
Mach Learn (2016) 104:195–221
DOI 10.1007/s10994-016-5578-4

Fast and scalable Lasso via stochastic Frank–Wolfe
methods with a convergence guarantee

Emanuele Frandi1 · Ricardo Ñanculef2 ·
Stefano Lodi3 · Claudio Sartori3 · Johan A. K. Suykens1

Received: 23 October 2015 / Accepted: 28 June 2016 / Published online: 21 July 2016
© The Author(s) 2016

Abstract Frank–Wolfe (FW) algorithms have been often proposed over the last few years as
efficient solvers for a variety of optimization problems arising in the field ofmachine learning.
The ability to work with cheap projection-free iterations and the incremental nature of the
method make FW a very effective choice for many large-scale problems where computing a
sparsemodel is desirable. In this paper, we present a high-performance implementation of the
FW method tailored to solve large-scale Lasso regression problems, based on a randomized
iteration, and prove that the convergence guarantees of the standard FWmethod are preserved
in the stochastic setting. We show experimentally that our algorithm outperforms several
existing state of the art methods, including the Coordinate Descent algorithm by Friedman et
al. (one of the fastest known Lasso solvers), on several benchmark datasets with a very large
number of features, without sacrificing the accuracy of the model. Our results illustrate that
the algorithm is able to generate the complete regularization path on problems of size up to
four million variables in <1min.

Editors: Thomas Gärtner, Mirco Nanni, Andrea Passerini, and Celine Robardet.

B Emanuele Frandi
emanuele.frandi@esat.kuleuven.be

Ricardo Ñanculef
jnancu@inf.utfsm.cl

Stefano Lodi
stefano.lodi@unibo.it

Claudio Sartori
claudio.sartori@unibo.it

Johan A. K. Suykens
johan.suykens@esat.kuleuven.be

1 ESAT-STADIUS, KU Leuven, Leuven, Belgium

2 Department of Informatics, Federico Santa María Technical University, Valparaíso, Chile

3 Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5578-4&domain=pdf
http://orcid.org/0000-0002-4143-1371

196 Mach Learn (2016) 104:195–221

Keywords Frank–Wolfe algorithm · Lasso · Large-scale regression

1 Introduction

Many machine learning and data mining tasks can be formulated, at some stage, in the form
of an optimization problem. As constantly growing amounts of high dimensional data are
becoming available in theBigData era, a fundamental thread in research is the development of
high-performance implementations of algorithms tailored to solving these problems in a very
large-scale setting. One of the most popular and powerful techniques for high-dimensional
data analysis is theLasso (Tibshirani 1996). In the last decade there has been intense interest in
this method, and several papers describe generalizations and variants of the Lasso (Tibshirani
2011). In the context of supervised learning, it was recently proved that the Lasso problem can
be reduced to an equivalent SVMformulation,which potentially allows one to leverage awide
range of efficient algorithms devised for the latter problem (Jaggi 2014). For unsupervised
learning, the idea of Lasso regression has been used in Lee et al. (2010) for bi-clustering in
biological research.

From an optimization point of view, the Lasso can be formulated as an �1-regularized least
squares problem, and large-scale instances must usually be tackled by means of an efficient
first-order algorithm. Several such methods have already been discussed in the literature.
Variants of Nesterov’s Accelerated Gradient Descent, for example, guarantee an optimal
convergence rate among first-order methods (Nesterov 2013). Stochastic algorithms such
as Stochastic Gradient Descent and Stochastic Mirror Descent have also been proposed for
the Lasso problem (Langford et al. 2009; Shalev-Shwartz and Tewari 2011). More recently,
CoordinateDescent (CD) algorithms (Friedman et al. 2007, 2010), alongwith their stochastic
variants (Shalev-Shwartz and Tewari 2011; Richtárik and Takáĉ 2014), are gaining popularity
due to their efficiency on structured large-scale problems. In particular, the CD implemen-
tation of Friedman et al. mentioned above is specifically tailored for Lasso problems, and is
currently recognized as one of the best solvers for this class of problems.

The contribution of the present paper in this context can be summarized as follows:

– We propose a high-performance stochastic implementation of the classical Frank–Wolfe
(FW) algorithm to solve the Lasso problem. We show experimentally how the proposed
method is able to efficiently scale up to problems with a very large number of features,
improving on the performance of other state of the art methods such as the Coordinate
Descent algorithm in Friedman et al. (2010).

– We include an analysis of the complexity of our algorithm, and prove a novel convergence
result that yields an O(1/k) convergence rate analogous (in terms of expected value) to
the one holding for the standard FW method.

– We highlight how the properties of the FW method allow to obtain solutions that are
significantly more sparse in terms of the number of features compared with those from
various competing methods, while retaining the same optimization accuracy.

On a broader level, and in continuity with other works from the recent literature (Ñanculef
et al. 2014; Harchaoui et al. 2014; Signoretto et al. 2014), the goal of this line of research is
to show how FW algorithms provide a general and flexible optimization framework, encom-
passing several fundamental problems in machine learning.
Structure of the paper

In Sect. 2, we provide an overview of the Lasso problem and its formulations, and review
some of the related literature. Then, in Sect. 3, we discuss FW optimization and specialize the

123

Mach Learn (2016) 104:195–221 197

algorithm for the Lasso problem. The randomized algorithm used in our implementation is
discussed in Sect. 4, and its convergence properties are analyzed. In Sect. 5 we show several
experiments on benchmark datasets and discuss the obtained results. Finally, Sect. 6 closes
the paper with some concluding remarks.

2 The Lasso problem

Suppose we are given data points (x�, y�), � = 1, 2, . . . ,m, where x� = (x�1, . . . , x�p)
T ∈

R
p are some predictor variables and y� the respective responses. A common approach in

statistical modeling and data mining is the linear regression model, which predicts y� as a
linear combination of the input attributes:

ŷ� =
p∑

i=1

αi x�i + α0 .

In a high-dimensional, low sample size setting (p � m), estimating the coefficient vector
α = (α1, α2, . . . , αp)

T ∈ R
p using ordinary least squares leads to an ill-posed problem,

i.e. the solution becomes not unique and unstable. In this case, a widely used approach for
model estimation is regularization. Among regularization methods, the Lasso is of particular
interest due to its ability to perform variable selection and thus obtain more interpretable
models (Tibshirani 1996).

2.1 Formulation

Let X be them×p designmatrixwhere the data is arranged row-wise, i.e. X = [x1, . . . , xm]T .
Similarly, let y = (y1, . . . , ym)T be the m-dimensional response vector. Without loss of
generality, we can assume α0 = 0 (e.g. by centering the training data such that each attribute
has zero mean) (Tibshirani 1996). The Lasso estimates the coefficients as the solution to the
following problem

min
α

f (α) = 1
2 ‖Xα − y‖22 s.t. ‖α‖1 ≤ δ , (1)

where the �1-norm constraint ‖α‖1 = ∑
i |αi | ≤ δ has the role of promoting sparsity in the

regression coefficients. It is well-known that the constrained problem (1) is equivalent to the
unconstrained problem

min
α

f̃ (α) = 1
2 ‖Xα − y‖22 + λ‖α‖1 , (2)

in the sense that given a solution α∗ of (2) corresponding to a certain value of the parameter λ̄,
it is possible to find a δ̄ such that α∗ is also a solution of (1), and vice versa. Since the optimal
tradeoff between the sparsity of the model and its predictive power is not known a-priori,
practical applications of the Lasso require to find a solution and the profiles of estimated
coefficients for a range of values of the regularization parameter δ (or λ in the penalized
formulation). This is known in the literature as the Lasso regularization path (Friedman et al.
2010).

2.2 Relevance and applications

The Lasso is part of a powerful family of regularized linear regression methods for high-
dimensional data analysis, which also includes ridge regression (RR) (Hoerl and Kennard

123

198 Mach Learn (2016) 104:195–221

1970; Hastie et al. 2009), the ElasticNet (Zou and Hastie 2005), and several recent extensions
thereof (Zou 2006; Zou and Zhang 2009; Tibshirani et al. 2005). From a statistical point of
view, they can be viewed as methods for trading off the bias and variance of the coefficient
estimates in order to find amodelwith better predictive performance. Fromamachine learning
perspective, they allow to adaptively control the capacity of themodel space in order to prevent
overfitting. In contrast to RR, which is obtained by substituting the �1 norm in (2) by the
squared �2 norm

∑
i |αi |2, it is well-known that the Lasso does not only reduce the variance of

coefficient estimates but is also able to perform variable selection by shrinking many of these
coefficients to zero. Elastic-net regularization trades off �1 and �2 norms using a “mixed”
penalty Ω(α) = γ ‖α‖1 + (1 − γ)‖α‖2 which requires tuning the additional parameter γ

(Zou and Hastie 2005). �p norms with p ∈ [0, 1) can enforce a more aggressive variable
selection, but lead to computationally challenging non-convex optimization problems. For
instance, p = 0, which corresponds to “direct” variable selection, leads to an NP-hard
problem (Weston et al. 2003).

Thanks to its ability to perform variable selection and model estimation simultaneously,
the Lasso (and �1-regularization in general) is widely used in applications involving a huge
number of candidate features or predictors. Examples of these applications include biomolec-
ular data analysis, text regression, functional magnetic resonance imaging (fMRI) and sensor
networks. In all these cases, the number dimensions or attributes p can far exceed the number
of data instances m.

2.3 Related work

Problem (1) is a quadratic programming problem with a convex constraint, which in prin-
ciple may be solved using standard techniques such as interior-point methods, guaranteeing
convergence in few iterations. However, the computational work required per iteration as
well as the memory demanded by these approaches make them practical only for small and
medium-sized problems. A faster specialized interior point method for the Lasso was pro-
posed in Kim et al. (2007), which however compares unfavorably with the baseline used in
this paper (Friedman et al. 2010).

