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Outlier Detection – Use Cases
Outliers – Car crash hotspots (using KDEOS): [SZK14a]

Using Open Data (7 years, 1.2 million accidents) from the UK.
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Outlier Detection: kNN-Outlier

kNN outlier [RRS00]: score(o) := k-dist(o) (here: k = 3)

Many outlier detections based on kNN and LOF [Bre+00].
Examples: [AP02; Jin+06; Kri+09; SZK14b]
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Outlier Detection: Local Outlier Factor [Bre+00]

LOF(o) :=
1

|kNN(o)|
∑

p∈kNN(o)︸ ︷︷ ︸
average

lrd(p)
lrd(o)︸ ︷︷ ︸

relative density

where lrd(o) is the local reachability density:

lrd(o) := 1
/

︸︷︷︸
inverse

1
|kNN(o)|

∑
p∈kNN(o)︸ ︷︷ ︸

average

reach-dist(o ← p)

︸ ︷︷ ︸
reachability distance

and the (asymmetric) reachability of o from p is:

reach-dist(o ← p) :=max{dist(o ,p)︸ ︷︷ ︸
true distance

, k -dist(p)︸ ︷︷ ︸
core size of neighbor

}
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Outlier Detection: Local Outlier Factor [Bre+00]

kNN has difficulties with different densities

kNN k = 5
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Outlier Detection: Local Outlier Factor [Bre+00]

LOF is designed to cope with different densities

LOF k = 5

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

True Outlier

No Outlier

E. Schubert, A. Zimek, H.-P. Kriegel Outlier Detection with AkNN Ensembles 2015-04-22 4 / 12



Motivation 5 / 12

Outlier Detection
Many outlier detection methods are based on the k nearest neighbors.

Unfortunately, computing the kNN for large data is expensive:
Pairwise distance computation is O(n2) – prohibitive for big data.

I R*-Tree [Bec+90] good up to ≈ 30 dimensions (best: ≤ 10),
but not easy to distribute to a cluster.

I PINN [dCH10; dCH12]: random projections + kd-tree.
I LSH [IM98] may find less than k neighbors for outliers.

Wanted: an approximative approach to find the k nearest neighbors:
I High probability of finding the correct neighbors
I Errors should not hurt much
I Distributable to a cluster
I Supports high-dimensional data
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Ingredients: Space-Filling Curves
Space-filling curves project multiple dimensions to one.
(Hilbert curve [Hil91], Peano curve [Pea90], and Z-curve [Mor66])

Neighbors remain neighbors on the curve with high probability.
Each curve has “cuts” where neighborhoods are not well preserved.
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Ingredients: Space-Filling Curves
Space-filling curves project multiple dimensions to one.
(Hilbert curve [Hil91], Peano curve [Pea90], and Z-curve [Mor66])

Neighbors remain neighbors on the curve with high probability.

Distributed sorting large data is well understood.
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Ingredients: Space-Filling Curves
Space-filling curves project multiple dimensions to one.
(Hilbert curve [Hil91], Peano curve [Pea90], and Z-curve [Mor66])

Neighbors remain neighbors on the curve with high probability.

However, they do not work well with too many dimensions either,
because they split one dimension at a time.

We need more ingredients to improve the results.
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Ingredients: Random projections (c.f. [dCH10])
Random projections can reduce the dimensionality, and preserve
distances well (e.g. database-friendly [Ach01], p-stable [Dat+04]).

In contrast to other dimensionality reduction (PCA, MDS), these
project one vector at a time and thus can be distributed easily.

Often, multiple projections are used and combined in an ensemble.

Objective: Design an ensemble based on random projections and
space-filling curves, to find the k nearest neighbors.

I Distributable to a cluster with O(n) communication
I Different curves and projections avoid correlated errors
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kNN SFC Ensemble Method 8 / 12

Ensemble for k -Nearest Neighbors

1. Generate m space-filling curves (with high diversity):
I Different curve families (Peano, Hilbert, Z-Curve)
I Random projections or random subspaces
I Different shift offsets

2. Project the data to each space-filling curve

3. Sort the data for each space-filling curve

4. Use a sliding window of width w × k to generate candidates

5. Merge the neighbor candidates for each point

6. Compute the real distances, and keep the k nearest neighbors

7. If needed, also emit reverse k nearest neighbors

All steps can well be implemented on a cluster.
Except for sort and sliding window as “map” and “reduce”.
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Ensemble for k -Nearest Neighbors

2. Project the data to each space-filling curve

distributed on every node do
// Blockwise I/O for efficiency
foreach block do

foreach curve do
// Map to the SFC
project data to curve
// ...but delay the shuffle step
store projected data locally
// Sample data for sorting
send sample to coordination node

end
end

endon
// Complete sort using sample distribution
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Ensemble for k -Nearest Neighbors

4. Use a sliding window of width w × k to generate candidates

distributed on every node do
// Blockwise processing of sorted data
foreach curve do

foreach projected and sorted block do
// “Map” each block to (object, neighbors)
foreach object (using sliding windows of width w × k) do

emit (object, neighbors in window)
end

end
end

endon
shuffle to (object, neighbor list)
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Ensemble for k -Nearest Neighbors

5. Merge the neighbor candidates for each point
6. Compute the real distances, and keep the k nearest neighbors
7. If needed, also emit reverse k nearest neighbors

distributed on every node do
foreach (object, neighbor list) do

// Reduce to true kNN
Remove duplicates from neighbor list
Compute distances
emit (object, neighbors, ∅) // Keep forward neighbors
// If RkNN needed, also map to inverse list:
foreach neighbor do

emit (neighbor, ∅, [object]) // Build reverse neighbors
end

end
endon
shuffle to (object, kNN, RkNN)
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Experiments
ALOI image database, 64 dimensions, recall of true kNN
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Experiments
ALOI image database, 64 dimensions, LOF [Bre+00] quality
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Experiments
ALOI image database, 64 dimensions, LOF [Bre+00] quality
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Results via approximation can be better than exact results.
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Better than exact?
This observation contradicts our intuition.

This is not an error.

I Random Forests [Bre01] ignore parts of the data and parts of the
attributes – but work better than “exact” decision trees!

I Many other ensemble techniques, including:
Feature bagging for outlier detection [LK05]
Subsampling for outlier detection [Zim+13]
Data perturbation for outlier detection [ZCS14]

I Our ensemble operates on a lower level (kNN),
and improves scalability to big data.
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Better than exact?
This observation contradicts our intuition.

Explanation:

I For inliers, missing a true kNN makes next to no difference.
(It does not matter which highly similar points we choose.)

I For outliers, the true kNN may contain other outliers.
If we miss them, and compare to cluster points instead, this
makes the outlier more pronounced.

Interesting: errors do not have to be a problem.
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A key observation:

Data often is not exact / complete.

Do we then need exact results?

Of course, we want exact results e.g. in accounting
– but on dirty data with outliers?
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How to choose an indexing strategy:
The best method depends on your data.

I On low-dimensional data, R*-trees [Bec+90] are hard to beat.
I For sparse data, compressed inverted lists are excellent.
I PINN [dCH10] has nice theoretical guarantees,

but quickly becomes expensive because of that.
I If you know the query radius ε, LSH [IM98] works well
I For k -nearest-neighbors on dense high-dimensional data,

our new method [SZK15] works very well.

Note: space-filling-curves are desinged for Minkowski-norms.
LSH can support a few other distances, and the R*-tree too [SZK13].
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Thank you!

Questions & Discussion
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