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ABSTRACT The recent advances in genome sequencing technologies provide unprecedented opportu-
nities to understand the relationship between human genetic variation and diseases. However, genotyping
whole genomes from a large cohort of individuals is still cost prohibitive. Imputation methods to predict
genotypes of missing genetic variants are widely used, especially for genome-wide association studies.
Accurate genotype imputation requires complex statistical methods. Due to the data and computing-
intensive nature of the problem, imputation is increasingly outsourced, raising serious privacy concerns. In
this work, we investigate solutions for fast, scalable, and accurate privacy-preserving genotype imputation
using Machine Learning (ML) and a standardized homomorphic encryption scheme, Paillier cryptosystem.
ML-based privacy-preserving inference has been largely optimized for computation-heavy non-linear
functions in a single-output multi-class classification setting. However, having a large number of multi-
class outputs per genome per individual calls for further optimizations and/or approximations specific to
this application. Here we explore the effectiveness of linear models for genotype imputation to convert them
to privacy-preserving equivalents using standardized homomorphic encryption schemes. Our results show
that performance of our privacy-preserving genotype imputation method is equivalent to the state-of-the-
art plaintext solutions, achieving up to 99% micro area under curve score, even on real-world large-scale
datasets upto 80,000 targets.

INDEX TERMS Genotype imputation, machine learning, privacy-preserving computation.

I. INTRODUCTION

Large-scale Genome-Wide Association Studies (GWAS)
have tremendous value in understanding the relationship
between genetic loci and disease risk and heritable traits [1].
Understanding the genotypic landscape of millions of diverse
individuals is essential for characterizing and investigating
rare diseases and genotype-phenotype associations. Geno-
type imputation methods predict the genotypes of missing
Single Nucleotide Polymorphisms (SNPs) by taking advan-
tage of the high correlation between SNPs in haplotype
blocks; hence, they provide opportunities for sequencing a
larger number of individuals through cheaper sequencing
techniques [2].

Sharing and analysis of genomics data is challenging due

to the size of the data, which can be sometimes in the order
of petabytes. [3]. Genetic information is being increasingly
clinically relevant and used for personalized medicine requir-
ing hospitals to perform analysis and calculations of genomes
[4], [5]. Therefore, the entities which require computationally
heavy genomic analysis, do not generally have the resources
to perform it locally, and commonly outsource it to the cloud.
For example, Stanford Center for Genomics and Personalized
Medicine, computes on genomic data using Google Cloud
and Google Big Query [6]. Real-world genotype imputa-
tion requires thousands of genotypes to be predicted in real
time and is one of the many genomic analyses that can
be outsourced to the cloud [7], [8]. Having an outsourced
entity for such computations also helps in maintenance of
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the prediction models. As the size of the genomic databases
increases (for example, when more genomes are sequenced
from individuals with different backgrounds and ancestries),
the predictive models can be updated and patched directly in
the cloud. With the increasing wealth of genetic information
available to train, the outsourced models reach unprecedented
accuracy on test data, even when predicting a large number
of outcomes [3]. However, to use these outsourced models
for inference, the sensitive data must be sent and computed
on the cloud. Since the genetic information of these indi-
viduals (who want to use the trained outsourced genetic
analysis model) is sensitive and prone to re-identification
for malicious purposes, outsourcing such analyses introduces
serious privacy concerns. For example, the legistlations like
the General Data Protection Regulation (GDPR) [9] in the
European Union may prohibit outsourcing calculations on
sensitive data even when the patients consent to share their
genetic information. Therefore, sensitive data must be pro-
tected not only from the attackers who try to snoop in
network communications or try to breach genomic databases
in the cloud, but also from the cloud itself. In a nutshell, any
privacy-preserving genotype imputation must guarantee the
protection of the sensitive data while imputing thousands of
genotypes in real-time.

Related Work: Current genotype imputation studies are
based on the hypothesis that short genomic regions in a
population of individuals cluster into groups of similar re-
gions as we inherit many of our genomic regions from our
ancestors [2]. There are several available programs for geno-
type imputation. The most commonly used software, IM-
PUTE2 [10] and Beagle [11], are different implementations
of hidden Markov models to observe the unknown genotypes
using training data from a population of individuals. These
software take a set of known SNP genotypes (also called
tag SNPs) as input and predict the genotypes of unknown
SNPs (also called target SNPs). As the amount of data in-
creased, the aforementioned models focused on maintaining
high accuracy. Imputation in the encrypted domain, however,
remains a challenge due to high computational overheads.

Several methodologies have been proposed for ensuring
the privacy of outsourced data. Among them, multi-party
computation, functional encryption, and homomorphic en-
cryption are prime candidates for data protection, with dif-
ferent properties and intended usage [12]. Multi-party com-
putation has been used in genome wide association studies
[13] but is network-bound, assuming constant interaction
between the participating nodes. But it is possible to leak
information when multiple parties collude. This vulnerability
makes it unsuitable for sensitive applications like genotype
imputation. Functional encryption, on the other hand, can
operate using encrypted data directly. Still, the data has to
be encrypted for a specific algorithm, and further algorithm
modifications are not allowed without re-encryption.

The privacy solutions mentioned above consider different
threat models comprising of a malicious end-user (trying to
infer about cloud models), man-in-the-middle attacks (lever-

aging side-channels), or malicious cloud (trying to infer
about client data) or a combination thereof [14]. In our work,
we consider an honest but a curious attacker. In that scenario,
imputation using homomorphic encryption is a promising
privacy-preserving solution, since the operands and the out-
puts do not need to be decrypted during rest, transit or use.
Fully Homomorphic Encryption (FHE) requires only a single
time encryption and applications developed with FHE can
be used infinite times without re-encryption. FHE has been
used for medical data analysis such as on studies related
to the analysis of Electro Cardiogram (ECG) [15] and on
diabetes and heart disease studies [16]. While FHE is algo-
rithmically very powerful and is quantum resistant, it incurs
prohibitive performance overhead when implemented with-
out optimizations. Therefore, to make privacy-preserving
solutions based on FHE faster, batching is used. Partially
Homomorphic Encryption (PHE), on the other hand, allows
unlimited manipulation of data and may be scaled, unlike
FHE that requires refreshing the ciphertexts if pre-defined
computational bounds are exceeded. The main drawback of
PHE schemes is the limit in the types of algorithms it can
express.

