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ABSTRACT
We present a new approach for computing generalized proximity

information of arbitrary 2D objects using graphics hardware.

Using multi-pass rendering techniques and accelerated distance

computation, our algorithm performs proximity queries not only

for detecting collisions, but also for computing intersections,

separation distance, penetration depth, and contact points and

normals. Our hybrid geometry and image-based approach balances

computation between the CPU and graphics subsystems.

Geometric object-space techniques coarsely localize potential

intersection regions or closest features between two objects, and

image-space techniques compute the low-level proximity

information in these regions. Most of the proximity information is

derived from a distance field computed using graphics hardware.

We demonstrate the performance in collision response

computation for rigid and deformable body dynamics simulations.

Our approach provides proximity information at interactive rates

for a variety of simulation strategies for both backtracking and

penalty-based collision responses.

Keywords: Proximity queries, collision detection, penetration

depth, graphics hardware acceleration, multi-pass techniques.

1 INTRODUCTION
Many applications of computer graphics or computer simulated

environments require spatial or proximity relationships between

objects. In particular, dynamic simulation, haptic rendering,

surgical simulation, robot motion planning, virtual prototyping,

and computer games often require many different proximity

queries simultaneously at interactive rates. We focus on interactive

computation of the following proximity queries between 2D

objects: collision detection, intersection, minimum separation

distance, penetration depth, and contact points and normals.

Algorithms for determining collisions, intersections, and minimum

separation distances have been extensively researched. Many are

restricted to convex objects [2,4,6,16] or are based on hierarchical

bounding-volume or spatial data structures that require

considerable precomputation and are best suited for rigid

geometry [8,12,14,19]. Some algorithms handle dynamically

deforming geometry by either having prior knowledge of motion

trajectories [22] or by using very specialized algorithms [1]. In our

approach, we emphasize the handling of non-convex, dynamically

deformable objects with no precomputation or knowledge of

object motions.

Penetration depth is typically defined as the minimum

translational distance needed to separate two objects. We define it

with respect to a point as the minimum translational distance and

direction needed to separate a penetrating point from an object’s

interior. This information is useful for penalty-based collision

response computation. Dobkin et al. have presented an algorithm

to compute the intersection depth of convex polytopes, though no

practical implementation is known [3]. In general, no robust and

efficient algorithms are known for computing the penetration

depth and direction for general, non-convex primitives.

Our algorithm relies on the computation of discretized distance

fields and graphics hardware-accelerated geometric computation.

Distance fields − scalar fields that specify minimum distance to a

shape for all points in the field − have been used for many

applications in graphics, robotics and manufacturing [5,9].

Common algorithms for distance field computation are based on

level sets [21] or adaptive techniques [5]. However, they either

require static geometry, extensive preprocessing, or lack tight

error bounds. Graphics hardware has been used to accelerate a

number of geometric computations, such as visualization of

constructive solid geometry models [7] and cross-sections and

interferences [20]. However, these only compute intersections, not

distance-related queries. Algorithms also exist for motion planning

using graphics hardware acceleration and distance fields [11,

13,15,18]. More recently, an algorithm has been proposed to

compute generalized Voronoi diagrams and distance fields using

graphics hardware [10]. Its application to motion planning was

presented in [11,18].

Our algorithm combines coarse traditional hierarchical approaches

and multi-pass rendering techniques with the graphics hardware-

accelerated distance field computation presented in [10]. The main

features of our approach include a unified framework for all

proximity queries, generality to non-convex polygons, no required

precomputation or complex data structures, computational

efficiency allowing interactive queries on current PCs, robustness

requiring no special-case handling of degeneracies, portability

across various CPU/graphics combinations, and error-bounds on

approximations. We have implemented our algorithm on PC and

SGI platforms, and demonstrated its performance in computing

collision responses in both rigid- and deformable-body dynamic

simulations. Our current algorithm and implementation focuses on

2D polygonal objects, but the basic design principles extend to 3D

and are the focus of our current work.

