ARTICLE

Received 26 Nov 2015 | Accepted 7 Mar 2016 | Published 13 Apr 2016

Fast and sensitive taxonomic classification
for metagenomics with Kaiju

Peter Menzel', Kim Lee Ng' & Anders Krogh'

Metagenomics emerged as an important field of research not only in microbial ecology but
also for human health and disease, and metagenomic studies are performed on increasingly
larger scales. While recent taxonomic classification programs achieve high speed by
comparing genomic k-mers, they often lack sensitivity for overcoming evolutionary
divergence, so that large fractions of the metagenomic reads remain unclassified. Here we
present the novel metagenome classifier Kaiju, which finds maximum (in-)exact matches
on the protein-level using the Burrows-Wheeler transform. We show in a genome exclusion
benchmark that Kaiju classifies reads with higher sensitivity and similar precision
compared with current k-mer-based classifiers, especially in genera that are
underrepresented in reference databases. We also demonstrate that Kaiju classifies up to 10
times more reads in real metagenomes. Kaiju can process millions of reads per minute and
can run on a standard PC. Source code and web server are available at http://kaiju.binf.ku.dk.

TDepartment of Biology, University of Copenhagen, Copenhagen 2200, Denmark. Correspondence and requests for materials should be addressed to AK.
(email: krogh@binf.ku.dk).

| 711257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications 1


http://kaiju.binf.ku.dk
mailto:krogh@binf.ku.dk
http://www.nature.com/naturecommunications

ARTICLE

sing random DNA shotgun sequencing, it is possible

to directly obtain total genomic DNA from an

environmental sample without the need for laboratory
cultures. This ‘metagenomic’ approach has become a standard
method for characterizing the biodiversity, gene contents and
metabolic processes of bacterial and archaeal communities and
is used on increasingly larger scales'™>. Due to decreasing cost
of high-throughput sequencing (HTS) and the recent revelations
of the importance of microbiomes for health and disease®>,
metagenomic analyses are also likely to become part of routine
clinical diagnostics and detection of pathogens.

One of the major biological questions in metagenomics is the
inference of the composition of a microbial community, that is,
the relative abundances of the sampled organisms. One approach
is the assembly of metagenomic reads into contigs, which are then
compared with reference genomes. However, assembly-free
taxonomic classification is faster and more straightforward,
because metagenomic assembly and quantification of taxon
abundances from contigs pose additional computational
challenges. Hence, given random shotgun sequencing reads, the
underlying algorithmic problem is the assignment of individual
reads to taxa, usually by comparison to a reference database.
Traditionally, this task is solved by local sequence alignment
either on nucleotide-level, when comparing sequencing reads
with a database of microbial genomes, or on protein-level
when translating reads to amino acid sequences and comparing
with a catalogue of microbial genes. However, with increasing
volumes of microbial genome databases and sequencing output,
computational methods need to catch up, as traditional methods
based on local sequence alignment are too slow to cope with the
increasing amount of data.

For the similar problem of mapping sequencing reads to
a reference genome, heuristic methods achieve speed
improvements of orders of magnitude by using advanced index
structures for fast identification and extension of short exact
matches (seeds) between query and the reference genome®.
However, these mappers are not suited for classification of
metagenomic sequences, because they only work on DNA in a
usually semi-global alignment model and assume near-identity of
read sequences and reference genome.

Thus, programs have been developed for fast taxonomic
classification of individual sequencing reads by using hash-based
index structures built from a set of reference sequences, typically a
database of complete microbial genomes. To achieve high speed,
these algorithms do not use traditional local alignment methods,
but rely on the identification of k-mers, short exact matching
substrings of fixed-length k, in order to compare two nucleotide
sequences. For the taxonomic assignment of reads, these
programs typically preprocess the reference genomes by
extracting all contained k-mers and storing them in the index
for fast lookup. Then, the k-mers contained in each sequencing
read are searched in this index and the read is assigned to a taxon
based on the matching genomes. Recent programs following this
paradigm are LMAT’, Kraken® and Clark®. For example, Kraken
builds an index from all k-mers found in the reference genomes
and assigns each k-mer to the least common ancestor (LCA)
of all species having that k-mer. Then, during the search, Kraken
matches the k-mers found in the reads to this index and
eventually assigns the read to the taxon with most matching
k-mers by following a path from the root of the tree. Clark on the
other hand only uses discriminative k-mers between sets of
reference genomes belonging to a pre-defined taxonomic rank,
for example, genus, which are then used to classify reads to a
node in the taxonomic tree at that particular rank. While this
approach reduces the size of the index, it, however, prohibits the
assignment of reads to higher taxonomic levels in case of

2

ambiguity and therefore requires the user to build different
indices for each rank in the taxonomic tree. Genomic k-mers
are also used in the LSA program!®, which can quickly sort
metagenomic reads into bins for each species to aid the assembly
of low-abundance species.

Fast classifiers using k-mers have so far been restricted to
classification at the DNA level, where the fundamental
requirement is a high sequence identity between reads and the
reference database, so that in the minimal case at least one k-mer
per read can be found in the database. Therefore, these methods
work best for samples in which the majority of the species have
been previously sequenced and their genomes are contained in
the reference database and when a classification at the lowest
possible level in the taxonomy is of importance. However in
many samples, no reference genomes are available for a large
fraction of the organisms.