The Paillier cryptosystem is a prominent example of
PHE [17]. Paillier’s native operation on encrypted data is
a modular multiplication of operands of a few thousand
bits, while FHE schemes based on the Ring Learning With
Errors (RLWE) problem add/multiply polynomials of a few
thousand degrees and few hundred bits coefficients. Conse-
quently, operating on PHE ciphertexts is inherently faster
than FHE ciphertexts. In order to accelerate algorithms
on FHE, batching is used. This implies that computation
should be easily parallelizable and without dependencies.
PHE schemes do not rely on batching for performance and
this may serve as another advantage in genotype imputation
since we can potentially impute any number of individuals
(performance is not tied to the batch size). Moreover, algo-
rithms implemented using Paillier may be further accelerated
using hardware accelerators like CoPHEE [18]. Currently,
no dedicated ASIC accelerator exists for FHE schemes, even
though there is some work-in-progress in FPGA- and GPU-
based acceleration. A major difference between PHE and
FHE is that Paillier is an accepted ISO standard (ISO/IEC
18033-6:2019, part 6) [19]. Due to their young age of RLWE-
based schemes, no such standard exists and are currently un-
der the process of standardization. While there is a trade-off
between security guarantees, standardization, performance,
and acceleration capabilities between FHE schemes and Pail-
lier, for a private genotype imputation software, we choose
Paillier for its advantages in the context of healthcare. Since
the healthcare industry is heavily regulated, FHE-based solu-
tions may take a few more years before they can be used in
practice.

Our approach: In this work we explore the possibility
of using standardized encryption technique for imputation
task for thousands of genotypes. But traditional imputation
techniques need non-linear function support not provided by

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093005, IEEE Access

FIGURE 1: Genotype imputation as a service. The machine learning model is trained using publicly available genomes (e.g.
those from 1000 genomes project). The ML-based imputation model takes the tag SNP genotypes and imputes the target SNP
genotypes. The ML model is a combination of N linear models where N is the number of target SNPs being imputed. The
model uses that top 10 tag SNP genotypes as features based on the mutual information between target and tag SNP gentotypes.
The weights and biases, written as Wn

m and bnm, are represented by connections where the superscript, n, is the target SNP and
the best correlated tag SNP is represented by m. The model can be continuously updated as the training database is updated
with more sequenced genomes.

PHE, therefore we explore for the best-performing models
which could be re-purposed for imputation. Recently, Ma-
chine Learning (ML) has seen an unparalleled growth in
usage in genomics because of its precision in classification,
regression, and sequence prediction tasks. Genotype imputa-
tion, can also be performed using ML-based models, and be
a part of Machine Learning as a Service (MLaaS) ecosystem.
Fig. 1 describes genotype imputation, where an ML model
is used to impute the missing genotypes. This figure depicts
the common supply chain of imputation as a service, in
which training does not have to be in the encrypted do-
main. The training of the imputation models use the publicly
available data from individuals who have consented to the
usage of their data for analysis and thus, can be performed
in plaintext. The model is continuously improved as more
training data (i.e. more reference panels) become available .
The encryption-decryption processes of tag and target SNPs
are explained in detail in Fig. 2. The cloud (represented by
Bob), which offers imputation as a service, honestly imputes
and predicts target SNPs when required by Alice. But Bob
may get curious about the data (and thus, individuals and
their genetic traits) being analyzed and therefore, is untrusted
and cannot be given tag SNP genotypes of an individual in
plaintext. Users (represented by Alice) encrypt their queries
(i.e tag SNP genotypes) with a public key and send them to
the server. The server then uses the trained imputation model
to perform imputation on the encrypted query and sends back
the encrypted results to the users. In our privacy-preserving
solution, only the data-owner (Alice) can see the sensitive
data in plaintext.

ML algorithms for prediction problems have several non-
linear operations like exponentiation, activation, or feedback.
Since Paillier, although a standardized algorithm for private

computation, can only implement a single type of operation,
it cannot readily support such complex ML-models. In this
study, we combine the genotype imputation accuracy offered
by machine learning models with the efficiency and maturity
of PHE to enable privacy in outsourcing genotype imputa-
tion. To this end, we develop suitable linear ML-models that
maintain the high accuracy of traditional ML algorithms and
port them to the encrypted domain using PHE. We address
various incompatibility issues, such as the lack of floating-
point support and negative numbers in PHE, and develop a
novel methodology for fast and scalable privacy-preserving
genotype imputation.

Our contributions can be summarized as follows:

• We design linear ML models having similar accu-
racy and Micro Area Under Curve (MAUC) metrics
compared to commonly used non-linear techniques for
genotype imputation state-of-the-art techniques [10],
[11].

• To the best of our knowledge, this is the first private
imputation technique based on a standardized homo-
morphic encryption scheme. We fine-tune the models to
facilitate their privacy-preserving implementation using
PHE. We introduce several optimizations in traditional
PHE schemes catering to the fast data-intensive private
sequence prediction for genotype imputation.

• We implement privacy-preserving non-linear machine
learning models along with the non-linear functions
in the encrypted domain (using FHE) as a proof-of-
concept to showcase that private imputation solutions
without approximations in the model or optimizations
during private computation may lead to prohibitive over-
heads.

• We further test our models using two independent
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datasets: Individuals from Genotype Tissue Expres-
sion (GTEx) [20] and from Avon Longitudinal Study of
Parents and Children (ALSPAC) [21] to ensure scalabil-
ity of our approach.

The rest of the paper is organized as follows: Section II
discusses the background on plaintext genotype imputation,
threat model, machine learning, and the performance metrics.
We discuss our methodology in Section III. Experimental
results presented in Section IV compare our methodology
with state-of-the-art methods and more complex non-linear
models in terms of accuracy and computation cost. Finally
we discuss the important takeaways in Section V and con-
clude in Section VI.