One of the first efficient algorithms proposed in the literature for finding a solution of
(2) is the Least Angle Regression (LARS) by Efron et al. (2004). As its main advantage,
LARS allows to generate the entire Lasso regularization path with the same computational
cost as standard least-squares via QR decomposition, i.e. O(mp2), assuming m < p (Hastie
et al. 2009). At each step, it identifies the variable most correlated with the residuals of the
model obtained so far and includes it in the set of “active” variables, moving the current
iterate in a direction equiangular with the rest of the active predictors. It turns out that the
algorithm we propose makes the same choice but updates the solution differently using
cheaper computations. A similar homotopy algorithm to calculate the regularization path
has been proposed in Turlach (2005), which differs slightly from LARS in the choice of the
search direction.

More recently, it has been shown by Friedman et al. that a careful implementation of the
Coordinate Descent method (CD) provides an extremely efficient solver (Friedman et al.
2007, 2010; Friedman 2012), which also applies to more general models such as the Elastic-
Net proposed by Zou and Hastie (2005). In contrast to LARS, this method cyclically chooses
one variable at a time and performs a simple analytical update. The full regularization path
is built by defining a sensible range of values for the regularization parameter and taking the
solution for a given value as warm-start for the next. This algorithm has been implemented
into the Glmnet package and can be considered the current standard for solving this class

123

Mach Learn (2016) 104:195–221 199

of problems. Recent works have also advocated the use of Stochastic Coordinate Descent
(SCD) (Shalev-Shwartz and Tewari 2011), where the order of variable updates is chosen ran-
domly instead of cyclically. This strategy can prevent the adverse effects caused by possibly
unfavorable orderings of the coordinates, and allows to prove stronger theoretical guarantees
compared to the plain CD (Richtárik and Takáĉ 2014).

Other methods for �1-regularized regression may be considered. For instance, Zhou et
al. recently proposed a geometrical approach where the Lasso is reformulated as a nearest
point problem and solved using an algorithm inspired by the classical Wolfe method (Zhou
et al. 2015). However, the popularity and proved efficiency of Glmnet on high-dimensional
problems make it the chosen baseline in this work.

3 Frank–Wolfe optimization

One of the earliest constrained optimization approaches, the Frank–Wolfe algorithm (Frank
and Wolfe 1956) has recently seen a sudden resurgence in interest from the optimization
community (Clarkson 2010; Jaggi 2013), and several authors have pointed out how FW
methods can be used as a principled and efficient alternative to solve several large-scale
problems arising in machine learning, statistics, bioinformatics and related fields (Ñanculef
et al. 2014; Frandi et al. 2015; Harchaoui et al. 2014; Signoretto et al. 2014). As argued in
Sect. 3.2, the FW algorithm enjoys several properties that make it very attractive for this type
of problems. Overall, though, the number of works showing experimental results for FW on
practical applications is limited compared to that of the theoretical studies appearing in the
literature. In the context of problems with �1-regularization or sparsity constraints, the use
of FW has been discussed in Shalev-Shwartz et al. (2010), but no experiments are provided.
A closely related algorithm has been proposed in Zhou et al. (2015), but its implementation
has a high computational cost in terms of time and memory requirements, and is not suitable
for solving large problems on a standard desktop or laptop machine. As such, the current
literature does not provide many examples of efficient FW-based software for large-scale
Lasso or l1-regularized optimization. We aim to fill this gap by showing how a properly
implemented stochastic FW method can improve on the performance of the current state of
the art solvers on Lasso problems with a very large number of features.

3.1 The standard Frank–Wolfe algorithm

The FW algorithm is a general method to solve problems of the form

min
α∈Σ

f (α), (3)

where f : Rp → R is a convex differentiable function, and Σ ⊂ R
p is a compact convex

set. Given an initial guess α(0) ∈ Σ , the standard FW method consists of the steps outlined
in Algorithm 1. From an implementation point of view, a fundamental advantage of FW
is that the most demanding part of the iteration, i.e. the solution of the linear subproblem
(4), has a computationally convenient solution for several problems of practical interest,
mainly due to the particular form of the feasible set. The key observation is that, when Σ

is a polytope (e.g. �1-ball of radius δ for the Lasso problem (1)), the search in step 3 can
be reduced to a search among the vertices of Σ . This allows to devise cheap analytical
formulas to find u(k), ensuring that each iteration has an overall cost of O(p). The fact that
FWmethods work with projection-free iterations is also a huge advantage on many practical

123

200 Mach Learn (2016) 104:195–221

problems, since a projection step to maintain the feasibility of the iterates (as needed by
classical approaches such as proximal methods for Matrix Recovery problems) generally has
a super-linear complexity (Lacoste-Julien et al. 2013).

Algorithm 1 The standard Frank–Wolfe algorithm

1: Input: an initial guess α(0).
2: for k = 0, 1, . . . do
3: Define a search direction d(k) by optimizing a linear model:

u(k) ∈ argmin
u ∈ Σ

(u − α(k))T ∇ f (α(k)), d(k) = u(k) − α(k). (4)

4: Choose a stepsize λ(k), e.g. via line-search:

λ(k) ∈ argmin
λ∈ [0,1]

f (α(k) + λd(k)). (5)

5: Update: α(k+1) = α(k) + λ(k)d(k).
6: end for

Another distinctive feature of the algorithm is the fact that the solution at a given iteration
K can be expressed as a convex combination of the vertices u(k), k = 0, . . . , K − 1. Due to
the incremental nature of the FW iteration, at most one new extreme point ofΣ is discovered
at each iteration, implying that at most k of such points are active at iteration k. Furthermore,
this sparsity bound holds for the entire run of the algorithm, effectively allowing to control the
sparsity of the solution as it is being computed. This fact carries a particular relevance in the
context of sparse approximation, and generally in all applications where it is crucial to find
models with a small number of features. It also represents, as wewill show in our experiments
in Sect. 5, one of themajor differences between incremental, forward approximation schemes
and more general solvers for �1-regularized optimization, which in general cannot guarantee
to find sparse solutions along the regularization path.

3.2 Theoretical properties

We summarize here some well-known theoretical results for the FW algorithm which are
instrumental in understanding the behaviour of the method. We refer the reader to (Jaggi
2013) for the proof of the following proposition. To prove the result, it is sufficient to assume
that f has bounded curvature, which, as explained in Jaggi (2013), is roughly equivalent to
the Lipschitz continuity of ∇ f .

Proposition 1 [Sublinear convergence (Jaggi 2013)] Let α∗ be an optimal solution of prob-
lem (3). Then, for any k ≥ 1, the iterates of Algorithm 1 satisfy

f (α(k)) − f (α∗) ≤ 4C f

k + 2
,

where C f is the curvature constant of the objective function.

An immediate consequence of Proposition 1 is an upper bound on the iteration complexity:
given a tolerance ε > 0, the FW algorithm finds an ε-approximate solution, i.e. an iterate α(k)

such that f (α(k)) − f (α∗) ≤ ε, after O(1/ε) iterations. Besides giving an estimate on the
total number of iterations which has been shown experimentally to be quite tight in practice
(Frandi et al. 2014, 2015), this fact tells us that the tradeoff between sparsity and accuracy can

123

Mach Learn (2016) 104:195–221 201

be partly controlled by appropriately setting the tolerance parameter. Recently, Garber and
Hazan showed that under certain conditions the FW algorithm can obtain a convergence rate
of O(1/k2), comparable to that of first-order algorithms such as Nesterov’s method (Garber
and Hazan 2015). However, their results require strong convexity of the objective function
and of the feasible set, a set of hypotheses which is not satisfied for several important ML
problems such as the Lasso or the Matrix Recovery problem with trace norm regularization.

Another possibility is to employ a Fully-Corrective variant of the algorithm, where at
each step the solution is updated by solving the problem restricted to the currently active
vertices. The algorithm described in Zhou et al. (2015), where the authors solve the Lasso
problem via a nearest point solver based on Wolfe’s method, operates with a very similar
philosophy. A similar case can be made for the LARS algorithm of Efron et al. (2004),
which however updates the solution in a different way. The Fully-Corrective FW also bears
a resemblance to the Orthogonal Matching Pursuit algorithms used in the Signal Processing
literature (Tropp 2004), a similarity which has already been discussed in Clarkson (2010)
and Jaggi (2013). However, as mentioned in Clarkson (2010), the increase in computational
cost is not paid off by a corresponding improvement in terms of complexity bounds. In
fact, the work in Lan (2014) shows that the result in Proposition 1 cannot be improved
for any first-order method based on solving linear subproblems without strengthening the
assumptions. Greedy approximation techniques based on both the vanilla and the Fully-
Corrective FW have also been proposed in the context of approximate risk minimization
with an �0 constraint by Shalev-Shwartz et al., who proved several strong runtime bounds
for the sparse approximations of arbitrary target solutions (Shalev-Shwartz et al. 2010).

Finally, it is worth mentioning that the result of Proposition 1 can indeed be improved
by using variants of FW that employ additional search directions, and allow under suitable
hypotheses to obtain a linear convergence rate (Ñanculef et al. 2014; Lacoste-Julien and
Jaggi 2014). It should be mentioned, however, that such rates only hold in the vicinity of
the solution and that, as shown in Frandi et al. (2015), a large number of iterations might be
required to gain substantial advantages. For this reason, we choose not to pursue this strategy
in the present paper.