2 OUR APPROACH
While algorithms exist for performing some of the proximity

queries in both 2D and 3D, none meet all of our requirements even



in 2D. Our first step in developing a general unified approach that

is efficient and robust in practice focuses on the general 2D

proximity problem. Given a collection of 2D objects, we perform

coarse geometric localization to find rectangular regions of space

that contain either potential intersections or closest feature pairs

between objects. We uniformly point-sample these regions and use

polygon rasterization hardware to compute object intersections,

closest points, and the distance field. The distance field and its

gradient vector field provide the distance and direction to the

nearest feature for each point in the localized region, which gives

the contact normals, minimum separation distances, or penetration

depths. Our core algorithm computes the proximity information

between two 2D, simple, possibly non-convex polygons. Higher-

order primitives are tessellated into polygons with bounded

distance deviation error. In our hybrid approach, there are two top-

level operations: (1) geometric object-space operations to coarsely

localize potential intersection regions or closest features, and (2)

image-based operations using graphics hardware to compute the

proximity information in the localized regions.

2.1 Geometric Localization
The image-based queries operate on a uniform grid of sample

points in regions of space containing potential interactions. The

graphics hardware pixel framebuffer is used as the grid and the

queries become pixel operations, therefore the performance varies

dramatically with the pixel resolution. To avoid excessive load, a

geometric localization step is used to window regions of potential

interaction or as a trivial rejection stage. This hybrid

geometry/image-based approach helps balance the load between

the CPU and graphics subsystems, giving us portability between

different workstations with varying performance characteristics.

Using more sophisticated geometric techniques to tightly localize

potential intersections or closest feature pairs dramatically reduces

the graphics pipeline overhead, but increases the CPU usage and

the complexity of the algorithm. We use coarse bounding-volume

hierarchies to achieve this balance between speed and complexity,

and CPU and graphics usage.

 
Figure 1: Points on the boundary of left circle intersecting the volume of the
right circle, a tight-fitting bounding box around these penetrating points, and
the distance field of the right circle computed in this bounding region (left).
Gradient vectors at the penetrating points computed using central differencing
in the distance field. The lengths represent the distance to the boundary
(right). The top-level bounding boxes and their intersection used for
computing the intersection points are also shown.

There are many general and efficient algorithms available for

localizing geometry based on bounding-volume hierarchies

[8,12,14,19]. However, for exact intersection testing these

algorithms typically perform well only on static geometry where

the hierarchy can be precomputed. In order to handle dynamic

deformable geometry with no precomputation, we use coarse

levels for efficient trivial rejection and to obtain reasonable

geometric localization. In addition, we perform lazy evaluation of

relevant portions of the hierarchies while performing the collision

or distance query. A subtree rooted at a particular node is only

computed if its children need to be visited during the query

traversal. The trees are destroyed after every proximity query, and

no actual tree data structures are required since the child nodes are

recursively passed to the query routine. A maximum height of

each object tree is used to balance the CPU and graphics load.

2.2 Image-based Proximity Queries
The proximity queries are simplified using uniform point sampling

and accelerated with graphics hardware. This image-based

approach helps decouple the objects’ geometric complexity from

the computational complexity for a specified error tolerance. The

geometric localization step improves the performance since large

areas of space and portions of the objects can be rejected from the

query computation. We point-sample the geometry and the space

around the geometry within the localized regions with a uniform

rectangular grid and perform the queries on this volumetric

representation using graphics hardware acceleration. The image-

based queries include computing intersections between objects,

computing the distance field of an object boundary, and

computing the gradient of the distance field. Variations of these

basic operations are used to perform the remaining queries.

2.2.1 Intersections

There are three types of intersections possible between two

polygonal objects: boundary-boundary, boundary-volume, and

volume-volume (boundary-volume is shown in Figure 1). We

render both objects within a localized region using the graphics

hardware and treat overwritten pixel sample points as the

intersection points. The type of intersection determines whether

the boundary or the interior of the object is rendered. Several

strategies are given for detecting overwritten pixels (Table 1).

Multi-pass operations for finding object intersections

Buffer Clear val Render B Render A Intersection

Stencil 0 increment by 1 for all pixels==1,
incr by 1

stencil value: 2

Color:
blend ops

0,0,0 set color to
128,128,128

in color 127,127,127
with additive blend

color =
255,255,255

Color:
logic ops

0,0,0 set color to
127,127,127

in color 128,128,128 color =
255,255,255

Color and
Depth

0,0,0 and 1 depth = 0
depth func =
always pass

depth = 0
depth func = equals
Color = 255,255,255

color =
255,255,255

Table 1: OpenGL multi-pass rendering options for finding the overwritten
pixels. The basic ops: a buffer is cleared; object B is rendered setting buffer
values of all covered pixels; object A is rendered changing buffer values of
pixels covered by A and B; intersection points are represented by pixels
whose buffer values are set in the last pass. Each approach varies in
performance, in the resulting buffer state, and in the sophistication needed in
the underlying hardware implementation.