Another general problem with metagenomic sequence
comparison is a sampling bias in the phylogenetic distribution
of available reference genomes. On the one hand, certain model
organisms or pathogens, for example, from human microbiomes,
are primary targets for microbial research and are therefore
over-represented in the genome databases. On the other hand,
species that were not possible to culture in the laboratory are
underrepresented, which is a further challenge for the taxonomic
classification of environmental samples, especially from extreme
environments. In addition, the rate of evolution is faster for
microbes and especially for viruses compared with eukaryotes
due to higher replication rates. Thus, metagenomic studies
continuously find novel habitats where large fractions of the
sequence data remain unclassified or only show low sequence
similarities to the known species!' "2,

In such samples using protein-level classification can increase
accuracy, because protein sequences are more conserved than the
underlying DNA, and microbial and viral genomes are typically
densely packed with protein-coding genes'*'4. In addition,
protein sequence comparison is more tolerant to sequencing
errors due to the degeneracy of the genetic code. Thus, there is a
need for fast metagenome classifiers that are able to detect
evolutionary distant relatives of the species with reference
genomes based on amino acid sequence comparison. Several
programs exist for seed-based local alignment of protein
sequences, like BlastP and BlastX!®, or the faster methods
using index structures, like RapSearch!® and Diamond!’.
However, these alignment programs are generally slower than
the k-mer-based methods, and they report all alignments to the
reference database, which need to be analysed further for
taxonomic classification!®.

Here we present Kaiju, a novel program for fast taxonomic
classification based on sequence comparison to a reference
database of microbial proteins. We show that our approach is able
to classify more reads in real metagenomic data sets and evaluate
its performance in a benchmark study, which simulates the
classification of a novel genome taking the sampling bias of
reference databases into account.

Results

Protein-level sequence classification. Kaiju translates
metagenomic sequencing reads into the six possible reading
frames and searches for maximum exact matches (MEMs) of
amino acid sequences in a given database of annotated proteins
from microbial reference genomes. If matches to one or more
database sequences are found for a read, Kaiju outputs the
taxonomic identifier of the corresponding taxon, or it determines
the LCA in the case of equally good matches to different taxa.
Kaiju’s underlying sequence comparison algorithm uses the

| 711257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

Burrows-Wheeler transform (BWT) of the protein database,
which enables exact string matching in time proportional to the
length of the query, to achieve a high classification speed.

In k-mer-based methods, the size of k governs the sensitivity
and precision of the search. If k is chosen too large, no identical
k-mers between read and database might be found, especially
for short or erroneous reads, as well as for evolutionary distant
sequences. If k is chosen too small, more false positive matches
will be found. Therefore, in order to not be restricted by a
prespecified k-mer size, Kaiju finds MEMs between reads and
database to achieve both a high sensitivity and precision. Reads
are directly assigned to a species or strain, or in case of ambiguity,
to higher level nodes in the taxonomic tree. For example, if a read
contains an amino acid sequence that is identical in two different
species of the same genus then the read will be classified to this
genus. Kaiju also offers the possibility to extend matches by
allowing a certain number of amino acid substitutions at the end
of an exact match in a greedy heuristic approach using the
BLOSUMBS62 substitution matrix. See the Methods section for a
detailed description of Kaiju’s algorithm.

Genome exclusion benchmark. Benchmarking a classifier’s
accuracy can be done by simulation studies, which, knowing
the ground truth about the origin of the simulated reads, can
assess the sensitivity and precision of the classification. However,
the benchmark protocol needs to reflect the real obstacles in
metagenomic studies, which do not only include the bias and
errors of the sequencing technology, but also the microbial
composition of the sample at hand. Thus, we devised a simulation
benchmark, which emulates the often limited availability
of reference genomes and its impact on the classification
performance when faced with a novel strain or species found in
the metagenomic sample. To this end, we created a reference
database of 2,724 bacterial and archaeal genomes and selected the
subset of genomes belonging to genera that have at least 2 and
most 10 genomes in the database. For each of the 882 genomes in
this subset, we simulated 4 sets of Illumina and 1 set of Roche/454
sequencing reads and created a version of the reference database
excluding that genome. This stripped reference (now containing
2,723 genomes) was then used to classify the simulated reads and
we measured the number of classified reads, sensitivity and
precision on genus, as well as phylum-level (see Methods).
The number of genomes per genus serves as an indicator for the
difficulty of the classification problem. For example, it is
much harder to assign a novel genome to its genus when there is
only one other genome of the same genus already available in the
database. On the other hand, if there are 10 genomes available
in a genus, it is typically much easier to classify the reads from
the excluded genome to its genus with 9 remaining genomes
available.

We compared the performance of Kaiju with the two
k-mer-based programs Kraken and Clark, which performed
best in speed and accuracy in a recent benchmark study!®.
Both Kraken and Clark use a reference database comprising
whole genomes and construct an index of the contained
nucleotide k-mers. While Kraken uses a default length of
k=31, the user can chose k in Clark during database
construction and values of k=20 and k =31 are recommended
for highest sensitivity and highest precision, respectively.
Therefore we chose values of k=20 and k=31 in Clark to
illustrate the influence of the choice of k on the classification
performance. Kaiju was run in the fastest MEM mode
(with minimum fragment length m=11), as well as in the
heuristic Greedy mode (with minimum score s=65), allowing
either only one (Greedy-1) or up to five (Greedy-5) amino acid
substitutions during the search.

Genomes were binned into categories in the range 2-10
according to the total number of genomes in the genus. Sensitivity
and precision were calculated as the mean across all genomes in
each category for each program and the five different types
of simulated reads. Figure 1 compares the genus-level sensitivity
and precision and Supplementary Fig. 1 shows the mean
percentage of classification attempts for each genus category.

As expected, all programs have the lowest percentage of
classified reads and the lowest sensitivity in those genera
with only few available genomes and highest sensitivity in genera
with seven or more genomes. Second, the read length is a major
determinant for sensitivity as there is a much higher chance of
finding a matching sequence to the reference database with
increasing read length. Especially Kaiju gains a further increase of
sensitivity from longer reads, as the chance of an overlap to a
protein-coding region additionally increases with read length.
For example, when looking at the Illumina single-end 100 nt
reads, Greedy-5 achieves the highest sensitivity of 29% of all
programs in genera with only two genomes, whereas Clark-k31
has the lowest sensitivity of 16%. In contrast for Illumina
paired-end 250 nt reads, Greedy-5 achieves 59% sensitivity,
whereas Clark-k31 only achieves 36%. With increasing number
of genomes per genus, the difference between Greedy-5 and
both Clark and Kraken shrinks to a few per cent, as the chance
of finding at least one k-mer per read increases with more
available reference genomes. Kaiju's MEM mode has lower
sensitivity compared with Greedy modes in all cases, because it
only searches for exact matches, which is especially visible in
short reads.