4 Randomized Frank–Wolfe for Lasso problems

A specialized FW algorithm for problem (1) can be obtained straightforwardly by setting
Σ equal to the �1-ball of radius δ, hereafter denoted as �δ . In this case, the vertices of the
feasible set (i.e., the candidate points among which u(k) is selected in the FW iterations) are
V(�δ) = {±δei : i = 1, 2, . . . , p}, where ei is the i-th element of the canonical basis.
It is easy to see that the linear subproblem (4) in Algorithm 1 has a closed-form solution,
given by:

u(k) = −δ sign
(
∇ f (α(k))

i (k)∗

)
e
i (k)∗

≡ δ̃(k)e
i (k)∗

, i (k)∗ = argmax
i=1,...,p

∣∣∣∇ f (α(k))i

∣∣∣ . (6)

In order to efficiently execute the iteration,we can exploit the formof the objective function
to obtain convenient expressions to update the function value and the gradient after each FW
iteration. The gradient of f (·) in (1) is

∇ f (α) = −XT (y − Xα) = −XT y + XT Xα.

There are two possible ways to compute ∇ f (α(k))i efficiently. One is to keep track of the
vector of residuals R(k) = (

y − Xα(k)
) ∈ R

m and compute ∇ f (α(k))i as

123

202 Mach Learn (2016) 104:195–221

∇ f
(
α(k)

)

i
= −zTi R

(k) = −zTi y + zTi Xα(k), (7)

where zi ∈ R
m is the i-th column of the design matrix X , i.e., the vector formed by collecting

the i-th attribute of all the training points. We refer to this approach as the “method of
residuals”. The other way is to expand the second term in (7)

∇ f
(
α(k)

)

i
= −zTi y +

∑

j
=0

α
(k)
j zTi z j ,

and keep track of the inner products zTi z j between zi and the predictors z j corresponding
to non-zero coefficients of the current iterate. We call this the “method of active covariates”.
The discussion in the next subsections reveals that the first approach is more convenient if,
at each iteration, we only need to access a small subset of the coordinates of ∇ f (α(k)). It
is clear from (6) that after computing ∇ f (α(k))i for i = 1, . . . , p the solution to the linear
subproblem in Algorithm 1 follows easily. The other quantities required by the algorithm
are the objective value (in order to monitor convergence) and the line search stepsize in (5),
which can be obtained as

f
(
α(k)

)
= 1

2
yT y + 1

2
S(k) − F (k),

λ(k) = λ∗:=
S(k) − δ̃∇ f

(
α(k)

)
i∗ − F (k)

S(k) − 2δ̃Gi∗ + δ̃2zTi∗zi∗
,

(8)

where i∗ = i (k)∗ , Gi∗ = ∇ f (α(k))i∗ + zTi∗y, and the terms S(k), F (k) can be updated recur-
sively as

S(k+1) = (1 − λ∗)2S(k) + 2δ̃λ∗(1 − λ∗)Gi∗ + δ̃2λ2∗zTi∗zi∗
F (k+1) = (1 − λ∗)F (k) + δ̃λ∗zTi∗y ,

with starting values S(0) = 0 and F (0) = 0. If we store the products zTi y before the execution
of the algorithm, the only non-trivial computation required here is ∇ f (α(k))i∗ which was
already computed to solve the subproblem in (6).

4.1 Randomized Frank–Wolfe iterations

Although the FW method is generally very efficient for structured problems with a sparse
solution, it also has a number of practical drawbacks. For example, it is well known that
the total number of iterations required by a FW algorithm can be large, thus making the
optimization prohibitive on very large problems. Evenwhen (4) has an analytical solution due
to the problem structure, the resulting complexity depends on the problem size (Ñanculef et al.
2014), and can thus be impractical in cases where handling large-scale datasets is required.
For example, in the specialization of the algorithm to problem (1), the main bottleneck is the
computation of the FW vertex i (k)∗ in (6) which corresponds to examining all the p candidate
predictors and choosing the one most correlated with the current residuals (assuming the
design matrix has been standardized s.t. the predictors have unit norm). Coincidentally, this
is the same strategy underlying well-known methods for variable selection such as LARS
and Forward Stepwise Regression (see Sect. 1).

A simple and effective way to avoid this dependence on p is to compute the FW vertex
approximately, by limiting the search to a fixed number of extreme points on the boundary of
the feasible set Σ (Schölkopf and Smola 2001; Frandi et al. 2014). Specialized to the Lasso

123

Mach Learn (2016) 104:195–221 203

problem (1), this technique can be formalized as extracting a random sample S ⊆ {1, . . . , p}
and solving

u(k) = −δ sign

(
∇ f

(
α(k)

)

i (k)S

)
e
i (k)S

, where i (k)S = argmax
i∈S

∣∣∣∇ f
(
α(k)

)

i

∣∣∣ . (9)

Formally, one can think of a randomized FW iteration as the optimization of an approximate
linear model, built by considering the partial gradient∇ f (α(k))|S(k) , i.e. the projection of the
gradient onto the subspace identified by the sampled coordinates (Wang and Qian 2014). The
number of coordinates of the gradient that need to be estimated with this scheme is |S| instead
of p. If |S| � p, this leads to a significant reduction in terms of computational overhead.
Our stochastic specialization of the FW iteration for the Lasso problem takes thus the form
of Algorithm 2. After selecting the variable zi∗ ∈ S best correlated with the current vector of
residuals, the algorithm updates the current solution along the segment connecting zi∗ ∈ S
with α(k). Note how this approach differs from a method like LARS, where the direction to
move the last iterate is equiangular to all the active variables. It also differs from CD, which
can make active more than one variable at each “epoch” or cycle through the predictors. The
algorithm computes the stepsize by looking explicitly to the value of the objective, which
can be computed analytically without increasing the cost of the iteration. Finally, the method
updates the vector of residuals and proceeds to the next iteration.

Algorithm 2 Randomized Frank–Wolfe step for the Lasso problem
1: Choose the sampling set S (see Sect. 4.5).

2: Search for the predictor best correlated with the vector of residuals R(k) =
(
y − Xα(k)

)
:

i (k)∗ = argmax
i∈S

∣∣∣∇ f (α(k))i

∣∣∣ ≡
∣∣∣zTi R(k)

∣∣∣ .

3: Set δ̃(k) = −δ sign
(
∇ f (α(k))i∗

)
.

4: Compute the step-size λ(k) using (8).
5: Update the vector of coefficients as

α(k+1) = (1 − λ(k))α(k) + δ̃λ(k)e
i(k)∗

.

6: Update the vector of residuals R(k)

R(k+1) = (1 − λ(k))R(k) + λ(k)
(
y − δ̃z

i(k)∗

)
. (10)

Note that, although in this work we only discuss the basic Lasso problem, extending the
proposed implementation to the more general ElasticNet model of Zou and Hastie (2005)
is straightforward. The derivation of the necessary analytical formulae is analogous to the
one shown above. Furthermore, an extension of the algorithm to solve �1-regularized logistic
regression problems, another relevant tool in high-dimensional data analysis, can be easily
obtained following the guidelines in Friedman et al. (2010).

4.2 Complexity and implementation details

In Algorithm 2, we compute the coordinates of the gradient using the method of residuals
given by Eq. (7). Due to the randomization, this method becomes very advantageous with

123

204 Mach Learn (2016) 104:195–221

respect to the use of the alternative method based on the active covariates, even for very
large p. Indeed, if we denote by s the cost of performing a dot product between a predictor
zi and another vector in R

m , the overall cost of picking out the FW vertex in step 1 of
our algorithm is O(s|S|). Using the method of the active covariates would instead give an
overall cost of O(s|S|‖α(k)‖0), which is always worse. Note however that this method may
be better than the method of the residuals in a deterministic implementation by using caching
tricks as proposed in Friedman et al. (2007), Friedman et al. (2010). For instance, caching
the dot products between all the predictors and the active ones and keeping updated all the
coordinates of the gradient would cost O(p) except when new active variables appear in the
solution, in which case the cost becomes O(ps). However, this would allow to find the FW
vertex in O(p) operations. In this scenario, the fixed O(sp) cost of the method of residuals
may be worse if the Lasso solution is very sparse. It is worth noting that the dot product cost
s is proportional to the number of nonzero components in the predictors, which in typical
high-dimensional problems is significantly lower than m.

In the current implementation, the term σi :=zTi y will be pre-computed for any i =
1, 2, . . . , p before starting the iterations of the algorithm. This allows to write (7) as
−zTi R

(k) = −σi + zTi Xα(k). Equation (10) for updating residuals can therefore be replaced
by an equation to update p(k) = Xα(k), eliminating the dependency on m.

4.3 Relation to SVM algorithms and sparsity certificates

The previous implementation suggests that the FW algorithmwill be particularly suited to the
case p � m where a regression problem has a very large number of features but not so many
training points. It is interesting to compare this scenario to the situation in SVM problems. In
the SVM case, the FW vertices correspond to training points, and the standard FW algorithm
is able to quickly discover the relevant “atoms” (the support vectors), but has no particular
advantage when handling lots of features. In contrast, in Lasso applications, where we are
using the zi ’s as training points, the situation is somewhat inverted: the algorithm should
discover the critical features in at most O(1/ε) iterations and guarantee that at most O(1/ε)
attributes will be used to perform predictions. This is, indeed, the scenario in which Lasso is
used for several applications of practical interest, as problems with a very large number of
features arise frequently in specific domains like bio-informatics, web and text analysis and
sensor networks.

In the context of SVMs, the randomized FW algorithm has been already discussed in
Frandi et al. (2014). However, the results in the mentioned paper were experimental in
nature, and did not contain a proof of convergence, which is instead provided in this work.
Note that, although we have presented the randomized search for the specific case of problem
(1), the technique applies more generally to the case whereΣ is a polytope (or has a separable
structure with every block being a polytope, as in Lacoste-Julien et al. (2013)).We do not feel
this hypothesis to be restrictive, as basically every practical application of the FW algorithm
proposed in the literature falls indeed into this setting.

4.4 Convergence analysis

We show that the stochastic FW converges (in the sense of expected value) with the same
rate as the standard algorithm. First, we need the following technical result.