II. PRELIMINARIES
A. GENOTYPE IMPUTATION

Genotype imputation is the process of predicting the geno-
types (i.e 0 for existence of reference allele in both haplo-
types; 1 for existence of one reference and one alternative
allele; 2 for existence of alternative allele in both haplotypes)
of SNPs in a genome. Genotype imputation is performed
by using the information that the SNPs in a genome are in
linkage disequilibrium due to the haplotype structures [2].
The correlations between the SNPs can be inferred using
a database of fully characterized genomes such as 1000
Genomes dataset [22]. SNPs in a genome can be classified
as tag and target SNPs. Tag SNPs are the ones that can be
observed experimentally and target SNPs are in correlation
with the tag SNPs and can be imputed computationally.
Traditional genotype imputation methods require phasing
of the genome into haplotypes [10], [11]. Here we pro-
pose a privacy-preserving machine learning based imputation
method, that takes the tag SNP genotypes as features and pre-
dicts the target SNP genotypes using partially homomorphic
encryption and without the need for phasing.

B. THREAT MODEL

We consider an honest but curious imputation server simi-
lar to the threat models in genome privacy literature [23].
We assume that the cloud gathers a training dataset that
comprises of reference panels from different individuals who
have agreed to share their data for further analysis and
for building imputation models. This dataset is sent to the
cloud in plaintext and training at the cloud also happens in
plaintext. As more and more genomes are sequenced, more
and more reference panels become available for the server to
train or update the existing imputation models [7]. The server
uses these reference panels to train models to impute genomic
sequences, i.e. predict the genotypes of target variants given
the genotypes of tag variants. This part of our threat model
is common in genotype imputation supply chain for publicly
available imputation servers where computation happens in
plaintext [7], [8]. The training required for building imputa-
tion as a service is depicted in Fig. 1.

After the imputation model is trained and deployed, indi-
viduals, research institutes or hospitals can send tag variants

to impute their target variant genotypes. Please note that
these tag variants are essentially the test dataset and are from
individuals who do not want to share their data. However,
if the tag variants are sent, stored or analyzed in plaintext,
there may be severe privacy risks involved. Privacy of ge-
nomic data is different from generic data privacy because
1) genomes are unique to individuals and are extremely
identifying and characterizing, even for a partial leak, 2) the
impact of data leakage is permanent as, unlike passwords,
genome of an individual cannot be changed, 3) genomic data
of one individual may lead to information about their direct
relatives. Therefore, although a cloud may impute honestly,
but still has the incentive to be curious and can achieve
stealthy and substantial malicious objectives using the ge-
nomic data. Moreover, under local or institutional privacy
guidelines, the cloud might have to be mandated to protect
the healthcare related data and therefore services that handle
genomic data have to incorporate access control, execution
in trusted platforms, and encrypted storage to thwart external
attackers [6], [7]. In our threat model we consider the cloud
to be malicious which may misuse the data while computing
on it honestly. In this scenario, the sensitive data must remain
encrypted during rest, transit, and also during computation.
Fig. 2 describes private imputation in our threat model where
the imputation occurs on encrypted data using homomorphic
encryption. As the tag and target variants always remain
encrypted, this also protects against external attackers trying
to cause breach in databases.

C. PREDICTION OF LINEAR AND NON-LINEAR ML

MODELS

Machine learning algorithms make various transformations
on the input data such that the error (loss) between the
predicted output and actual output is minimized. For classifi-
cation problems, the transformations are such that the data
could be categorized by distinct decision boundaries. For
regression problems, the transformations directly predict the
real-valued outputs. Linear transformation of the input data
(x), Wx + b, does not help in classification problems with
non-linear decision boundaries present in many real-world
problems. Thus, non-linear models like logistic regression,
Support Vector Machine, etc. and non-linear functions like
Rectified Linear Unit (ReLU), Sigmoid, Tanh, Softmax in
Neural Networks have become an integral part of classifica-
tion problems. The predicted output O of a non-linear ML
model is defined as O = f(Ax + b) where f(.) is a non-
linear transformation. A linear model is easier to implement
in encrypted domain for complex problems like genotype
imputation. While the efficiency of non-linear models are
higher, they are extremely hard to implement with homomor-
phic encryption. Therefore, for private imputation, solutions
resort to implementing just the linear part of a model in
encrypted domain. In development of linear models too, there
are two options, training a non-linear model but using only
the linear parts during inference, or training a linear model.
We discuss the design of linear ML-models in section III-A
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FIGURE 2: Encryption of tag SNP genotypes and decryption of target SNP genotypes. The figure shows Alice, who wants
to perform genotype imputation on her genome. She encrypts her tag SNP genotypes using a public key and sends it to the
untrusted cloud-based imputation service maintained by Bob. Bob maintains the imputation service by training it with new data
when available according to Fig. 1. Bob performs imputation and sends the encrypted result back to Alice. Since Bob does not
possess the private key and the data is not decrypted during computation, the sensitive data remains a secret through the entire
process.

that can be implemented using homomorphic encryption as
discussed in subsection II-D.

D. HE FOR PRIVACY PRESERVING COMPUTATION

Computing on encrypted data is possible by a special type of
encryption called Homomorphic Encryption (HE), which al-
lows operating on encrypted data directly without decryption.
Different attempts to implement secure homomorphic com-
putation resulted in different mathematical models. Some of
them support limited set of operations which are capable of
doing computations only for specific tasks. Others support a
universal set of operations and are able to compute general
functions (e.g. functions which can be represented as com-
binational circuits), which are called Fully Homomorphic
Encryption (FHE) schemes. The former ones, supporting
only limited set of operations (called Partially Homomorphic
Encryption, PHE), are unable to compute all functions, but,
at the same time, they can be simpler and faster. A very well
known example of PHE is the Paillier encryption scheme.
In Paillier, the multiplication of ciphertexts modulo N2 is
homomorphic to the addition of plaintexts modulo N , where
N is an encryption parameter. If N is a product of two
big primes, its factorization is considered hard. Therefore,
the security of Paillier cryptosystem depends on Decisional
Composite Residuosity Assumption as well as the hardness
to factorize N [17]. The scheme is defined as:

c = E(m, r) = gm · rN modN2

D(c) = L(cλ modN2) · µmodN

where m is the message, r is the random part of the encryp-
tion E, (N, g) is the public key, (λ, µ) is the private key, and
L is a function defined as L(x) = (x− 1)/N .