Similarly, the precision of all programs is lowest in genera with
only two genomes and increases with higher number of available
genomes. However, the differences between the programs is
much smaller compared with sensitivity, with Clark-k31 showing
the highest precision by a small margin in most cases.
When comparing Clark-k31 and Kraken, Clark has consistently
a little bit lower sensitivity and a bit higher precision than Kraken.
The difference between Clark-k20 and Clark-k31 nicely illustrates
the trade-off between sensitivity and precision depending on the
k-mer size. However, the loss in precision is generally higher than
the gain in sensitivity when using k = 20.

Supplementary Fig. 2 shows the phylum-level sensitivity and
precision. At this level, the difference in sensitivity between
Kaiju and Kraken is generally higher, because more reads
are assigned to ranks higher than genus by Kaiju's LCA
algorithm, whereas Kraken’s weighted path algorithm usually
assigns reads to the lowest possible level. Again, the increase
in sensitivity with increasing read length is higher in Kaiju
compared with Kraken and Clark. For example, in genera
with only two genomes, Greedy-5 achieves between 41%
(Ilumina single-end 100 nt) and 84% (Illumina paired-end 250
nt), whereas Clark achieves between 17 and 44%. On
phylum-level, all modes of Kaiju achieve ~10% higher sensitivity
than Clark and Kraken up to the highest category with genera
containing 10 genomes.

Phylum-level precision is generally much higher (>90%) for
all methods and all read types compared with genus-level,
because the chance of false positive matches outside the
correct phylum is lower. Again, Clark-k20 consistently yields a
much lower precision compared with Clark-k31 and the other
programs, however, it also gains more sensitivity on phylum-level
classification compared with genus-level. This can be attributed to
the removal of k-mers that are shared across genera for the
genus-level classification, which, however, can be used on the
phylum-level.

Figure 2 shows the mean genus-level and phylum-level
sensitivity and precision across all 882 measured genomes for

| 7:11257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications 3


http://www.nature.com/naturecommunications

ARTICLE

Sensitivity
75
L]
u 2
50 [ ] []
L o
e _—e
F T, Ay ¥
— b/
= A
75
n
w a
» w
50 ' 1 /./o\ /_;
>
n /:// 3\»‘/ v » 197
- |
25 B4 o
75 7 .\\\.//.
»/2\\./ s e
= |
50 .//: P~
1 -~
25
75 //=\.\\.//’
=== » &
—% = a T
./" []
50 PO
1 >
25
75 A LS —8
[~
=y A X
—— 4
L]
50 ./: i
it *
25

2 3 4 5 6 7 8 9 10
(212) (135) (100) (115) (66) (98) (64) (72)

(20) (212)

Precision

5 /\'\\o\ c

—
——9 3
A5 2
; = o
{ » - @
. I a
¢

L}

= S
L] Q
. I}
o
=1
T /‘\Q\.\\ E
v 3
= 5
e s
T | a o
./ ™ a (:D
. T
L] @
. a
T IS
o
=
——p _
T ./. T Y =
n/i/k’ T L = + g
//. [ o
L4 @
L} =
" =}
= ¢
S
- Q
n
o
o
=
g —— —
T e F

n "
] e n L g
>l [ )
v - o
QO
| ] (__s
T ¢
n @
>
Q
o
o
S
=

/E\‘«‘A§’\.\.
L & IS
1L —" » M = =g
il )
./ L ] =
w Q
L ?
n @
3
" Q
w
&
S
=

2 3 4 5 6 7 8 9 10
(185) (100) (115) (66) (98) (64) (72) (20)

Genomes per genus (#¥genomes in this category)

-o- Kaiju MEM Kaiju Greedy-1

Kaiju Greedy-5

Kraken -m- Clark-k20 -®- Clark—k31

Figure 1 | Genus-level sensitivity and precision. Sensitivity and precision are shown as average for each bin of genera for the five different types of reads
and the three programs. The x-axis denotes the number of genomes in the genus and the total number of genomes in that category. For example, 212 of the
measured 882 genomes belong to the 106 genera with only 2 available genomes, and the data points show the mean sensitivity and precision across all 212
genomes in that category. Kaiju was run in MEM mode with length threshold m =11 a.a. and in Greedy mode with either 1 or up to 5 allowed mismatches
and a score threshold s =65. Kraken uses k=31 and Clark was run with both k=31 and k=20, which is denoted by the dotted line.

the five different read types. The biggest gap for sensitivity and
precision between the read types occurs for all programs between
both paired-end and single-end 100 nt and the single-end 250 nt
Mumina reads. Highest sensitivity is achieved by Greedy-5,
followed by Greedy-1, MEM, Kraken and Clark in the paired-end
250 nt reads. Precision is highest for Clark closely followed by
Kraken both on genus-level and phylum-level. Especially in the
100 nt reads, Kaiju’s precision is lower, but the gain in sensitivity
remains higher than the loss in precision. For the 250 nt reads
and longer, Kaiju’s precision is marginally lower than Kraken and
Clark-k31, while sensitivity is much higher.