Lemma 1 LetS be picked at random from the set of all equiprobable κ-subsets of {1, . . . , p},
1 ≤ κ ≤ p, and let v be any vector in R

p. Then

123

Mach Learn (2016) 104:195–221 205

E

[(∑

i∈S
eieTi

)
v

]
= κ

p
v.

Proof Let AS = ∑
i∈S eieTi and (AS)i j an element of AS . For i
= j , (AS)i j = 0 and

E
[
(AS)i j

] = 0. For i = j , (AS)i j is a Bernoulli random variable with expectation κ
p . In

fact, (AS)i i = 1 iff i ∈ S; as there are (p−1
κ−1

)
κ-subsets of {1, . . . , p} containing i ,

P(i ∈ S) =
(
p − 1

κ − 1

)(
p

κ

)−1

= κ/p = P
(
(AS)i i = 1

) = E
[
(AS)i i

]
.

Therefore, for i ∈ {1, . . . , p},

E
[
(AS)i v

] = E

[p∑

j=1

(AS)i j v j

]
=

p∑

j=1

v j E
[
(AS)i j

] = κ

p
vi .

��
Note that selecting a randomsubsetS of size κ to solve (9) is equivalent to (i) building a ran-

dom matrix AS as in Lemma 1, (ii) computing the restricted gradient ∇̃ f = p
κ
AS∇ f (α(k))

and then (iii) solving the linear sub-problem (6) substituting∇ f (α(k)) by ∇̃ f . In other words,
the proposed randomization can be viewed as approximating ∇ f (α(k)) by ∇̃ f . Lemma 1
implies that E[∇̃ f] = ∇ f (α(k)), which is the key to prove our main result.

Proposition 2 Let α∗ be an optimal solution of problem (3). Then, for any k ≥ 1, the iterates
of Algorithm 1 with the randomized search rule satisfy

ES(k)

[
f
(
α(k)

)]
− f

(
α∗) ≤ 4C f

k + 2
,

where ES(k) denotes the expectation with respect to the k-th random sampling.

This result has a similar flavor to that in Lacoste-Julien et al. (2013), and the analysis is
similar to the one presented in Wang and Qian (2014). However, in contrast to the above
works, we do not assume any structure in the optimization problem or in the sampling. A
detailed proof can be found in the “Appendix”. As in the deterministic case, Proposition 2
implies a complexity bound of O(1/ε) iterations to reach an approximate solution α(k) such
that ES(k) [f (α(k))] − f (α∗) ≤ ε.

4.5 Choosing the sampling size

When using a randomized FW iteration it is important to choose the sampling size in a
sensible way. Indeed, some recent works showed how this choice entails a tradeoff between
accuracy (in the sense of premature stopping) and complexity, and henceforth CPU time
(Frandi et al. 2014). This kind of approximation is motivated by the following result, which
suggests that it is reasonable to pick |S| � p.

Theorem 1 [(Schölkopf and Smola 2001), Theorem 6.33] Let D ⊂ R s.t. |D| = p and let
D′ ⊂ D be a random subset of size κ . Then, the probability that the largest element in D′ is
greater than or equal to p̃ elements of D is at least 1 − (

p̃
p)κ .

The value of this result lies in the ability to obtain probabilistic bounds for the quality
of the sampling independently of the problem size p. For example, in the case of the Lasso

123

206 Mach Learn (2016) 104:195–221

problem, where D = {|∇ f (α(k))1|, . . . , |∇ f (α(k))p|} and D′ = {|∇ f (α(k))i | s.t. i ∈ S}, it
is easy to see that it suffices to take |S| ≈ 194 to guarantee that, with probability at least
0.98, |∇ f (α(k))

i (k)S
| lies between the 2% largest gradient components (in absolute value),

independently of p. This kind of sampling has been discussed for example in Frandi et al.
(2015).

The issue with this strategy is that, for problems with very sparse solutions (which is the
case for strong levels of regularization), even a large confidence interval does not guarantee
that the algorithm can sample a good vertex in most of the iterations. Intuitively, the sampling
strategy should allow the algorithm to detect the set of vertices active at the optimum, which
correspond, at various stages of the optimization process, to descent directions for the objec-
tive function. In sparse approximation problems, extracting a sampling set without relevant
features may imply adding “spurious” components to the solution, reducing the sparseness
of the model we want to find.

A more effective strategy in this context would be to ask for a certain probability that the
sampling will include at least one of the “optimal” features. Letting S∗ be the index set of
the active vertices at the optimum, and denoting s = |S∗| and κ = |S|, we have

P(S∗ ∩ S = ∅) =
κ−1∏

j=0

(
1 − s

p − j

)
≤

(
1 − s

p

)κ

, (11)

with the latter inequality being a reasonable approximation if κ � p. From (11), we can
guarantee that S∗ ∩ S
= ∅ with probability at least ρ by imposing:

(
1 − s

p

)κ

≤ (1 − ρ) ⇔ κ ≥ ln(1 − ρ)

ln
(
1 − s

p

) = ln(confidence)

ln(sparseness)
. (12)

On the practical side, this sampling strategy often implies taking a larger κ . Assuming that
the fraction of relevant features (s/p) is constant, we essentially get the bound for κ provided
by Theorem 1, which is independent of p. However, for the worst case s/p → 0, we get

ln(1 − ρ)

ln
(
1 − s

p

) ≈
(− ln(1 − ρ)

s

)
p, (13)

which suggests to use a sampling size proportional to p. For this reason, for the problems
considered in this paper, we chose to adopt a simple heuristic where κ is set to a small fraction
of p. Despite its simplicity, this strategy works well in practice, as shown by the experiments
in the next Section.

A more involved strategy, which exploits the incremental structure of the FW algorithm,
would be using a large κ at early iterations and smaller values of κ as the solution gets more
dense. The idea here is that if the optimal solution is very sparse the algorithm requires few
expensive iterations to converge, while in contrast, when the solution is dense, it will require
more, but faster, iterations (e.g. for a confidence 1 − ρ = 0.98 and s/p = 0.02 the already
mentioned κ = 194 suffices).

5 Numerical experiments

In this section, we assess the practical effectiveness of the randomized FW algorithm by
performing experiments on both synthetic datasets and real-world benchmark problems with

123

Mach Learn (2016) 104:195–221 207

Table 1 List of the benchmark datasets used in the experiments

Dataset m t p Type

Synthetic-10000 200 200 10, 000 Synthetic

Synthetic-50000 200 200 50, 000 Synthetic

Pyrim 74 −− 201, 376 Regression

Triazines 186 −− 635, 376 Regression

E2006-tfidf 16, 087 3, 308 150, 360 Regression

E2006-log1p 16, 087 3, 308 4, 272, 227 Regression

Dorothea 800 150 100, 000 Classification

URL-reputation 2, 172, 130 220, 000 3, 231, 961 Classification

KDD2010-algebra 8, 407, 752 510, 302 20, 216, 830 Classification

hundreds of thousands or even millions of features. The characteristics of the datasets are
summarized in Table 1, where we denote by m the number of training examples, by t the
number of test examples, and by p the number of features. The synthetic datasets were
generated with the Scikit-learn function make_regression (Pedregosa et al. 2011). Each
of them comes in two versions corresponding to a different number of relevant features in
the true linear model used to generate the data (32 and 100 features for the problem of size
p = 10000, and 158 and 500 features for that of size p = 50000). The real large-scale
regression problems E2006-tfidf and E2006-log1p, the datasets Pyrim and Triazines, and
the classification problem KDD2010-algebra are available from Chang and Lin (2011). The
datasetsDorothea andURL-reputation can be downloaded from theUCIMachine Learning
Repository (Lichman 2013).

In assessing the performance of our method, we used as a baseline the following algo-
rithms, which in our view, and according to the properties summarized in Table 2, can be
considered among the most competitive solvers for Lasso problems:

– Thewell-knownCD algorithm by Friedman et al., as implemented in the Glmnet package
(Friedman et al. 2010). This method is highly optimized for the Lasso and is widely
considered as one the most popular and efficient solvers in this context.

– The SCD algorithm as described in Shalev-Shwartz and Tewari (2011), which is signifi-
cant both for being a stochastic method and for having better theoretical guarantees than
the standard cyclic CD.

– The Accelerated Gradient Descent with projections for both the regularized and the
constrained Lasso, as this algorithm guarantees an optimal complexity bound.We choose
as a reference the implementation in the SLEP package by Liu et al. (2009).

Among other possible first-order methods, the classical SGD suffers from a worse conver-
gence rate, and its variant SMIDAS has a complexity bound which depends on p, thus we
did not include them in our experiments. Indeed, the authors of Shalev-Shwartz et al. (2010)
conclude that SCD is both faster and produces significantly sparser models compared to
SGD. Finally, although the recent GeoLasso algorithm of Zhou et al. (2015) is interesting
because of its close relationship with FW, its running time and memory requirements are
clearly higher compared to the above solvers.

Since an appropriate level of regularization needs to be automatically selected in prac-
tice, the algorithms are compared by computing the entire regularization path on a range of
values of the regularization parameters λ and δ (depending on whether the method solves

123

208 Mach Learn (2016) 104:195–221

Table 2 Methods proposed for scaling the Lasso and their complexities

Approach Form Number of
iterations

Complexity
per iteration

Sparse Its.