E. METRICS

The datasets are largely un-balanced and therefore, we use
several metrics to analyze performance. The metrics used in
this work has been used to design the model as well as to
measure the efficiency of the final model and compare it to
the state-of-the-art tools.

Accuracy
Accuracy is defined as the ratio of the correct predictions to
the total number of samples. It is given by:

Accuracy =
TP + TN

TP + FP + TN + FN

where TP and TN are the True Positive and True Negative
rates and the FP and FN are the False Positive and False
Negative rates. We use this accuracy as a design objective
for our model.

Macro-average accuracy

Macro-average accuracy =
1

No. of variants
×

[

No. of true imputations for a variant

No. of individuals for the variant

]

Micro-Area Under Curve scores
We plot Receiver Operating Curves (ROCs) on the final
architecture, to compare true positive rate as a function of
false positive rate and then, we measure the area under ROC
using micro-averaging over all the genotypes for Micro-AUC
(MAUC) score. The MAUC score gives a more comprehen-
sive measure of the performance of the predictive model as it
does not depend on the test data and thus, has been used for
comparing the performance of various classifiers/prediction
models [24].
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III. METHODOLOGY

A. NEURAL NETWORK DESIGN

Our network design is motivated by two factors: imputa-
tion efficiency and ease of implementation with PHE. We
follow a structured approach to finalize our model. First,
we make a neural network using all the tag SNPs, with a
direct connection between the input layers and the output
sequence to 1) investigate if linear transformations could be
used to predict the output target SNPs adequately, and 2) have
a reference (baseline) linear prediction model using all tag
SNPs. Next, we build a model that uses a subset of features
but achieves a similar accuracy. Since we convert the problem
to a multi-class problem for several outputs, we represent
the data in one-hot encoded format to improve accuracy,
i.e. genotypes [0,1,2] are represented as [0,0,1], [0,1,0], and
[1,0,0], respectively. We divided the training data into 5
folds and performed k-fold cross-validation to reduce over-
fitting. Using all features in 10k and 1k datasets, we achieve
a test accuracy of 85.09% and 95.93%, respectively. Next,
we perform another feature extraction mechanism, mutual
information, on top of neural network training and investigate
the number of top features required to reach reference accu-
racy (from model using all tag SNPs). Mutual information
between two random variables is given by

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

p(x) p(y)

)

where p(x, y) is the joint probability density function and
p(x) and p(y) are individual probability density functions.
Considering target labels and features, the mutual informa-
tion score reflects the dependence between a target SNP
genotype (a prediction) and a tag SNP genotype (a feature).
We rank the tag SNPs according to the mutual information
scores for each target SNP and select the top 10 tag SNP
genotypes to predict a particular target SNP genotype as
the test accuracy saturates for 10 tag SNPs at 84.404% and
95.52% for the 10k and 1k datasets, respectively.

Final design: For imputing t target SNPs, we build t mini-
neural networks that connect the top x tag SNPs with the
corresponding target SNP, since target SNPs are independent
of each other. In our design, these independent outputs have
their own set of top 10 tag SNP genotypes as features.
We then predict genotype probabilities of each target SNP
(output) without any non-linear activation. The total number
of models would be the total number of target SNPs to be
imputed. The final neural network architecture is such that
specific (top 10) tag SNPs are connected (through weights
and biases) to each target SNP, forming mini-neural networks
for each target SNP genotype prediction, as shown in Fig. 1.
The weights (W ) and biases (b) are obtained using Adam
optimizer with categorical cross-entropy as loss function.
We calculate the final probability of a target SNP genotype
belonging to class k by normalizing across the classes. The

formula for finding probabilities is given by:

P (y = k|x) =
(Wx+ b)k

∑k

l=1
(Wx+ b)l

where x is the subset of tag SNPs, which are selected
using mutual information. Please note that the probability
calculation for each target SNP is not required for predic-
tion of that particular target SNP genotype. The target SNP
(position in one-hot encoding) that has relatively the highest
probability is the final prediction i.e. the highest amongst
the three decrypted values. This approximation of not cal-
culating probabilities and sending the relative values back to
the client is another approximation which we incorporated
for implementation of private imputation. The probability
calculation shown here is used to plot ROC curves to compare
performance.

B. FINE-TUNING NEURAL NETWORK FOR PAILLIER

IMPLEMENTATION

In our threat model, we want to protect the data of the user
from the untrusted server. The user query x is encrypted
by the user as E(x) and can be multiplied with the plain-
text weights using Paillier. Encrypted prediction probabilities
E(O) are given by E(x)×W+E(b). W and b are in plaintext
and can be modulated for practical and efficient privacy-
preserving inference. To help in the implementation of this
matrix multiplication with Paillier, which uses positive and
integer operands, we make the following adjustments:

• Positive operands: For positive W and b, we use the
in-built training constraints in Keras where the weights
and biases are clipped to be greater than or equal to
0. We use Adam optimizer with starting learning rate
as 0.0008 with no decay. We monitor the loss value
during training and dynamically change the learning
rate to accommodate the extra constraints by using
callback functions in Keras. We monitor the loss for
three iterations before reducing the learning rate by half
to a minimum of 0.00001. We also monitor loss for
undefined value while training.

• Integer operands: We scale floating point weights to
larger integer values for the PHE implementation such
that the relative ranking of class probabilities is the
same. For security (as discussed in section IV-E), we use
key-size = 3072 bits, giving us a large plaintext space to
scale the weights. The weights are multiplied by 2scale

and we choose scale = 8 when we get a similar accuracy
as with the un-scaled weights.

C. OPTIMIZATION OF PHE FOR FAST PRIVATE

INFERENCE

Here we describe the various optimizations and approxima-
tions performed during each phase for the privacy-preserving
implementation of the model.