In this analysis, we used cutoff values of minimum required
match length m=11 in Kaijju's MEM mode and minimum

4

required match score s=65 in the Greedy modes. These
parameters govern the accuracy of the classification, similar to
the choice of k in the k-mer-based classifiers. Thus, we also
examined Kaiju’s accuracy using different values for m and s.
Supplementary Figure 3 shows the trade-off between sensitivity
and precision of the classification depending on the choice of m
or s. Similar to the choice of k in Clark, the sensitivity is highest
and precision is lowest for small cutoff values. Increasing the
cutoffs results in lower sensitivity but higher precision. However,
the increase in sensitivity between m =11 and m =12 is higher
than the loss in precision in all data sets both on genus-level, as
well as phylum-level. Similarly in the Greedy modes, s =65 also
yields higher gain in sensitivity than loss in precision.

| 711257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

Genus
80
2 Va
=
‘2 60 gf "
3 ]
v (@]
40 \v4 A (@]
¢)
o A e g
¢ o
74 76 78 93
Precision

Phylum
o V A Program
O Kaiju MEM
& YV a 2 Kaiju Greedy—1
\/ Kaiju Greedy-5
< Kraken
\v4 L O Clark-k31
b By Read type
v A Illumina single—end 100nt
A lllumina paired—end 100nt
lllumina single-end 250nt
¢ g W 454 single-end 350nt
O g W lllumina paired-end 250nt
94 95 96

Figure 2 | Average sensitivity and precision. For each of the five types of reads, sensitivity and precision were averaged over all 882 measured genomes in

the benchmark, showing the overall performance of each program.

MEM  Greedy Kraken Merged
Human vagina 58.6 63.3 45.5 66.4 ] 0.4%
Human saliva 56.1 61.8 37.4 64.6 | | 0.1
Human gut 51.6 56.7 34.7 61.1 || 0%
Cat gut 51.8 58.9 23.0 63.1 | 20% il
Lake 26.5 33.7 3.1 340 |
River plume 31.8 38.8 5.8 39.3 |
Baltic seawater 25.3 33.9 5.6 348 |
Desert soil 19.3 24.4 3.8 247 |
Bioreactor sediment 65.0 72.8 16.2 731 I
Bioreactor compost 50.3 58.5 15.1 595 |
Mean 43.6 50.3 19.0 521 0% 100%

Figure 3 | Classification of real metagenomes. Percentage of classified reads in 10 real metagenomes for Kaiju MEM (m=12) and Greedy-5 (s=70), as
well as Kraken (k=131). The Merged column shows the percentage of reads that are classified by at least one of Greedy-5 or Kraken. The Venn-Bar-diagram
visualizes the percentage of reads that are classified either only by Kraken (blue), Greedy-5 (orange) or both (yellow). Grey bars in the human and cat
samples denote the percentage of reads mapped to the respective host genomes.

Real metagenomes. To assess how many reads can actually be
classified in real metagenomic data sets, we arbitrarily selected 10
previously published data sets from different microbiomes that
were sequenced using various different HTS instruments. The two
data sets from human saliva and vagina samples were already
used by Ounit et al.’. The other eight samples are from human
and cat gut, a freshwater lake, the Amazon river plume and Baltic
sea, xeric desert soil and from two bioreactors that were
inoculated with microbes from Wadden Sea sediment and
compost environments. Supplementary Table 1 lists metadata
and accession numbers for the data sets. The same database
comprising 2,724 genomes from our exclusion benchmark serves
as a reference database. We classified the 10 data sets using
Kraken (k=31) and Kaiju in MEM and Greedy-5 modes with
more conservative cutoff values of m=12 and s=70,
respectively, which showed on average a similar precision as
Kraken across the five types of reads in our exclusion benchmark,
see Supplementary Fig. 3. We also mapped the four human and
cat samples to their respective host genomes using BWA!®, and
the percentage of mapped reads was at most 2%.

Figure 3 shows the percentage of classified reads from each
data set for MEM, Greedy-5 and Kraken, as well as the overlap
and combined percentage of Greedy-5 and Kraken. Generally,
Kaiju’s MEM mode classifies between 13.1% (Human vagina) and
48.8% (Bioreactor sediment) more reads than Kraken, which is
further increased to 17.8 and 56.6% in Kaiju’s Greedy-5
mode. The percentages of reads that are classified by Kraken,

but unclassified by Greedy-5 range between 0.3% (Desert soil
and Lake) and 4.4% (Human gut). Across all data sets, the
number of reads that were classified by both Greedy-5 and
Kraken (overlap) varies between 2.8% (Lake) and 42.4% (Human
vagina). By merging the results from Greedy-5 and Kraken,
between 24.7% (Desert soil) and 73.1% (Bioreactor sediment) of
the total reads can be classified.

As expected, the environmental samples, especially from the
extreme xeric desert, but also the aquatic microbiomes, pose
the biggest challenges for taxonomic assignment. In those
samples Kaiju’s protein-level comparison with substitutions
allows for a more sensitive sequence comparison resulting in
more classified reads. However, even in the human microbiomes
Kaiju’s protein-level classification adds >20% additional
classified reads to Kraken’s result.

We also run each data set through Clark (k=31) with its
phylum-level database and it classified fewer reads than Kraken in
all cases (data not shown). In principle, if only a small fraction of
reads were classified, classification could be done using a smaller
k-mer size in Kraken and Clark or smaller cutoff values in Kaiju
to increase the number of classified reads. The trade-off, however,
would be a decreased precision as shown in our benchmark and
also discussed in the study by Ounit et al.’.

HiSeq and MiSeq mock communities. In addition to the real
metagenomes, we also measured Kaiju's and Kraken’s

| 7:11257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications 5


http://www.nature.com/naturecommunications

ARTICLE

performance using the same metrics and reference database on
the HiSeq and MiSeq mock community data sets from previous
benchmarks®®. They comprise 10k real sequencing reads from 10
bacterial strains with mean read length of 92 nt (HiSeq) and 156
nt (MiSeq). All strains belong to genera that are associated with
human microbiomes or human pathogens and have typically
many reference genomes available. Supplementary Table 2 shows
sensitivity and precision on both genus- and phylum-level of
Kaiju in Greedy-5 mode and Kraken (k=31) using the same
reference database as above. In the HiSeq data set, Kaiju has
73.3% sensitivity (Kraken: 78.0%) and 94.4% precision (Kraken:
99.2%) on genus-level, and 78.1% sensitivity (Kraken: 78.8%)
and 98.3% precision (Kraken: 99.7%) on phylum-level. Because
the short reads can only yield short amino acid fragments that are
more likely found across genera, many reads are assigned to
higher ranks resulting in a lower genus-level sensitivity. In
addition, the short read length results in generally lower overlap
with protein-coding regions and therefore Kraken yields a higher
sensitivity, because it can classify those. In the MiSeq data set, the
difference between both programs on genus-level is similar,
whereas Greedy-5 yields 8% higher sensitivity and 1% higher
precision on phylum-level compared with Kraken.