Accelerated Gradient + Proj. (Liu
and Ye 2009)

(1) O(1/
√

ε) O(mp + p)†1 No

Accelerated Gradient + Reg.
Proj. (Liu and Ye 2010)

(2) O(1/
√

ε) O(mp + p)†1 No

Cyclic Coordinate Descent (CD)
(Friedman et al. 2007, 2010)

(2) Unknown O(mp)†2 Yes

Stochastic Gradient Descent
(SGD) (Langford et al. 2009)

(2) O(1/ε2) O(p) No

Stochastic Mirror Descent
(Shalev-Shwartz and Tewari
2011)

(2) O(log(p)/ε2) O(p) No

GeoLasso (Zhou et al. 2015) (1) O(1/ε) O(mp + a2) Yes

Frank–Wolfe (FW) (Jaggi 2013) (1) O(1/ε) O(mp) Yes

Stochastic Coord. Descent (SCD)
(Richtárik and Takáĉ 2014)

(2) O(p/ε) O(m)†3 Yes

Stochastic Frank–Wolfe (1) O(1/ε) O(m|S|) Yes

Here, a denotes the number of active features at a given iteration, which in the worst case is a = rank(X) ≤
min(m, p). A method is said to have sparse iterations if a non trivial bound for the number of non-zero
entries of each iterate holds at any moment. †1O(p) is required for the projections. †2 An iteration of cyclic
coordinate descent corresponds to a complete cycle through the features. †3 An iteration of SCD corresponds
to the optimization on a single feature

the penalized or the constrained formulation). Specifically, we first estimate two intervals
[λmin, λmax] and [δmin, δmax], and then solve problems (2) and (1) on a 100-point parameter
grid in logarithmic scale. For the penalized Lasso, we use λmin = λmax/100, where λmax is
determined as in the Glmnet code. Then, to make the comparison fair (i.e. to ensure that all
the methods solve the same problems according to the equivalence in Sect. 2), we choose
for the constrained Lasso δmax = ‖αmin‖1 and δmin = δmax/100, where αmin is the solution
obtained by Glmnet with the smallest regularization parameter λmin and a high precision
(ε = 10−8). The idea is to give the solvers the same “sparsity budget” to find a a solution of
the regression problem.
Warm-start strategy

As usually done in these cases, and for all the methods, we compute the path using a
warm-start strategy where each solution is used as an initial guess for the optimization with
the next value of the parameter. Note that we always start from the most sparse solution.
This means that in the cases of CD, SCD and regularized SLEP we start from λmax towards
λmin, while for FW and constrained SLEP we go from δmin towards δmax. Furthermore, since
δ < ‖αR‖1, where αR is the unconstrained solution, we know that the solution will lie on
the boundary, therefore we adopt a heuristic strategy whereby the previous solution is scaled
so that its �1-norm is δ. Both algorithms are initialized with the null solution as the initial
guess. Regarding the stopping criterion for each problem in the path, we stop the current run
when ‖α(k+1) − α(k)‖∞ ≤ ε for all the algorithms. Other choices are possible (for example,
FW methods are usually stopped using a duality gap-based criterion (Jaggi 2013)), but this
is the condition used by default to stop CD in Glmnet. A value of ε = 10−3 is used in the
following experiments. All the considered algorithms have been coded in C++. The code and

123

Mach Learn (2016) 104:195–221 209

datasets used in this paper are available from public repositories on Github (https://github.
com/efrandi/FW-Lasso) and Dataverse (https://goo.gl/PTQ05R), respectively. The SLEP
package has a Matlab interface, but the key functions are all coded in C. Overall, we believe
our comparison can be considered very fair. We executed the experiments on a 3.40GHz Intel
i7 machine with 16GB of main memory running CentOS. For the randomized experiments,
results were averaged over 10 runs.

5.1 “Sanity Check” on the synthetic datasets

The aim of these experiments is not to measure the performance of the algorithms (which
will be assessed below on seven real-life datasets of large and very large size), but rather to
compare their ability to capture the evolution of the most relevant features of the models, and
discuss how this relates to their behaviour from an optimization point of view. To do this,
we monitor the values of the 10 most relevant features along the path, as computed by both
the CD and FW algorithms, and plot the results in Figs. 1 and 2. To determine the relevant
variables, we use as a reference the regularization path obtained by Glmnet with ε = 10−8

(which is assumed to be a reasonable approximation of the exact solution), and compute the 10
variables having, on average, the highest absolute value along the path. As this experiment is
intended mainly as a sanity check to verify that our solver reconstructs the solution correctly,
we do not include other algorithms in the comparison. In order to implement the random

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

80

l1−norm

C
oe

ffi
ci

en
t v

al
ue

s

0 500 1000 1500 2000 2500 3000
−80

−60

−40

−20

0

20

40

60

80

100

l1−norm

C
oe

ffi
ci

en
t v

al
ue

s

(a) (b)

Fig. 1 Growth of the ten most significant features on the synthetic problem of size 10000, with 32 (a) and
100 (b) relevant features. Results for CD are in red dashed lines, and in blue continuous lines for FW (Color
figure online)

0 500 1000 1500 2000 2500 3000
−100

−50

0

50

100

150

l1−norm

C
oe

ffi
ci

en
t v

al
ue

s

0 1000 2000 3000 4000 5000
−150

−100

−50

0

50

100

150

l1−norm

C
oe

ffi
ci

en
t v

al
ue

s

(a) (b)

Fig. 2 Growth of the 10 most significant features on the synthetic problems of size 50000, with 158 (a) and
500 (b) relevant features. Results for CD are in red dashed lines, and in blue continuous lines for FW (Color
figure online)

123

https://github.com/efrandi/FW-Lasso
https://github.com/efrandi/FW-Lasso
https://goo.gl/PTQ05R

210 Mach Learn (2016) 104:195–221

0 500 1000 1500 2000 2500 3000
3.3

3.4

3.5

3.6

3.7

3.8 x 10 5

l1−norm

M
S

E

 CD
 FW

0 500 1000 1500 2000 2500 3000

5.1

5.2

5.3

5.4

x 10 5

l1−norm

M
S

E

 CD
 FW

(a) (b)

Fig. 3 Test error (�1-norm vs. MSE) for problems Synthetic-10000 (100 relevant features) Synthetic-50000
(158 relevant features). Results for CD are in red, and in blue for FW (Color figure online)

sampling strategy in the FW algorithm, we first calculated the average number of active
features along the path, rounded up to the nearest integer, as an empirical estimate of the
sparsity level. Then, we chose |S| based on the probability ρ of capturing at least one of the
relevant features at each sampling, according to (13). A confidence level of 99% was used
for this experiment, leading to sampling sizes of 372 and 324 points for the two problems of
size 10000, and of 1616 and 1572 points for those of size 50000.

Figure 3 depicts, for two of the considered problems, the prediction error on the test
set along the path found by both algorithms. It can be seen that both methods are able to
find the same value of the best prediction error (i.e. to correctly identify the best model).
The FW algorithm also seems to obtain slightly better results towards the end of the path,
consistently with the fact that the coefficients of the most relevant variables tend to be more
stable, compared with CD, when the regularization is weaker.

5.2 Results on large-scale datasets

In this section, we report the results on the problems Pyrim, Triazines, E2006-tfidf, E2006-
log1p, Dorothea, URL-reputation and KDD2010-algebra. These datasets represent actual
large-scale problems of practical interest. The Pyrim and Triazines datasets stem from two
quantitative structure-activity relationship (QSAR) problems, where the biological responses
of a set of molecules are measured and statistically related to the molecular structure on their
surface. We expanded the original feature set by means of product features, i.e. modeling the
response variable y as a linear combination of polynomial basis functions, as suggested in
Huang et al. (2010). For this experiment, we used product features of order 5 and 4 respec-
tively, which leads to large-scale regression problems with p = 201, 376 and p = 635, 376.
Problems E2006-tfidf and E2006-log1p stem instead from the real-life NLP task of predict-
ing the risk of investment (i.e. the stock return volatility) in a company based on available
financial reports (Kogan et al. 2009). Finally, the three classification problems correspond
to tasks related to molecular bioactivity prediction (Dorothea), malicious URL detection
(URL-reputation), and educational data mining (KDD1010-algebra). For benchmarking
purposes, these tasks were cast as Lasso problems by treating the binary responses as real
continuous variables.

To implement the random sampling for the FW algorithm, we use the strategy described
in Sect. 4.5, where we set |S| to a fixed, small fraction of the total number of features. Our
choices are summarized in Table 3.

123

Mach Learn (2016) 104:195–221 211

Table 3 Sizes of the sampling
set |S| for the large-scale datasets % of p 1% 2% 3%

Pyrim 2,014 4,028 6,402

Triazines 6,354 12,708 19,062

E2006-tfidf 1,504 3,008 4,511

E2006-log1p 42,723 85,445 128,167

Dorothea 1,000 2,000 3,000

URL-reputation 32,320 64,640 96,959

KDD2010-algebra 202,169 404,337 606,505

Table 4 Results for the baseline solvers on the large-scale regression problemsPyrim,Triazines,E2006-tfidf
and E2006-log1p

CD SCD SLEP Reg. SLEP Const.

Pyrim

Time (s) 6.22e+00 1.59e+01 5.43e+00 6.86e+00

Iterations 2.54e+02 1.44e+02 1.00e+02 1.12e+02

Dot products 2.08e+07 2.90e+07 8.56e+07 1.29e+08

Active features 68.4 116.6 3, 349 13, 030

Triazines

Time (s) 2.75e+01 8.42e+01 4.27e+01 5.93e+01

Iterations 2.62e+02 1.59e+02 1.01e+02 1.11e+02

Dot products 6.80e+07 1.01e+08 2.87e+08 4.67e+08

Active features 150.0 330.8 29,104 130,303

E2006-tfidf

Time (s) 9.10e+00 2.19e+01 1.24e+01 2.27e+01

Iterations 3.48e+02 2.01e+02 1.06e+02 2.50e+02

Dot products 2.04e+07 3.03e+07 5.97e+07 1.37e+08

Active features 149.5 275.3 444.8 724.3

E2006-log1p

Time (s) 1.60e+02 4.92e+02 1.00e+02 1.42e+02

Iterations 3.55e+02 1.99e+02 1.11e+02 1.18e+02

Dot products 5.73e+08 8.50e+08 1.78e+09 2.85e+09

Active features 281.3 1, 158.2 12,806 54,704

As a measure of the performance of the considered algorithms, we report the CPU time
in seconds, the total number of iterations and the number of requested dot products (which
account for most of the required running time for all the algorithms)1 along the entire regular-
ization path. Note that, in assessing the number of iterations, we consider one complete cycle
of CD to be roughly equivalent to a full deterministic iteration of FW (since in both cases
the complexity is determined by a full pass through all the coordinates) and to p random
coordinate explorations in SCD. Finally, in order to evaluate the sparsity of the solutions,
we report the average number of active features along the path. Results are displayed in

1 Note that the SLEP code uses highly optimized libraries for matrix multiplication, therefore matrix-vector
computations can be faster than naive C++ implementations.