Encryption: We implemented the Paillier cryptosystem
using GMP [25], a highly-optimized multiple precision arith-
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metic library. Paillier requires a random number for encryp-
tion, which is raised to the power N . This result being N -th
residue in modulo N2 corresponds to a ciphertext of zero.
Such numbers with initially different randomness can be
precomputed and later used to generate new zeros during the
computation. This method eliminates the need to raise to N -
th power whenever a new encryption is required, therefore
making computation faster. In addition, based on optimiza-
tions described in [26], we precompute the generator g raised
to all powers of two that are smaller than N , thus completely
avoiding exponentiation during encryption (exponentiations
are replaced by multiplications). We further speed up the
encryption process by reducing the number of encryptions.
Similar to [27], we pack many individuals into a single
ciphertext. This is possible because the plaintext space in
Paillier is much larger than what we need for our model for
secure key sizes. The process of packing is done in plaintext
before encryption using shift left and add operations. The
amount of data that can be packed in one ciphertext is defined
by the key size, the scale factor of the weights, and the
number of inputs (relevant tag SNPs). Here we represent the
inputs with 1 bit and the weights with 8 bits, which leads
to an output of 8 + ⌈log

2
(30)⌉ = 13 bits when selecting 10

tag SNPs as input (30 one-hot-encoded values), while the key
size is 3072 bits. Thus, we can pack ⌊3072/13⌋ = 236 values
in one ciphertext. Furthermore, our model requires only a
subset of tag SNPs, thus, only the information about the
relevant tag SNPs is encrypted and forwarded to the query.

Matrix multiplication: The query is performed using
matrix multiplication, where we multiply an encrypted ma-
trix containing sensitive genotypes of the tag SNPs with a
plaintext matrix containing the weights. Since some of the
weights may become zero when scaled and converted to
integer, we only perform homomorphic operations when the
weight is not zero. The homomorphic operations necessary
for the matrix multiplication are multiplication of a plaintext
by a ciphertext, and addition of ciphertexts. Homomorphic
addition of ciphertexts is supported by Paillier, where a
modular multiplication of two ciphertexts is equivalent to the
addition of the plaintexts. We implemented the multiplication
of a plaintext by a ciphertext using additions (similarly to a
binary multiplier).

Decryption: Decryption is a costly operation, since it con-
tains a modular exponentiation of large numbers. We reduce
the number of decryptions by packing as many plaintexts as
possible in one ciphertext during encryption, which leads to a
packed encrypted output. The packed data is unpacked after
decryption using the shift right operation and bitwise and

with a mask. In addition, we added thread-level parallelism to
the matrix multiplication (matrix multiplications for different
target SNPs are threaded), encryption, and decryption.

D. ML-BASED GENOTYPE IMPUTATION WITH FHE

In the previous subsections, we discussed several optimiza-
tions and approximations to help implementation of private
imputation using Paillier cryptosystem. In this sub-section

we study the trade-off between security guarantees, accuracy,
and performance. As briefly discussed in advantages of FHE,
it is quantum resistant, and is currently in the process of
being standardized. Further since FHE allows for non-linear
operations in encrypted domain (not possible in Paillier),
our model selection, and tuning may incorporate complex
(un-approximated) operations which may amount to a bet-
ter accuracy. Thus, for a higher accuracy and better post-
quantum security guarantees, we explore a private imputation
technique using FHE. Please note, in this exploration, we do
not use the approximations in sections III-B,III-C and use
other approximations specific to the FHE scheme.

Wood et. al. survey ML applications for medicine and
bioinformatics fields and discuss common solutions for se-
cure GWAS [28]. Logistic regression models and usage of
statistical scores like χ2 have been extensively used in this
domain. Furthermore, regression, in general, is widely used
to create efficient models for these studies [29]–[31]. There-
fore, to compare with commonly used methods, we built a
logistic regression model that prunes features based on mu-
tual information to evaluate efficiency of our methodology.
The details of the logistic regression model is described as:

For each target SNP, we built a logistic regression model
that takes the one-hot encoded tag SNPs and outputs a
prediction probability given by:

P (y = k|x) =
ezk

∑K

l=1
ezl

where k is one of the target genotype [0,1,2], x is the tag
SNP genotypes, y is the predicted target SNP genotype and
z is the linear combination of weights and biases of the
form Wx + b. Thus, computing a logistic regression model
adds one non-linear computation, the type of computation
we do not use in our linear models. We experiment with all
the tag SNPs to fix inverse regularization factor to 0.1. This
parameter decides the penalty of a mis-prediction. Then we
train a logistic regression model on training data for 1,000
iterations using Limited memory−Broyden Fletcher Gold-
farb Shanno (LBFGS) optimization algorithm with Python’s
scikit-learn library. Please note, the elimination of the non-
linear model would have converted it into a linear model, but
we evaluate the entire model (including non-linear function)
in the encrypted domain to estimate the cost introduced by
simple non-linear functions.

We implement the FHE version of logistic regression using
TFHE [32], an FHE library that exposes homomorphic gates.
TFHE security parameters are left to their default values,
which provide 110-bit cryptographic security based on ideal
lattice assumptions [33]. The circuits from E3 framework
[34] let us abstract the gate logic into optimized arithmetic
circuits. With that, we can construct fixed-point arithmetic.
Fixed-point additions and subtractions are the same as for the
integer type and require only calling the respective circuit.
Fixed-point multiplication and division use a homomorphic
integer operation and a shift by a constant. Shifting by a con-
stant uses no homomorphic operations, so there is no penalty
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when compared to the homomorphic integer operation. We
also implement a function for homomorphic exponentiation,
where the base is a fixed-point ciphertext and the exponent is
an integer ciphertext, using squaring and multiplying. Finally,
we calculate the exponentiation of the Euler’s constant to a
fixed-point ciphertext using Taylor series. Some optimiza-
tions, such as pre-calculation of factorials, are applied to
that. There have been several approximations of non-linear
activations using square functions [35] or piece-wise linear
approximation [36]. We choose Taylor series to expand ex-
ponentiation for more generic measure of activation. Apart
from these approximations, batching can be used to speed-up
computations using FHE.