The error in the intersection calculation is governed by the pixel

resolution. Given a distance error bound d, we choose a resolution

so that no point in the rectangular region can be farther than d

from a pixel sample point (d is the half diagonal length of a pixel

grid cell). These error bounds hold for filled polygons, since all

pixels in the interior of the polygon will be rasterized. Line

segment rasterization does not guarantee that all pixels within d

distance of the line will be set, so we draw an offset polygon

surrounding the line segment that is d distance away from the line

segment using the bounded-error distance mesh presented in [10].

The intersection operation requires clearing a buffer, rendering the

objects into the potential intersection region, reading the buffer

containing the intersection information, and searching through the

image to find the intersection pixels. We avoid the full-screen

clear by drawing a polygon the size of the localized region.

Hardware min/max or histogram queries eliminate read back and

the per-pixel search when no intersections have occurred, but



these operations may not be available on some platforms. In this

case, the coarse bounding-volume hierarchy is used to reject

object pairs. When the image operations dominate the query time,

performance can be improved by increasing the error tolerance or

by improving the geometric localization step by traversing deeper

levels in the hierarchy. The running time of these image operations

is largely independent of the object complexity, thus becoming

negligible for complex objects.

The complexity of object rasterization grows linearly with respect

to the number of vertices. Computing intersections geometrically

between two polygon boundaries is worst case O(n2) since all

edges could intersect. The complexity of our algorithm is O(n)

where n is the number of vertices. The hierarchical geometric

localization step is also O(n) since the maximum depth of the tree

is held constant.

2.2.2 Distance Field

We use a variation of the algorithm described in [10] for

constructing generalized Voronoi diagrams using graphics

hardware for 2D polygonal objects. This approach computes an

image-based representation of the Voronoi diagram in both the

color and the depth buffers. A pixel’s color identifies the polygon

feature (vertex or edge) that is closest to that pixel’s sample point;

its depth value corresponds to the distance to the nearest feature.

The depth buffer is an image-based representation of the distance

field of the polygon boundary. The distance field is computed by

rendering 3D bounded-error polygonal mesh approximations of

the distance function where the depth of the rendered mesh at a

particular pixel location corresponds to the distance to the nearest

2D polygon feature. Distance values at arbitrary points are

bilinearly interpolated from the four nearest pixel distance values.

The algorithm by Hoff et al. only gives unsigned distance [10].

We need signed distances to avoid problems when computing the

gradient near an object boundary for computing surface contact

normals. We extend this algorithm to compute signed distances by

distinguishing the inside and outside regions of the object using

any of the available buffers to encode the “negative” interior of the

object. We simply render the polygon, setting values in a pixel

buffer. For each distance value, we also have a sign value that is

read from this other buffer. Several possibilities include: setting

the stencil buffer to 1; setting the color buffer to white; setting the

most significant bit of the color ID in the Voronoi computation.

For arbitrary points, the sign value can also be bilinearly

reconstructed between 0 and 1. Values less than or equal to 0.5

can be positive and values greater than 0.5 can be negative.

Distance field computation requires clearing the depth buffer,

rendering the objects’ distance mesh, reading back the depth

buffer, and rendering and reading of sign values. This is often

more efficient than computing the intersection since we only need

distance values at the intersection points (or at closest feature or

penetrating points). In fact, we may not even need to read back the

entire buffer since we could read just the individual pixel locations

that we are querying (Figure 1).

2.2.3 Gradient of the Distance Field

We compute the gradient of the distance field at pixel locations by

using central differences. For an arbitrary point, we compute the

gradient as the bilinear interpolation of the gradients at the four

surrounding pixel locations. In practice, this gives reasonable

results even with the error and lack of C1 or higher continuity in

the polygonal distance mesh approximations used to compute the

distance field (Figure 1). Gradients are computed in software for

selected points after reading back the distance values. If the entire

gradient field is desired, we could accelerate the computation

using multi-pass rendering. For the x component of the gradient,

we could subtractively blend the distance image shifted two pixels

to the left with the original distance image. For the y component,

we blend with the image shifted two pixels down. The division by

2 is performed by a multiplicative blend of 0.5. Unfortunately,

subtractive blending is currently not available on all platforms

even though it has been accepted into most graphics APIs, and the

limited precision of pixel arithmetic may cause noticeable errors.