123

212 Mach Learn (2016) 104:195–221

Table 5 Results for the baseline solvers on the large-scale classification problemsDorothea,URL-reputation
and KDD2010-algebra

CD SCD SLEP Reg. SLEP Const.

Dorothea

Time (s) 3.34e+00 1.17e+01 4.10e+00 6.19 e+00

Iterations 4.45e+02 2.99e+02 2.30e+02 3.01e+02

Dot products 1.22e+07 2.99e+07 6.92e+07 1.02e+08

Active features 134.8 153.3 211.1 731.5

URL-reputation

Time (s) 2.55e+02 7.86e+02 1.66e+03 5.65e+03

Iterations 4.44e+02 3.01e+02 1.77e+02 5.92e+02

Dot products 4.53e+08 9.73e+08 1.98e+09 4.89e+009

Active features 53.4 77.9 126.8 52.44

KDD2010

Time (s) 6.15e+02 2.33e+03 8.86e+02 4.12e+03

Iterations 2.27e+02 1.59e+02 1.04e+02 2.22e+02

Dot products 2.08e+09 3.21e+09 8.92e+09 1.88e+10

Active features 906.0 1,444.1 1,825.4 1,978.5

Table 6 Performance metrics for
stochastic FW on the large-scale
regression problems Pyrim,
Triazines, E2006-tfidf and
E2006-log1p

FW 1% FW 2% FW 3%

Pyrim

Time (s) 2.28e−01 4.47e−01 6.60e−01

Speed-up 27.3× 13.9× 9.4×
Iterations 2.77e+02 2.80e+02 2.77e+02

DotProd 7.61e+05 1.53e+06 2.28e+06

Active features 27.6 28.1 27.9

Triazines

Time (s) 2.61e+00 5.31e+00 8.19e+00

Speed-up 10.5× 5.2× 3.4×
Iterations 7.15e+02 7.29e+02 7.43e+02

DotProd 5.18e+06 1.06e+07 1.61e+07

Active features 120.6 117.5 118.7

E2006-tfidf

Time (s) 8.83e−01 1.76e+00 2.74e+00

Speed-up 10.3× 5.2× 3.3×
Iterations 1.27e+03 1.35e+03 1.41e+03

DotProd 1.97e+06 4.35e+06 6.84e+06

Active features 123.7 125.8 127.1

E2006-log1p

Time (s) 1.93e+01 4.14e+01 6.59e+01

Speed-up 8.3× 3.9× 2.4×
Iterations 1.75e+03 1.91e+03 1.99e+03

DotProd 7.90e+07 1.71e+08 2.68e+08

Active features 196.9 199.8 203.7

123

Mach Learn (2016) 104:195–221 213

Table 7 Performance metrics for
stochastic FW on the large-scale
classification problems
Dorothea, URL-reputation and
KDD2010-algebra

FW 1% FW 2% FW 3%

Dorothea

Time (s) 1.31e−01 2.48e−01 3.78e−01

Speed-up 25.5× 13.5× 8.84×
Iterations 8.04e+02 8.09e+02 8.46e+02

DotProd 9.17e+05 1.83e+06 2.84e+06

Active features 50.9 52.5 54.8

URL-reputation

Time (s) 1.50e+01 2.27e+01 3.13e+01

Speed-up 17.0× 11.2× 8.15×
Iterations 5.33e+02 5.50e+02 5.66e+02

DotProd 2.04e+07 4.20e+07 6.45e+07

Active features 25.2 26.5 28.1

KDD2010

Time (s) 1.68e+02 3.42e+02 5.21e+02

Speed-up 3.66× 1.80× 1.18×
Iterations 2.70e+03 2.78e+03 2.83e+03

DotProd 4.53e+08 1.16e+09 1.77e+09

Active features 423.6 428.0 433.6

Tables 4, 5 (baseline methods) and Tables 6, 7 (stochastic FW). In the latter, the speed-ups
with respect to the CD algorithm are also reported. It can be seen how for all the choices of
the sampling size the FW algorithm allows for a substantial improvement in computational
performance, as confirmed by both the CPU times and the machine-independent number of
requested dot products (which are roughly proportional to the running times). The plain SCD
algorithm performs somewhat worse than CD, something we attribute mainly to the fact that
the Glmnet implementation of CD is a highly optimized one, using a number of ad-hoc tricks
tailored to the Lasso problem that we decided to preserve in our comparison. If we used a
plain implementation of CD, we would expect to obtain results very close to those exhibited
by SCD.

Furthermore, FW is always able to find the sparsest solution among the considered meth-
ods. The extremely large gap in average sparsity between FW and CD on one side, and the
SLEP solvers on the other, is due to the fact that the latter compute in general dense iterates.
Although the Accelerated Gradient Descent solver is fast and competitive from an optimiza-
tion point of view, providing always the lower number of iterations as predicted by the theory,
it is not able to keep the solutions sparse along the path. This behavior clearly highlights the
advantage of using incremental approximations in the context of sparse recovery and feature
selection. Importantly, note that the small number of features found by FW is not a result
of the randomization technique: it is robust with respect to the sampling size, and additional
experiments performed using a deterministic FW solver revealed that the average number
of nonzero entries in the solution does not change even if the randomization is completely
removed.

Tobetter assess the effect of using an incremental algorithm inobtaining a sparsemodel,we
plot in Fig. 4 the evolution of the number of active features along the path on problemsE2006-
tfidf and E2006-log1p. It can be clearly seen how CD and FW (with the latter performing

123

214 Mach Learn (2016) 104:195–221

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1000

2000

3000

4000

5000

6000

7000

l1−norm

A
ct

iv
e

fe
at

ur
es

CD
SCD
SLEP Reg.
SLEP Const.
FW 3%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

l1−norm

lo
g e

(A
ct

iv
e

fe
at

ur
es

)

CD
SCD
SLEP Reg.
SLEP Const.
FW 3%

(a) (b)

Fig. 4 Sparsity patterns (�1-norm vs. active coordinates) for problems E2006-tfidf (a) and E2006-log1p (b).
The latter is plotted in a natural logarithmic scale due to the high number of features found by the SLEP solvers
(Color figure online)

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

l
1
−norm

M
S

E

 CD
 SCD
 SLEP Reg.
 SLEP Const.

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

l
1
−norm

M
S

E
 Ref. sol.
 FW 1%
 FW 2%
 FW 3%

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.005

0.01

0.015

0.02

0.025

l
1
−norm

M
S

E

 CD
 SCD
 SLEP Reg.
 SLEP Const.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.005

0.01

0.015

0.02

0.025

l
1
−norm

M
S

E

 Ref. sol.
 FW 1%
 FW 2%
 FW 3%

(a) (b)

(c) (d)

Fig. 5 Training error curves (�1-norm vs. MSE) for problems Pyrim (top) and Triazines (bottom) for CD,
SCD and SLEP (left) and stochastic FW (right) (Color figure online)

the best overall) are able to recover sparser solutions, and can do so without losing accuracy
in the model, as we discuss next.

In order to evaluate the accuracy of the obtained models, we plot in Figs. 5–7 the mean
square error (MSE) against the �1-norm of the solution along the regularization path, com-
puted both on the original training set (curves 5a–d, 6a,c and 7a,c) and on the test set (curves
6b,d and 7b,d). Figure 5 reports only the training error, as the corresponding problems did not
come with a test set. Note that the value of the objective function in problem (1) coincides
with the mean squared error (MSE) on the training set, therefore the training error plots
effectively depict the convergence of the FW algorithms. For the sake of completeness, we
also report in Fig. 8 the training and test error rates for one of the classification problems,
Dorothea. First of all, we can see how the decrease in the objective value is basically iden-
tical in all cases, which indicates that with our sampling choices the use of a randomized
algorithm does not affect the optimization accuracy. Second, the test error curves show that
the predictive capability of all the FWmodels is competitive with that of the models found by

123

Mach Learn (2016) 104:195–221 215

0 0.5 1 1.5 2 2.5 3 3.5 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l1 − norm

M
S

E

 CD
 SCD
 SLEP Reg.
 SLEP Const.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

l1 − norm

M
S

E

 CD
 SCD
 SLEP Reg.
 SLEP Const.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l1 − norm

M
S

E

 Ref. sol.
 FW 1%
 FW 2%
 FW 3%

0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

l1 − norm

M
S

E

 Ref. sol.
 FW 1%
 FW 2%
 FW 3%

(a) (b)

(c) (d)

Fig. 6 Error curves (�1-norm vs. MSE) for problem E2006-tfidf : on top, training error (a) and test error (b)
for CD, SCD and SLEP; on bottom, training error (c) and test error (d) for stochastic FW (Color figure online)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l1 − norm

M
S

E

 CD
 SCD
 SLEP Reg.
 SLEP Const.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

l1 − norm

M
S

E

 CD
 SCD
 SLEP Reg.
 SLEP Const.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l1 − norm

M
S

E

 Ref. sol.
 FW 1%
 FW 2%
 FW 3%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

l1 − norm

M
S

E

 Ref. sol.
 FW 1%
 FW 2%
 FW 3%

(a) (b)

(c) (d)

Fig. 7 Error curves (�1-norm vs. MSE) for problem E2006-log1p: on top, training error (a) and test error
(b) for CD, SCD and SLEP; on bottom, training error (c) and test error (d) for stochastic FW (Color figure
online)

the CD algorithm (particularly in the case of the larger problem E2006-log1p). Looking at
Figs. 6 and 7, it is also important to note that in all cases the best model, corresponding to the
minimum of the test error curves, is found for a relatively low value of the constraint parame-
ter, indicating that sparse solutions are preferable and that solutions involving more variables
tend to cause overfitting, which is yet another incentive to use algorithms that can naturally
induce sparsity. Again, it can be seen how the minima of all the curves coincide, indicating

123

216 Mach Learn (2016) 104:195–221

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

l
1
−norm

E
rr

or
 r

at
e

 CD
 SCD
 SLEP Reg.
 SLEP Const.