Deeper architectures are able to extract robust features
using several layers of various types [37]. Although, deeper
architectures will have prohibitive timing overheads (as the
number of non-linear functions per target SNP increases), we
build deeper architectures to explore the trade-off in accuracy
suffered by our linear ML models. Please note that stacking
linear layers without non-linear activation functions in be-
tween does not constitute a DNN because the linear layers, by
property, can be collapsed into a single connection between
the input and the output layer. Therefore, for our experiments,
we increase the depth of the architecture by creating hidden
layers with both linear and non-linear operations. Similar to
other models, we use top 10 features using mutual informa-
tion and build a separate DNN for every target SNP. Each
DNN consists of one hidden layer consisting of 16 neurons
followed by a sigmoid non-linear activation. We also add a
dropout layer while training to remove any co-adaptation of
neurons. We use the Adam optimizer with the same learning
rate schedule as the linear models to train for 50 iterations
reducing categorical cross-entropy loss function. Finally, the
hidden layer is connected to the output layer that gives the
probability of a target SNP genotype being in one of the
classes [0,1,2].

The performance of privacy-preserving ML-models de-
pends on the number of operations in the encrypted domain.
Therefore, while a deeper neural architecture with several
non-linear activation layers is needed for better accuracy, it
also generates high computational overhead.

IV. EXPERIMENTAL RESULTS
Genotype imputation is essentially a problem of predicting a
set of sequences by using another set of sequences as features
that we translate into a multi-output multi-class problem to
design the neural network architecture. We then develop a
privacy-preserving version using Paillier partial homomor-
phic encryption scheme [17]. The details of our design of
neural network architecture, fine-tuning of its parameters,
and optimization of Paillier to implement private imputation
are discussed in details in section III.
Datasets: We use fully characterized genomes from 2,504
individuals provided by 1000 Genomes Project [22] as our
primary dataset. The Chromosome 1 of the human genome
is divided into set of tag and target SNPs by iDASH Secure

Operation
Timing (in seconds)

10k Dataset 1k Dataset

Encryption 0.904 0.913
Computation 0.144 0.167
Decryption 2.71 2.82

Total 3.758 3.9

TABLE 1: Time cost of genotype imputation model for 10k
and 1k dataset each with top 10 features (i.e. top 10 tag SNP
genotypes).

Genome Analysis Challenge’19 [38]. iDASH divided the tag
SNPs into two sets: (1) 1k dataset: This dataset contains
tag SNPs that are 1kb genomic distance apart from each
other, which adds up to a total of 9,746 tag SNPs. (2)
10k dataset: This dataset contains tag SNPs that are 10kb
genomic distance apart from each other, which adds up to
1,045 tag SNPs. 1k and 10k refer to the genomic distance,
which indicates the number of basepairs between consecutive
tag SNPs in the genome. The task is to predict the geno-
types of the target SNPs by using the genotypes of either
datasets, separately. To design, implement, and evaluate our
methodology, we shuffled the dataset and split it into training
(80% of individuals) and testing data (20% of individuals).
Moreover, for a fair comparison with the state-of-the-art
genotype imputation methods, we also use the genotypes of
chromosome 1 characterized by whole genome sequencing
from 870 individuals of GTEx project (v8) [20] with our
model as well as with IMPUTE2 [10] and Beagle [11].
Further, to apply our methodology in a more realistic setting,
we impute 80,000 target SNP genotypes by using 16,184 tag
SNPs of chromosome 22. The tag SNPs are obtained from
Illumina Duo 1M version 3 array platform [39]. We divide the
1000 Genomes dataset into a training set of 1,500 individuals
and a test set of 1,000 individuals. We also test this realistic
scenario on an independent dataset of 1,927 unrelated indi-
viduals from the UK10’s Avon Longitudinal Study of Parents
and Children (ALSPAC) project [21]. Summarizing, in our
study, we perform four different tests with varied number of
individuals and SNPs:

1) Baseline iDASH data (1000 Genomes dataset) of two
different genomic distances dubbed 1k dataset and 10k
dataset (publicly available toy examples)

2) GTEx dataset as an independent dataset to test our
models obtained in (1)

3) 1000 Genomes dataset with a more realistic number of
tag and target SNPs (real-world scenario)

4) ALSPAC dataset, as an independent dataset, to test the
validity of our model obtained in (3)

A. PERFORMANCE COMPARISON TO THE

STATE-OF-THE-ART METHODS

We implement the designed model in C++, building a class
that performs operations in encrypted domain. All experi-
ments are performed using an Intel Xeon Platinum 8259CL
96-core processor with 768 GB RAM running at 2.5 GHz
and GMP 6.1.2. For a comprehensive evaluation of the
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(a)

(b)
FIGURE 3: We report the True positive rate with respect
to false positive rate (ROC curves) and the micro-average
scores on test data for different ML models: (a) Linear neural
network model for 10k dataset (b) Linear neural network
model for 1k dataset using train-test split of the same dataset
for toy examples.

performance of the imputation model, we use a metric that
reflects both correct predictions (true positive rate) and false
misclassifications (false positive rate) for each of the three
genotypes. Therefore, we report the ROC curves, the macro-
average accuracy score, the test accuracy, and the micro-
average accuracy. The plaintext imputations using Beagle
and Impute2 in less than 20 hours [40]. For imputing a
maximum of 80,000 targets, we trained 80,000 networks,
which approximately took one day running training jobs in
parallel. Performance comparison with Impute2 and Beagle
excludes training time since it is not a part of online private
imputation time.

Accuracy on toy examples

For our baseline dataset, iDASH19 dataset, we plot ROCs
for linear models and report the micro-average scores for

FIGURE 4: True positive rate with respect to False positive
rate are plotted for real-world dataset.

each in Figs. 3a and 3b for train-test split. For 10k dataset,
we achieve 0.9704, 0.9341, and 0.9745 area for classes 0, 1,
and 2, respectively, resulting in a micro-average accuracy of
0.9636. For 1k dataset, we achieve a greater 0.99 area for all
the three classes with 0.9964, 0.9911, and 0.9966 for classes
0,1, and 2, respectively, resulting in a micro-average score of
0.9953. We achieved a maximum macro-accuracy score of
0.972 on iDASH dataset.