Runtime and memory. The read data set for the runtime
benchmark contained 27.24 m reads comprised of 10k randomly
sampled reads from each of the 2,724 genomes in our accuracy
benchmark, which served again as the reference database. For the
five different types of reads, the classification speed of Clark and
Kraken using k=31 and of Kaiju’s modes MEM, Greedy-1 and
Greedy-5 was measured using 25 parallel threads (see Methods
section for specification of the hardware).

Figure 4 shows the number of processed reads per second
(r.p.s.). The classification of the short single-end 100 nt reads is
the fastest in all programs (Kaiju MEM: 173kr.p.s., Kraken:
165kr.p.s., Clark: 93kr.p.s.), whereas classification of the
paired-end 250 nt (MEM: 97kr.p.s., Kraken: 24kr.p.s.,
Clark: 19kr.p.s.) takes the longest time. In the long reads, Kaiju
can benefit from search space pruning by finding long MEMs
first, whereas Kraken and Clark have to analyse more k-mers
compared with the shorter reads. Naturally, Kaiju’s MEM mode is
much faster than the Greedy modes, which extend the search
space and also need to calculate the scores for each match.
Depending on the read type, Greedy-5 classifies between 36k and
76kr.p.s. Greedy-1 with only one allowed mismatch is faster than
Greedy-5 and can classify between 54k and 100kr.p.s.. Interest-
ingly, Kaiju’s Greedy mode is faster in longer and paired-end

454 single—end 350 nt m} O
lllumina paired—-end 250 nt W
lllumina paired—end 100 nt r
lllumina single—end 250 nt O

lllumina single—end 100 nt

20k 40k 60k

® Kaiju MEM

Kaiju Greedy-1

reads compared with the 100 nt reads. This is due to the pruning
of the search space by discarding query sequences that cannot
achieve higher scores than the best scoring match, which is
usually found earlier in longer and paired-end reads (see
Methods). While Kaiju MEM is the fastest program in most
cases, especially for the short reads, Greedy-5 generally takes the
longest time, nicely demonstrating the trade-off between speed
and sensitivity.

The measured peak memory consumption during the
classification is 5.6 GB for Kaiju, 72 GB for Kraken and between
65 and 78 GB for Clark depending on the read length.

The construction of Kaiju’s index from the protein sequence
database takes 8 min with peak memory usage of 24 GB using 25
threads (Kraken: 1h26m/165 GB, Clark: 3h57m/152 GB). The
memory requirement is largely determined by the number of
parallel threads for sorting the suffix array, which can, for
example, be reduced to only 6.6 GB with only five threads. Kaiju’s
final index size on disk is 4.8 GB (Kraken: 73 GB, Clark: 39 GB).

Discussion

When performing sequence comparison, as in the case of
taxonomic assignment using a reference database, there is the
obvious trade-off between an algorithm’s speed and accuracy.
While the traditional local alignment would return optimal
alignments, its slow runtime prohibits its use on large HTS data
sets. On the other hand, while k-mer-based methods are very fast,
they often lack sensitivity and a big fraction of the metagenomic
reads might remain unclassified, as can be seen from Fig. 3. Kaiju
therefore uses MEMs (with optional substitutions) on the
protein-level instead of nucleotide-level to increase sensitivity of
the classification while maintaining a high precision. By using the
BWT as an index for the reference protein database, Kaiju is fast
enough for classifying up to millions of reads per minute,
depending on the read length and the number of allowed
mismatches, and is typically faster than the two k-mer-based
methods Kraken and Clark. In addition, the memory-efficient
implementation of the FM-index and suffix array make Kaiju’s
memory footprint small enough (below 6 GB on our benchmark
database) for running it on a standard PC. Kaiju does not have a
limit on the input sequence length, so it could in principle also
classify assembled contigs.

The aim of using protein-level sequence comparison is to
improve the classification of metagenomes comprising species
that are evolutionary distant to the species in the reference or
belong to genera that have only few reference genomes available.
Therefore, we focused on those genera with <10 genomes in our

[ J
L
2 o
ad o
m %0
80k 100k 120k 140k 160k

Reads per second

Kaiju Greedy-5 4 Kraken [ Clark

Figure 4 | Classification speed. Performance was measured in processed reads per second for each program using 25 parallel threads for classifying a set

of 27.24 m simulated reads for the five different read types.

6

| 711257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

genome exclusion benchmark, because the classification problem
becomes easier once many reference genomes are available and
can be mostly accomplished by nucleotide-level sequence
comparison, which is also better suited for strain typing because
of the finer resolution regarding SNPs. Our benchmark on 882
genomes and five types of simulated reads shows that Kaiju
consistently achieves a much higher sensitivity with only little loss
of precision compared with Kraken and Clark, which use
fixed-length k-mers. The difference was especially visible in
genera with only few available genomes. Contrary to classification
based on marker genes, for example, 16S ribosomal RNA, a
genus-level classification of shotgun metagenomic reads is
impossible for genera with no available reference genomes.
However, they might still be classified to their correct family, if
genomes from other genera in this family are available.