0 0.5 1 1.5 2 2.5 3
0.05

0.06

0.07

0.08

0.09

0.1

l
1
−norm

E
rr

or
 r

at
e

 CD
 SCD
 SLEP Reg.
 SLEP Const.

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

l
1
−norm

E
rr

or
 r

at
e

 Ref. sol.
 FW 1%
 FW 2%
 FW 3%

0 0.5 1 1.5 2 2.5 3
0.05

0.06

0.07

0.08

0.09

0.1

l
1
−norm

E
rr

or
 r

at
e

 Ref. sol.
 FW 1%
 FW 2%
 FW 3%

(a) (b)

(c) (d)

Fig. 8 Error curves (�1-norm vs. misclassification rate) for problem Dorothea: on top, training error (a) and
test error (b) for CD, SCD and SLEP; on bottom, training error (c) and test error (d) for stochastic FW (Color
figure online)

that all the algorithms are able to correctly identify the best compromise between sparsity
and training error. The fact that we are able to attain the same models obtained by a highly
efficient algorithm (tailored for the Lasso) such as Glmnet using a sampling size as small as
3% of the total number of features is particularly noteworthy. Combined with the consistent
advantages in CPU time over other competing solvers and its attractive sparsity properties,
it shows how the randomized FW represents a solid, high-performance option for solving
high-dimensional Lasso problems. Finally, we note that even on the classification problem
Dorothea FW is able to obtain more accurate models than CD, particularly towards the end
of the path. We remark, though, that this experiment has mainly an illustrative purpose, and
that solving classification tasks is not among the aims of the algorithm presented here.

6 Conclusions and perspectives

In this paper, we have studied the practical advantages of using a randomized Frank–Wolfe
algorithm to solve the constrained formulation of the Lasso regression problem on high-
dimensional datasets involving a number of variables ranging from the hundred thousands to
a few millions. We have presented a theoretical proof of convergence based on the expected
value of the objective function. Our experiments show that we are able to obtain results
that outperform those of other state-of-the-art solvers such as the Glmnet algorithm, a stan-
dard among practitioners, without sacrificing the accuracy of the model in a significant
way. Importantly, our solutions are consistently more sparse than those found using several
popular first-order methods, demonstrating the advantage of using an incremental, greedy
optimization scheme in this context.

In a future work, we intend to address the issue of whether it is possible to find suitable
sampling conditions which can lead to a stronger stochastic convergence result, i.e. to certi-
fiable probability bounds for approximate solutions. A more detailed convergence analysis

123

Mach Learn (2016) 104:195–221 217

taking into account higher order moments beyond the expected value would also be in our
view a valuable contribution. Finally, we remark that the proposed approach can be readily
extended to other similar problems such as ElasticNet or more general �2-regularized prob-
lems such as logistic regression, or to related applications such as the sparsification of SVM
models. Another possibility to tackle various Lasso formulations is to exploit an equivalent
formulation in terms of SVMs, an area where FW methods have already shown promising
results. Together, all these elements strengthen the conclusions of our previous researchwork,
showing that FW algorithms can provide a complete and flexible framework to efficiently
solve a wide variety of large-scale machine learning and data mining problems.

Acknowledgments The authors wish to thank three anonymous reviewers for their valuable comments. The
research leading to these results has received funding from the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) / ERC AdG A-DATADRIVE-B (290923).
This paper reflects only the authors’ views and the Union is not liable for any use that may be made of the
contained information. Research Council KUL: GOA/10/09 MaNet, CoE PFV/10/002 (OPTEC), BIL12/11T;
Flemish Government: FWO: Projects: G.0377.12 (Structured systems), G.088114N (Tensor based data sim-
ilarity); Ph.D./Postdoc grants; iMinds Medical Information Technologies SBO 2014; IWT: POM II SBO
100031; Belgian Federal Science Policy Office: IUAP P7/19 (DYSCO, Dynamical systems, control and opti-
mization, 2012–2017). The second author received funding from CONICYT Chile through FONDECYT
Project 1130122 and DGIP-UTFSM 24.14.84. The first author thanks the colleagues from the Department of
Computer Science and Engineering, University of Bologna, for their hospitality during the period in which
this research was conceived.

Appendix: Proof of Proposition 2

Let f be a convex differentiable real function on R
p . Given S ⊆ {1, . . . , p}, we define the

restricted gradient of f with respect to S as its scaled projection i.e.

∇̃S f (·) = p

κ

(∑

i∈S
eieTi

)
∇ f (·), (14)

where κ = |S|. We define the curvature constant of f over a compact set Σ as

C f = sup
x∈Σ,y∈Σx

1

λ2

(
f (y) − f (x) − (y − x)T∇ f (x)

)
, (15)

where Σx = {y ∈ Σ : y = x + λ(s − x), s ∈ Σ,λ ∈ (0, 1]}.
For any α ∈ Σ we define its primal gap and duality gap as

h(α) = f (α) − f (α∗) (16)

g(α) = max
u∈Σ

(α − u)T∇ f (α) , (17)

respectively. Convexity of the function f implies that f (α) + (u − α)T∇ f (α) is nowhere
greater than f (α). Therefore,

g(α) ≥ h(α) ∀α ∈ Σ . (18)

For any iterate α(k) generated by our algorithm, we define its expected primal gap and duality
gap as

hk+1 = ES(k)

[
h(α(k+1))

]
(19)

gk+1 = ES(k)

[
g(α(k+1))

]
, (20)

123

218 Mach Learn (2016) 104:195–221

respectively. Here we denote by S(k) the random subset of {1, . . . , p} used to approximate
the gradient at each iteration. Clearly,

gk ≥ hk ∀k. (21)

Lemma 2 Let α(k+1)
λ = α(k) + λ(u(k) − α(k)) be a step in the direction of

u(k) ∈ argmin
u ∈ Σ

(
u − α(k)

)T ∇̃S(k) f
(
α(k)

)
, (22)

with step-size λ ∈ (0, 1]. Then
hk+1(λ) = ES(k)

[
h(α

(k+1)
λ)

] ≤ hk − λgk + λ2C f . (23)

Proof Since α(k), u(k) ∈ Σ and α
(k+1)
λ ∈ Σα(k) , it follows from (15) that

f
(
α

(k+1)
λ

)
≤ f

(
α(k)

)
+ λ

(
u(k) − α(k)

)T ∇ f
(
α(k)

)
+ λ2C f .

After some algebraic manipulations, we have

ES(k)

[
f
(
α(k+1)

)]
≤ f

(
α(k)

)
+ λES(k)

[(
u(k) − α(k)

)T ∇̃S(k) f
(
α(k)

)]
+ λ2C f . (24)

Since ES(k) [∇̃(k)
S f (α(k))] = ∇ f (α(k)), by the definition of u(k) and by the order preserving

and linearity properties of expectation, we obtain

ES(k)

[(
u(k) − α(k)

)T ∇̃S(k) f
(
α(k)

)]
= ES(k)

[
min
u ∈ Σ

(
u − α(k)

)T ∇̃S(k) f
(
α(k)

)]

≤ min
u ∈ Σ

ES(k)

[(
u − α(k)

)T ∇̃S(k) f
(
α(k)

)]

= min
u ∈ Σ

(
u − α(k)

)T ∇ f
(
α(k)

)

= −g
(
α(k)

)
. (25)

Substitution into (24) and expectation with respect to S(k−1) finally yield

ES(k)

[
f
(
α

(k+1)
λ

)]
≤ES(k−1)

[
f
(
α(k)

)]
− λES(k−1)

[
g

(
α(k)

)]
+ λ2C f .

Subtracting f (α∗) from both sides, (19) and (20) yield the result. ��
Lemma 3 The initialization α(0) = u∗ with u∗ ∈ argminu∈V(Σ) f (u) guarantees hk ≤
C f k ≥ 0.

Proof First, note that hk+1 ≤ hk∀k ≥ 0. Indeed,

min
λ∈[0,1] h

(
α

(k+1)
λ

)
= min

λ∈[0,1] h
(
α(k) + λ

(
u(k) − α(k)

))
≤ h

(
α(k)

)
.

Thus

hk+1 = ES(k)

[
h(α(k+1))

] = ES(k)

[
min

λ∈[0,1] h
(
α

(k+1)
λ

)]

≤ ES(k)

[
h(α(k))

] = hk .

123

Mach Learn (2016) 104:195–221 219

Now, from Lemma 2, any step in the direction of (22) with step size λ ∈ (0, 1] satisfies
hk+1(λ) = ES(k)

[
h(α

(k+1)
λ)

] ≤ hk − λgk + λ2C f ≤ hk − λhk + λ2C f .

