olds,” in CVPR’91, pp. 196–201.

[10] R. Ravid and N. Levanon, “Maximum-likelihood CFAR for Weibull
background,” inInst. Elect. Eng. Proc.-F, vol. 139, 1991, pp. 256–264.

[11] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing
images using the Hausdorff distance,”IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 15, pp. 850–863, Sept. 1993.

[12] J. Hall, Mathematical Techniques in Multisensor Data Fu-
sion. Norwood, MA: Artec House, 1992.

[13] F. Mendels, C. Heneghan, P. D. Harper, R. B. Reilly, and J.-Ph. Thiran,
“Extraction of the optic disk boundary in digital fundus images,” inProc.
1st Joint BMES/EMBS Conf., Oct. 1999, p. 1139.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 22, 2008 at 11:40 from IEEE Xplore.  Restrictions apply.