The obvious disadvantage of protein-level sequence
classification is the inability to classify reads originating from
non-protein-coding genomic regions. Especially when the
genomes of the sequenced microbial strains are also contained
in the reference database, Kaiju would be less sensitive than
nucleotide-level classifiers, which can assess the entire genome, as
seen in the HiSeq and MiSeq data sets. However, due to the high
density of protein-coding genes in microbial genomes, the
probability of overlap between individual sequencing reads and
protein-coding genes increases substantially with increasing read
lengths. Furthermore, when using paired-end sequencing, the
chance of one mate overlapping with a protein-coding gene is
higher than for single-end sequencing, which was also shown in
our benchmark where longer and paired-end reads had higher
sensitivity compared with shorter single-end reads.

In our set of 10 randomly selected real metagenomic data sets,
Kaiju classifies on average twice as many reads as Kraken. The
highest differences are observed in samples from non-human
microbiomes, showing that especially the classification of
environmental samples with high evolutionary distances to the
reference genomes can gain from Kaiju’s more sensitive sequence
comparison. By combining Kaiju’s and Kraken’s output, between
24 and 73% of reads can be classified across the various samples.

Principally, Kaiju’s algorithm is not limited to assigning reads
to taxa, but can also be used for fast searching in arbitrary protein
databases, for example, when querying novel bacterial genomes
against a database of resistance genes or a collection of proteins

Sequencing Read

with functional annotation. The certainly expected increase of
reference database volumes in the coming years can easily be
handled by Kaiju, due to the usage of memory-efficient index
structures.

Methods

Metagenome classifier. Kaiju classifies individual metagenomic reads using a
reference database comprising the annotated protein-coding genes of a set of
microbial genomes. We employ a search strategy, which finds maximal exact
matching substrings between query and database using a modified version of the
backwards search algorithm in the BWT2%21, The BWT?? is a text transformation
that converts the reference sequence database into an easily searchable
representation, which allows for exact string matching between a query sequence
and the database in time proportional to the length of the query. While in the
context of read mapping, MEMs have been used as a fast method for identifying
seeds of mapping regions in the reference genome, for example, in (refs 23,24), we
use MEMs to quickly find those sequences in the reference database that share the
longest possible subsequence with the query. Backtracking through the BWT can
be sped up by using a lookup table for occurrence counts of each alphabet letter,
which was first proposed by Ferragina and Manzini?® and is often called FM-index.
Kaiju employs a sparse representation of this table by using checkpoints, which
allows for decreasing the otherwise large memory requirement due to the size of
the amino acid alphabet. The initial suffix array used for calculating the BWT is
also implemented as a sparse suffix array with adjustable size, which further
reduces the index size with only little impact on runtime, because the suffix array is
only needed for determining the name of the database sequence once the best
match for a read is found. Thus, Kaiju is the first program to efficiently use the
BWT and FM-index on a large protein database, allowing querying large sets of
sequencing reads.

Figure 5 illustrates the steps in Kaiju’s algorithm: First, Kaiju translates each
read into the six possible reading frames, which are then split at stop codons into
amino acid fragments. These fragments are sorted by length, and, beginning with
the longest fragment, queried against the reference database using the backwards
search in the BWT. Given a query fragment of length # and the minimum required
match length m, the backwards search is started from all positions between # and
n—m in the query and the longest MEM is retained. If one or more matches of
length I>m are found, m is set to I and the next fragment in the ordered list is
queried against the database if its length is at least [, otherwise the search stops.
Once the search is finished and one or more matches are found, the taxon identifier
from the corresponding database sequence is retrieved from the suffix array and
printed to the output. If equally long matches are found in multiple taxa, Kaiju
determines their LCA from the taxonomic tree (Supplementary Fig. 6) and outputs
its taxon identifier. Thus, each read is always classified to the lowest possible
taxonomic level given the ambiguity of the search result.

The minimum required MEM length m is the major parameter for trading
sensitivity versus precision (with little impact on runtime). If the error rate e of the
sequencing reads is known and the evolutionary distance between reference
genome and sequenced genome is negligible, m can be estimated from e and the
read length?3. However, in metagenomics, the evolutionary distance, which adds
variation on top of sequencing errors, is not known a priori. At least, one can

1. Translation

Translate nucleotide sequence into amino acid
sequences by the six possible reading frames
and split into fragments at stop codons.

2. Sorting

MEM  Sort fragments by length > m

3. Database search

Find MEMs with length > m
e ———).}

12

> 20

33

- . / S

. —

Sort fragments by score > s

@ Stop search {

Assign read to the taxon with longest match

Find matches with

@ Stop search 'L

Assign read to the taxon with highest scoring match

Figure 5 | Kaiju's algorithm. First, a sequencing read is translated into the six possible reading frames and the resulting amino acid sequences are split
into fragments at stop codons. Fragments are then sorted either by their length (MEM mode) or by their BLOSUM®62 score (Greedy mode). This sorted
list of fragments is then searched against the reference protein database using the backwards search algorithm on the BWT. While MEM mode only
allows exact matches, Greedy mode extends matches at their left end by allowing substitutions. Once the remaining fragments in the list are shorter
than the best match obtained so far (MEM) or cannot achieve a better score (Greedy), the search stops and the taxon identifier of the corresponding

database sequence is retrieved.

| 7:11257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications 7


http://www.nature.com/naturecommunications

ARTICLE

estimate the false positive rate by counting random matches. To this end, we
created a shuffled version of the microbial subset of NCBI's NR protein database,
using uShuffle?> with a window length of 100 amino acids, and searched for
MEMs between simulated metagenomic reads and the shuffled database.
Supplementary Figure 5 shows the cumulative sum of matches to the shuffled
database sorted by the length of the match, and one can observe that ~95% of
them are <11 amino acids long. When classifying simulated reads against the
original database, >75% of wrong classifications and only ~2% of correct
classifications have length <11. We therefore chose m =11 as the default
minimum match length in Kaiju.