Suppose hk > C f . In this case, as −λhk + λ2C f < 0, we can choose λ = 1 to obtain

hk+1(λ)|λ=1 < hk .

But

hk+1(λ)|λ=1 = ES(k)

[
h(u(k))

] ≥ ES(k)

[
h(u∗)

] = ES(k)

[
h(α(0))

] = h0 .

Thus, h0 < hk . This is a contradiction, since hk+1 ≤ hk∀k ≥ 0. ��
Lemma 4 At each iteration k of Algorithm 2,

hk+1 ≤ hk − h2k
4C f

. (26)

Proof At iteration k, Algorithm 2 updates α(k) by a line search in the direction of (22). Hence

hk+1 = ES(k)

[
h(α(k+1))

] = ES(k)

[
min

λ∈(0,1] h
(
α

(k+1)
λ

)]
. (27)

By the order preserving and linearity properties of expectation

ES(k)

[
min

λ∈(0,1] h(α
(k+1)
λ)

]
≤ min

λ∈(0,1]ES(k)

[
h

(
α

(k+1)
λ

)]
. (28)

From lemma 2, we have that any step in the direction of (22) with step size λ satisfies

hk+1(λ) = ES(k)

[
h(α

(k+1)
λ)

] ≤ hk − λgk + λ2C f ≤ hk − λhk + λ2C f . (29)

Combining (29) and (28) produces

hk+1 = min
λ∈(0,1] hk+1(λ) ≤ min

λ∈(0,1]
(
hk − λhk + λ2C f

)
. (30)

From lemma 3, hk < 2C f . Thus, the minimum at the right hand side is obtained for λ̄ =
hk/2C f (take derivative, equal to 0, solve and check that λ̄ < 1). Substituting this value of
λ yields

hk+1 ≤ hk − h2k
2C f

+ h2k
4C f

= hk − h2k
4C f

. (31)

��
Proof of Proposition 2 With the above results in hand, we can now prove the convergence
result in the main paper i.e.

hk = ES(k)

[
f
(
α(k+1)

)]
− f (α∗) ≤ 4C f

k + 2
.

Proof We prove the claim by induction on k. The base case k = 1 is trivial to verify from
lemma 3 (as 4/3 > 1). Now, from Lemma 4 and the inductive hypothesis hk ≤ 4C f

k+2 , we
obtain

hk+1 ≤ hk − h2k
4C f

≤ hk

1 + hk
4C f

= 1
1
hk

+ 1
4C f

≤ 1
k+2
4C f

+ 1
4C f

= 4C f

(k + 1) + 2
.

which completes the inductive step and yields the claimed bound. ��

123

220 Mach Learn (2016) 104:195–221

References

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. https://www.csie.ntu.edu.
tw/~cjlin/libsvm.

Clarkson, K. (2010). Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm. ACM Transac-
tions on Algorithms, 6(4), 63:1–63:30.

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics,
32(2), 407–499.

Frandi, E., Ñanculef, R., & Suykens, J. A. K. (2014). Complexity issues and randomization strategies in Frank–
Wolfe algorithms for machine learning. In 7th NIPS workshop on optimization for machine learning.

Frandi, E., Ñanculef, R., & Suykens, J. A. K. (2015). A PARTAN-accelerated Frank–Wolfe algorithm for large
scale SVM classification. In Proceedings of the international joint conference on neural networks 2015.

Frank, M., &Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics Quarterly,
1, 95–110.

Friedman, J. (2012). Fast sparse regression and classification. International Journal of Forecasting, 28, 722–
738.

Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals
of Applied Statistics, 1(2), 302–332.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1), 1–22.

Garber, D., & Hazan, E. (2015). Faster rates for the Frank–Wolfe method over strongly-convex sets. In
Proceedings of the 32nd ICML.

Harchaoui, Z., Juditski, A., & Nemirovski, A. (2014). Conditional gradient algorithms for norm-regularized
smooth convex optimization.Mathematical Programming Series A, 13(1), 1–38.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. New York: Springer
New York Inc.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1), 55–67.

Huang, L., Jia, J., Yu, B., Chun, B. G., Maniatis, P., & Naik, M. (2010). Predicting execution time of computer
programs using sparse polynomial regression. In Advances in neural information processing systems (pp.
883–891).

Jaggi, M. (2013). Revisiting Frank–Wolfe: Projection-free sparse convex optimization. In Proceedings of the
30th international conference on machine learning.

Jaggi, M. (2014). An equivalence between the Lasso and support vector machines. In J. A. K. Suykens, M.
Signoretto, & A. Argyriou (Eds.), Regularization, optimization, kernels, and support vector machines,
chap 1 (pp. 1–26). Boca Raton: Chapman & Hall/CRC.

Kim, S. J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An interior-point method for large-scale
l 1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1(4), 606–617.

Kogan, S., Levin, D., Routledge, B. R., Sagi, J. S., & Smith, N. A. (2009). Predicting risk from financial reports
with regression. In Proceedings of the NAACL ’09 (pp 272–280).

Lacoste-Julien, S., & Jaggi, M. (2014). An affine invariant linear convergence analysis for Frank–Wolfe
algorithms. arXiv:1312.7864v2.

Lacoste-Julien, S., Jaggi,M., Schmidt,M., & Pletscher, P. (2013). Block-coordinate Frank–Wolfe optimization
for structural SVMs. In Proceedings of the 30th international conference on machine learning.

Lan, G. (2014). The complexity of large-scale convex programming under a linear optimization oracle.
arXiv:1309.5550v2.

Langford, J., Li, L., & Zhang, T. (2009). Sparse online learning via truncated gradient. In Advances in neural
information processing systems (pp. 905–912).

Lee, M., Shen, H., Huang, J. Z., & Marron, J. S. (2010). Biclustering via sparse singular value decomposition.
Biometrics, 66(4), 1087–1095.

Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of
Information and Computer Science. http://archive.ics.uci.edu/ml.

Liu, J., & Ye, J. (2009). Efficient euclidean projections in linear time. In Proceedings of the 26th international
conference on machine learning, (pp. 657–664). New York: ACM.

Liu, J., & Ye, J. (2010). Efficient �1/�q norm regularization. arXiv:1009.4766.
Liu, J., Ji, S., &Ye, J. (2009). SLEP: Sparse learning with efficient projections. http://www.yelab.net/software/

SLEP/. Arizona State University.
Ñanculef, R., Frandi, E., Sartori, C., & Allende, H. (2014). A novel Frank–Wolfe algorithm: Analysis and

applications to large-scale SVM training. Information Sciences, 285, 66–99.

123

https://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.csie.ntu.edu.tw/~cjlin/libsvm
http://arxiv.org/abs/1312.7864v2
http://arxiv.org/abs/1309.5550v2
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1009.4766
http://www.yelab.net/software/SLEP/
http://www.yelab.net/software/SLEP/

Mach Learn (2016) 104:195–221 221

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical Programming
Series B, 140(1), 125–161.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Richtárik, P., & Takáĉ, M. (2014). Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function.Mathematical Programming Series A, 144(1), 1–38.

Schölkopf, B., & Smola, A. (2001). Learning with kernels: Support vector machines, regularization, opti-
mization, and beyond. Cambridge: MIT Press.

Shalev-Shwartz, S., & Tewari, A. (2011). Stochastic methods for �1-regularized loss minimization. Journal
of Machine Learning Research, 12, 1865–1892.

Shalev-Shwartz, S., Srebro, N., & Zhang, T. (2010). Trading accuracy for sparsity in optimization problems
with sparsity constraints. SIAM Journal on Optimization, 20(6), 2807–2832.

Signoretto, M., Frandi, E., Karevan, Z., & Suykens, J. A. K. (2014). High level high performance computing
for multitask learning of time-varying models. In IEEE CIBD 2014.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B, 58(1), 267–288.

Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal
Statistical Society Series B, 73(3), 273–282.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused
lasso. Journal of the Royal Statistical Society Series B, 67(1), 91–108.

Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on
Information theory, 50(10), 2231–2242.

Turlach, B.A. (2005). On algorithms for solving least squares problems under an l1 penalty or an l1 constraint.
In Proceedings of the American Statistical Association, Statistical Computing Section (pp. 2572–2577).

Wang, Y., & Qian, X. (2014). Stochastic coordinate descent Frank–Wolfe algorithm for large-scale biological
network alignment. In GlobalSIP14—Workshop on genomic signal processing and statistics.

Weston, J., Elisseeff, A., Schölkopf, B., & Tipping, M. (2003). Use of the zero norm with linear models and
kernel methods. Journal of Machine Learning Research, 3, 1439–1461.

Zhou, Q., Song, S., Huang, G., & Wu, C. (2015). Efficient Lasso training from a geometrical perspective.
Neurocomputing, 168, 234–239.

Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Association,
101(476), 1418–1429.

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society Series B, 67, 301–320.

Zou, H., & Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number of parameters. Annals
of Statistics, 37(4), 1733.

123

	Fast and scalable Lasso via stochastic Frank--Wolfe methods with a convergence guarantee
	Abstract
	1 Introduction
	2 The Lasso problem
	2.1 Formulation
	2.2 Relevance and applications
	2.3 Related work

	3 Frank--Wolfe optimization
	3.1 The standard Frank--Wolfe algorithm
	3.2 Theoretical properties

	4 Randomized Frank--Wolfe for Lasso problems
	4.1 Randomized Frank--Wolfe iterations
	4.2 Complexity and implementation details
	4.3 Relation to SVM algorithms and sparsity certificates
	4.4 Convergence analysis
	4.5 Choosing the sampling size

	5 Numerical experiments
	5.1 ``Sanity Check'' on the synthetic datasets
	5.2 Results on large-scale datasets

	6 Conclusions and perspectives
	Acknowledgments
	Appendix: Proof of Proposition 2
	References