Accuracy on real-world data

We impute 80,000 target SNP genotypes using 16,184 tag
SNPs of chromosome 22 using the same neural network
design strategy as followed for iDASH data and report the
accuracy in Fig. 4. As mentioned above, these tag and target
SNPs are located on human chromosome 22 and obtained
from Illumina Duo 1M version 3 array platform [39] We use
1,500 individuals to train and 1,000 individuals to test. We
achieve an area under curve of 0.9888, 0.9761, and 0.9935
for classes 0,1, and 2, respectively, resulting in an MAUC
score of 0.9903. We also calculate the macro-accuracy and
achieve 0.9336 for all variants.

Testing on independent datasets and comparison against
plaintext state of the art

In this sub-section we further compare our prediction to
the results obtained from running commonly used genotype
imputation software IMPUTE2 [10] and Beagle [11] using
two independent test data from entirely different studies,
i.e.GTEx [20] and ALSPAC [21].

a: Accuracy on GTEx dataset:

We test the accuracy of our toy example model (imputing
500 target SNP genotypes) on GTEx dataset. We find that the
performance of our privacy-preserving model is in excellent
agreement with the performance of the state-of-the-art plain-
text methods such as IMPUTE2 and Beagle as shown in Fig.
6. We achieve micro-average scores of 0.9621 and 0.9946 for

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3093005, IEEE Access

(a)

(b)
FIGURE 5: True positive rate with respect to False positive
rate are plotted for ALSPAC dataset using (a) our model, (b)
Beagle.

10k and 1k datasets, which correspond to 0.9736 and 0.9959
for Impute2 and 0.9861 and 0.9965 for Beagle.

b: Accuracy on ALSPAC dataset:

We further test the accuracy of our real-world model (im-
puting 80k target SNP genotypes) on ALSPAC dataset. We
use the trained model from the real-word data to impute
61,993 target SNPs using 16,184 tag SNPs of chromosome
22 for 1,927 individuals [21]. We achieve a micro-average
accuracy of 0.9948 with ROC area of 0.9943, 0.9886, and
0.9964 for classes 0,1, and 2, respectively. This is also in
excellent agreement with the performance of the state-of-the-
art plaintext method Beagle (Figs. 5b) with a micro-average
score of more than 0.99. Since the performance of Impute2
and Beagle are extremely similar in our previous tests, for
simplicity, we show here the comparison against Beagle.

Overall, our neural architecture design achieved excellent
performance with a varied number of individuals and SNPs
on test and independent datasets.

Operation

(in seconds)

Size

(8 bits)

Size

(16 bits)

Matrix multiplication 8022.05 41513.2
Bias addition 13.67 29.53
Exponentiation 2844.45 27806.5

TABLE 2: Performance of Logistic regression model using
FHE for 1 target SNP and 1 individual.

B. COST EVALUATION: TIMING FOR PRIVATE

IMPUTATION

Private Imputation with Paillier: Encryption takes 0.904
and 0.913 seconds, while decryption takes 2.71 and 2.82
seconds for 10k and 1k datasets, respectively. The fastest
part of private imputation is the matrix multiplication, which
takes 0.144 and 0.167 seconds, respectively. For both the
datasets, private imputation for 501 individuals having 500
target SNPs each, i.e., ≈ 750K prediction probabilities, were
calculated in under 4 seconds. For real-world dataset, we are
able to encrypt the query in 234 seconds, compute in 24.7
seconds and decrypt in 667 seconds. Thus,we perform the
entire encrypted imputation for 1,000 individuals in 925.7
seconds for 80,000 target SNPs.

C. COMPARISON TO OTHER NON-LINEAR ML MODELS

We further develop different non-linear prediction models
using FHE to compare against our linear model with PHE.

Logistic regression model

Accuracy: We show that private logistic regression with
FHE achieves a test accuracy of 86.07% and 96.22% for
the 10k and 1k datasets, respectively. We found that the
micro-average scores to be 0.9704 and 0.9967 for 10k and
1k datasets, respectively. We also observe that the micro-
average scores of our linear model and the non-linear logistic
regression model differ by less than 0.01. Therefore, the ap-
proximations done to our model are able to achieve accuracy
close to the non-linear models for a tremendous improvement
in speed.

Cost: The logistic regression models for both 1k and 10k
use the same number of features as our linear model. There-
fore, here we report the computation time for 10k dataset for
different bit sizes in Table 2. We remark that each bit is a
different ciphertext. Using the smallest (fastest) non-linear
model, we perform private imputation for one individual in
≈ 3 hours and ≈ 19 hours with 8-bit and 16-bit precision,
respectively. Our model was run using a single thread, thus
scaling it to multiple threads would improve performance by
2 orders of magnitude. But even then, the linear model using
Paillier is 7 orders of magnitude faster.

Deep Neural Networks (DNN)

Accuracy: We show that private deep neural networks
achieves an accuracy of 85.74% and 96.05% and 0.9688 and
0.9964 MAUC for 10k and 1k datasets, respectively. This
shows an approximately 1% increase in accuracy compared
to our linear model. The ≈ 1% increase in accuracy and
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10k Dataset 

1k Dataset 

IMPUTE2our model Beagle

FIGURE 6: Comparison between our model, IMPUTE2 and Beagle performances. (a) Comparison using the 10k tag SNP data
on GTEx individuals. (b) Comparison using the 1k tag SNP data on GTEx individuals.

≈ 0.002−0.006 increase in MAUC scores using a deeper ar-
chitecture is intuitive as deeper models extract more relevant
features. But considering the trade-off between the increase
in accuracy and impractical computational overheads, we
think that the linear models provide sustainable performance.
Cost: Similar to our logistic regression model that has one
non-linear function, our non-linear DNN also has one non-
linear function in the hidden layer. Also, both the logistic
regression models and the DNNs have exponentiation in non-
linear activation. Therefore the computation for the non-
linear operation may be estimated to be similar to logistic
regression model. Additionally, the model computes matrix
multiplication (linear operation) for one hidden layer, which
results in further overheads. Having similar estimated timings
costs, any DNN will be at least 7 orders of magnitude slower
than our Paillier linear model.