Searching for MEMs is the fastest possible search strategy, but its sensitivity
decreases with increasing evolutionary distance between query and target, where
more and more amino acid substitutions occur and exact matches become shorter.
Therefore, allowing for substitutions during the backwards search can bridge
mismatches and extend the match at the cost of an exponential increase of runtime
depending on the number of allowed mismatched positions. Because of the rapid
expansion of the search space, especially with the 20 letter amino acid alphabet, one
could employ a greedy heuristic, in which substitutions are only introduced at the
end of a match instead of all positions in the query sequence. Therefore, we also
implemented a Greedy search mode in Kaiju, which first locates all MEMs of a
minimum seed length (default 7) and then extends them by allowing substitutions at
the left ends of each seed match. From there, the backwards search continues until
the next mismatch occurs. Eventually the search stops once the left end of the query
is reached or if the maximum allowed number of substitutions has been reached.

Since amino acid substitutions in homologous sequences are non-uniform, a
further speed-up can be gained by prioritizing the most likely substitutions at each
position. By using an amino acid substitution model, a total score for each match
can be calculated, as in standard sequence alignment, which is then used to rank
multiple matches and select the taxon from the database for classification.
Therefore, after the translation of a read into a set of amino acid fragments, we
rank the fragments by their BLOSUMS62 score and start the database search with
the highest scoring fragment. For each substituted amino acid, the modified
fragment is placed back into the search list according to its new (now lower) score.
Once a match is found, which has a higher score than all remaining fragments in
the search list and a score above the minimum score threshold s, the search stops
and this highest scoring match is used for classifying the read. If multiple matches
to several different database entries have the same score, Kaiju classifies the read to
their LCA as above. Again, the minimum required score s necessary for avoiding
random matches can be estimated by using a shuffled database and we chose s =65
as default value for Kaiju’s Greedy mode.

Kaiju is implemented as a command-line program in C/C++ and is also
available via a web server. Input files containing the (single-end or paired-end)
reads can either be in FASTA or FASTQ format. Kaiju outputs one line for each
read (or read pair), containing the read name and the NCBI taxon identifier of the
assigned taxon, as well as the length or score of the match. Optionally, Kaiju can
also produce a summary file with the number of reads assigned per taxon, which
can be loaded into Krona?® for interactive visualization. We also include a utility
program that can merge the classification results from different runs or programs,
for example, for merging Kaiju and Kraken results.

Performance evaluation. The primary goal of Kaiju’s protein-level classification is
to improve classification of those parts of a metagenome that are only distantly
related to the known sequences or belong to a branch of the phylogeny that is
underrepresented in the reference database. We therefore devised a benchmark
study, which addresses this problem by simulating the classification of
metagenomic reads from a novel strain or species that is not contained in the
reference database.

For our benchmark data set, we downloaded a snapshot of all complete bacterial
and archaeal genomes from the NCBI FTP server (date: 16 December 2014). Only
those genomes were retained that are assigned to a species belonging to a genus and
have a full chromosome with annotated proteins, resulting in a total of 2,724
genomes belonging to 692 distinct genera. Supplementary Fig. 4 shows the
distribution of genomes to genera, illustrating the large variance in the number of
sequenced genomes for each genus. For example, the genus Streptococcus contains
121 genomes, whereas 405 genera have only 1 available genome, 106 genera have 2
available genomes and so on. The distribution clearly illustrates a sampling bias
and the sparseness across large parts of the phylogeny.

From the total of 2,724 genomes, we extracted those genera that have at least 2
and at most 10 genomes assigned. This resulted in a list of 242 genera comprising
882 genomes, for which we measured the classification performance individually.
For each of the 882 genomes, we simulated five sets of HTS reads and created a
reference database not containing this genome that is then used to classify the
simulated reads. Reads were simulated from the whole genome (including
plasmids) using ART?”. The four sets of Illumina reads contain 50k reads of length
either 100 or 250 nt, both in single-end and paired-end mode. Another set of 50k
Roche/454 reads with minimum length of 50 nt and mean length of 350 nt was also
simulated using ART.

To evaluate classification accuracy, we measured the number of classified reads,
as well as sensitivity and precision on genus- and phylum-levels. Sensitivity was
calculated as the percentage of reads assigned to the correct genus/phylum out of

8

the total number of reads in the input. Precision was calculated as the percentage of
reads assigned to the correct genus/phylum out of the number of classified

reads, excluding reads classified correctly to a rank above genus/phylum-level.
The same measurements were used in the study by Ounit et al.®. Kraken (v0.10.4b)
and Clark (v1.1.3) were run in their default modes using k =31 for highest
precision, and Clark was also run using k = 20. Kaiju was run in MEM mode using
minimum match lengths m=11...14 and in Greedy-1 and Greedy-5 modes
(allowing only 1 or up to 5 substitutions) using minimum match scores
s=55...80.

Speed measurements were run on an HP Apollo 6000 System ProLiant XL230a
Gen9 Server, which has two 64-bit Intel Xeon E5-2683 2 GHz CPUs (14 cores
each), 128 GB DDR4 memory and a 500 GB 7200 r.p.m. SATA disk (HP
614829-002). Kraken and Clark were run in default modes with k=31 and Kaiju
was run in MEM (m = 12), as well as Greedy-1 and Greedy-5 (s = 65) modes with
an index that uses a suffix array exponent of 3. Performance was measured in
processed reads (or read pairs) per second (r.p.s.) using 25 parallel threads. While
Kaiju and Clark need to preload their index into memory before the classification
starts, Kraken can either preload the index or only load necessary segments during
the classification. We therefore measured Kraken’s speed using both options, and it
turned out that Kraken runs faster without preloading on our hardware. We
therefore report its performance without preloading. For each of the five types of
simulated reads from our exclusion benchmark, we created a data set comprising
10k reads from each genome in the reference database, resulting in 27.24 m reads
for each read type. Each combination of program and read type was measured four
times to reduce impact of caching and I/O fluctuations and the fastest run of the
replicates is reported.

Figures were made with the ggplot2 package?® in the R statistical software?’.