D. SCALABILITY

The accuracy of an ML model depends on the processing
of the input feature map, and the cost of operation of the
model depends on the number of outputs being predicted.
Therefore, for the scalability study, we analyze the variation
in accuracy with the increasing number of tag SNPs (inputs)
and the variation in costs as a function of number of target
SNPs being predicted.

Accuracy: To validate the scalability of our approach for
private imputation, we primarily test it across datasets and
state-of-the-art genotype imputation tools as explained in
the IV-A section. In this sub-section, we validate scalability

across genomic distances between tag SNPs from 1k to 10k
in terms of accuracy.

We implement linear models by using a top 10 tag SNPs
through mutual information per target SNP. The tag SNPs
used for mutual information calculation were selected based
on different genomic distances between them. We report
the change in accuracy as a function of available tag SNPs
(as genomic distance is reduced) in Fig. 7a. We observe a
gradual linear increase in accuracy as the genomic distance
between tag SNPs is decreased (i.e. as more tag SNPs are
available). This is intuitive since more tag SNPs are available
to choose from. We observe that our approach is consistent
across datasets when tag SNPs are taken based on different
genomic distances between them.

Time and memory requirements: We take the first
20,000, 40,000, 80,000 SNPs of human chromosome 22
using 1,500 individuals as training and 1,000 individuals as
a test set from 1000 Genomes dataset to perform imputation
and report the costs in Fig. 7b to study scalability in timing
and memory. We observe that the costs scale linearly as a
function of target SNPs being imputed. We observe that the
rate of increase in decryption time is larger than the rate
of increase in encryption time, while the rate of increase in
computation time is the lowest. From the figure we observe
a linear increase in costs and that 80,000 targets for 1,000
individuals can be imputed in 925.7 seconds. Using these
values, we find that 1 million target SNPs can be imputed
in approximately 3 hours. Further, with our optimized imple-
mentation, the speed can further be increased by deploying
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FIGURE 7: (a) Variation of test accuracy as a function of
number of tag SNPs (as the genomic distance is reduced in
intervals of 1kb distance). The plot shows an increase in test
accuracy as more number of tag SNPs become available to
choose from. (b) Variation in time and memory requirements
as a function of number of individuals queried in encrypted
domain.

more threads and cores. The memory requirements are also
practical considering 80K SNPs were imputed using 11.4 GB
memory.

E. SECURITY DISCUSSION

The security of our implementation of private imputation is
solely dependent on the security of Paillier PHE which is
based on the decisional composite residuosity assumption
and factorization hard mathematical problems [17]. Accord-
ing to NIST guidelines on key management [41], N = 3072
bits ensures 128-bit security in symmetric key cryptography
domain which has been standardized to be secure.

V. DISCUSSION
In this work, we present a privacy-preserving genotype
imputation methodology using the Paillier cryptosystem, a
standardized partial homomorphic encryption scheme. But

since Paillier is restricted by the types of operations it can
perform, we make several approximations in our plaintext
methodology and optimizations in its Paillier implementation
for standardized privacy-preserving imputation. For evalu-
ation of our final plaintext methodology, we compare its
performance with other plaintext state-of-the-art solutions as
well as other complex non-linear models. For 10k dataset,
we observe that the MAUC scores of IMPUTE2 and Beagle
are just 0.0115 and 0.0240 more than our models’ MAUC
scores. For 1k dataset, the difference in MAUC score is even
lower, being 0.0013, and 0.0019, for IMPUTE2 and Beagle,
respectively. Comparing with non-linear logistic regression
model, we find our model’s MAUC scores are just 0.0068
and 0.0014 lower for 10k and 1k datasets respectively. But
adding one non-linear function to the model increases the
time of computation by several orders for this slight increase
in accuracy. Further, we test our models on independent
datasets GTEx, and ALSPAC, and achieve a score of 0.9904
and 0.9948, respectively which is similar to the scores
achieved by state-of-the-art imputation tools. Therefore, our
approximations in the ML model and optimizations in the
implementation of Paillier lead to a tremendous improvement
in the performance for a slight reduction in accuracy/MAUC
score.

One of the key properties of our imputation method is
that it does not require phasing the genome into haplotypes,
which allows us to perform the imputation with a fairly less
computational cost. On the other hand, although our model
makes accurate genotype imputation for all genotype classes,
we observe a slight decrease in accuracy when we impute
heterozygous genotypes. We think that since our model is
“phasing free”, determining the correlations between the
target SNP genotype and tag SNP genotypes in a haplotype
is difficult when the genotype is heterozygous. In linkage
disequilibrium, one expects to see the existence of a genotype
being correlated with the existence of other genotypes in
the same haplotype, which requires the knowledge of which
haplotype has the target and tag SNPs. When the genome
is not phased, this information is lost, hence the correlation
between genotypes in the same haplotype cannot be estab-
lished correctly. We think that since the predictions are good
even for heterozygous genotypes, skipping phasing is a good
trade-off in terms of computational cost.

VI. CONCLUSION
In this study, we show that complex algorithms could be
manipulated and used in Paillier cryptosystem of PHE in a
computationally effective and biologically accurate manner
in the inference time. Using several optimizations and ap-
proximations we were able to perform imputation for 80K
SNPs in practical time whilst maintaining imputation efficacy
of above 0.99 MAUC score. For future work we want to
explore methodologies like federated learning to perform
training of the model in a privacy-preserving manner to make
the entire pipeline private. We envision that improvements
made in this study can be used in other large-scale privacy
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preserving genome analysis tool development (e.g. haplotype
phasing).
Code and Data availability

Code: https://github.com/momalab/octal-impute
Data:
iDASH challenge 2019 Track II https://drive.google.com/
drive/folders/18aAt5BdBvpdZRczu5tFTXhYGxz1AbuBj
Real-world dataset: (https://support.illumina.com/downloads/
human1m-duo_v3-0_product_files.html
ALSPAC and GTEx datasets are not publicly available but
available upon approval to access in EGA and dbGAP, re-
spectively.
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