References

1. Riesenfeld, C., Schloss, P. & Handelsman, J. Metagenomics: genomic analysis of
microbial communities. Annu. Rev. Genet. 38, 525-552 (2004).

2. Shokralla, S., Spall, J., Gibson, J. & Hajibabaei, M. Next-generation sequencing
technologies for environmental DNA research. Mol. Ecol. 21, 1794-1805
(2012).

3. Segata, N. et al. Computational meta’omics for microbial community studies.
Mol. Syst. Biol. 9, 666 (2013).

4. Kinross, J., von Roon, A., Holmes, E., Darzi, A. & Nicholson, J. The human gut
microbiome: implications for future health care. Curr. Gastroenterol. Rep. 10,
396-403 (2008).

5. Wade, W. The oral microbiome in health and disease. Pharmacol. Res. 69,
137-143 (2013).

6. Fonseca, N., Rung, J., Brazma, A. & Marioni, J. Tools for mapping high-
throughput sequencing data. Bioinformatics 28, 3169-3177 (2012).

7. Ames, S. et al. Scalable metagenomic taxonomy classification using a reference
genome database. Bioinformatics 29, 2253-2260 (2013).

8. Wood, D. & Salzberg, S. Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biol. 15, R46 (2014).

9. Ounit, R, Wanamaker, S., Close, T. & Lonardi, S. CLARK: fast and accurate
classification of metagenomic and genomic sequences using discriminative
k-mers. BMC Genomics 16, 236, 2015).

10. Cleary, B. et al. Detection of low-abundance bacterial strains in
metagenomic data sets by eigengenome partitioning. Nat. Biotechnol. 33,
1053-1060 (2015).

11. Menzel, P. et al. Comparative metagenomics of eight geographically remote
terrestrial hot springs. Microb. Ecol. 70, 411-424 (2015).

12. Sunagawa, S. et al. Structure and function of the global ocean microbiome.
Science 348, 1261359 (2015).

13. Bentley, S. & Parkhill, J. Comparative genomic structure of prokaryotes. Annu.
Rev. Genet. 38, 771-792 (2004).

14. Garrett, R. A. & Klenk, H.-P. (eds) Archaea: Evolution, Physiology, and
Molecular Biology (Wiley-Blackwell, 2007).

15. Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. Basic local alignment
search tool. J. Mol. Biol. 215, 403-410 (1990).

16. Zhao, Y., Tang, H. & Ye, Y. RAPSearch2: a fast and memory-efficient protein
similarity search tool for next-generation sequencing data. Bioinformatics 28,
125-126 (2012).

17. Buchfink, B., Xie, C. & Huson, D. Fast and sensitive protein alignment using
DIAMOND. Nat. Methods 12, 59-60 (2015).

18. Lindgreen, S., Adair, K. & Gardner, P. An evaluation of the accuracy and speed
of metagenome analysis tools. Sci. Rep. 6, 19233 (2016).

19. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754-1760 (2009).

20. Ferragina, P. & Manzini, G. in Proceedings of the 41st Annual Symposium on
Foundations of Computer Science. FOCS 00, 390-398 (IEEE Computer Society,
2000).

21. Frellsen, J., Menzel, P. & Krogh, A. in Comprehensive Biomedical Physics (ed.
Brahme, A.) 41-50 (Elsevier, 2014).

| 711257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

ARTICLE

22. Burrows, M. & Wheeler, D. A Block-sorting Lossless Data Compression
Algorithm. SRC Research Report 124 (Digital Equipment Corporation, Palo
Alto, California, USA, 1994).

23. Liu, Y. & Schmidt, B. Long read alignment based on maximal exact match
seeds. Bioinformatics 28, i318-1324 (2012).

24. Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. Preprint at http://arxiv.org/abs/1303.3997 (2013).

25. Jiang, M., Anderson, J., Gillespie, J. & Mayne, M. ushuffle: a useful tool for
shuffling biological sequences while preserving the k-let counts. BMC
Bioinformatics 9, 192 (2008).

26. Ondov, B., Bergman, N. & Phillippy, A. Interactive metagenomic visualization
in a web browser. BMC Bioinformatics 12, 385 (2011).

27. Huang, W, Li, L., Myers, ]. & Marth, G. ART: a next-generation sequencing
read simulator. Bioinformatics 28, 593-594 (2012).

28. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag,
2009).

29. R Core Team. R. A Language and Environment for Statistical Computing
(R Foundation for Statistical Computing, 2015).

Acknowledgements

The research leading to these results has received funding from the Novo Nordisk
Foundation and the European Union 7th Framework Programme FP7/2007-2013 under
grant agreement no. 265933. ELIXIR provided computational support through the
Computerome.

Author contributions
P.M. and A.K. conceived the algorithm and developed the software together; P.M. and
K.L.N. carried out the data analysis; P.M. and A.K. co-wrote the paper.

Additional information

Availability: Kaiju is written in C/C ++ and the source code is freely available as open-
source software under the GNU GPL3 at https://github.com/bioinformatics-centre/kaiju.
A web server is available at http://kaiju.binf.ku.dk.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Menzel, P. et al. Fast and sensitive taxonomic classification for
metagenomics with Kaiju. Nat. Commun. 7:11257 doi: 10.1038/ncomms11257 (2016).
This work is licensed under a Creative Commons Attribution 4.0
EY International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,

users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

| 7:11257 | DOI: 10.1038/ncomms11257 | www.nature.com/naturecommunications 9


https://github.com/bioinformatics-centre/kaiju
http://kaiju.binf.ku.dk
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions
http://npg.nature.com/reprintsandpermissions
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Fast and sensitive taxonomic classification for metagenomics with Kaiju
	Introduction
	Results
	Protein-level sequence classification
	Genome exclusion benchmark
	Real metagenomes
	HiSeq and MiSeq mock communities
	Runtime and memory

	Discussion
	Methods
	Metagenome classifier
	Performance evaluation

	Additional information
	Acknowledgements
	References