2.2.4 Other Proximity Queries

Given the basic operations of computing intersections, distance

fields, and gradient of the distance field, we can perform the other

proximity queries mentioned in section 1.

Penetration Depth and Direction: For a point on object A that is

penetrating object B, we define the penetration depth and direction

for the point as the distance and direction to the nearest feature on

B. This is given by the distance field and its gradient computed at

the penetrating point. Penetrating points are found using the

intersection operation.

Contact Points and Normals: Ideally, the contact points are

simply the intersections of the object boundaries; however, we

often need the set of points that are almost in contact. For a given

contact distance threshold d, we find all boundary points that are

within d distance of each other. The basic approach is slightly

modified to efficiently handle this query. First of all, in the

geometric localization stage we find the potential intersection

between the two polygons that are slightly thicker. This is handled

by enlarging all bounding boxes by d in each. We then find the

intersection between the boundaries by drawing the objects’

boundary line segments with an enlarged offset of d (using the

distance mesh from [10]) and finding intersecting pixels. Normals

at each contact point are computed from the gradient of the signed

distance field (signed distance to avoid distance discontinuity near

the object boundary).

Closest Point: We find the point on object A that is closest to

object B by rendering the boundary of object A in the localized

region of A containing its closest feature, rendering the distance

field of B in this same region, and then searching the boundary

points of A and finding the point that is closest to B.

Separation Distance and Direction: We find the minimum

separation distance and direction between two objects A and B by

first computing the closest point on A to B and vice versa. Ideally,

we find the closest point on B to A from the distance value and

gradient at the closest point on A to B, but the amplification of

errors over the greater distance may cause problems. The distance

between these two closest points is the separation distance and the

line segment between them gives the separation direction.

3 PERFORMANCE
We demonstrate the effectiveness of our proximity queries in

computing collision responses for interactive dynamic simulations

of rigid and deformable objects. We compute the collision

response for a particle and use a collection of particle responses to

extend to rigid and deformable bodies [1,19]. We implemented

collision responses for simulations with and without penetration

constraints. In constrained simulation, penetration is avoided

through a backtracking algorithm that finds the state of all objects

“just before” a collision. A bisection search in time is performed

between the last non-collision state and the collision state for all



objects in the scene, and the collision response is then computed

for the objects that are in close contact. In unconstrained

simulation, penetration is allowed, but a spring-based restoring

penalty force proportional to the penetration depth is applied to the

object until separation occurs. Collision responses between object

pairs are handled locally without requiring global update of the

entire system.

Each collision response requires different proximity information.

Constrained simulation requires points of close contact and the

contact normals. Unconstrained simulation requires points of

penetration and their penetration depths. The effectiveness of our

approach is most clearly shown in the unconstrained, penalty-

based approach because of the difficulty in computing penetration

depth. Earlier algorithms give only coarse approximations without

error bounds or are only restricted to convex objects.

We tested the system in several different contact scenarios. In each

simulation, the user provides the initial position, orientation, and

velocity of a collection of objects, and the appropriate collision

responses are computed as the simulation advances. See the

colorplate for descriptions of the simulations. Each simulation is

performed on rigid-bodies except for wavy, but the same

proximity query algorithm was used on all simulations. More

deformable bodies were not shown because of the difficulty in

developing effective deformable simulations. In table 2, we show

the average total per-frame proximity query times. Wavy requires

more time because there are large areas of continuous close

contact as the shapes conform to each other when colliding. In

table 3 we show the effects of the distance error on performance.

Average Total Per-frame Proximity Query Times

Demo Objects Lines GeForce2 InfiniteReality2 ATI Rage Pro LT

Map 6 719 0.281ms 0.901ms 0.434ms

Gears 13 391 0.015 0.026 0.064

Links 15 440 0.020 0.052 0.038

Cars 18 266 0.007 0.026 0.015

Wavy 2 200 1.030 2.360 2.990

Table 2: Performance timings for dynamics simulations. The number of
objects, number of line segments, and the average total time in milliseconds
to run proximity queries on all objects in the scene per frame is reported.
Timing data was gathered from three machines: a Pentium-III 933MHz
desktop with a 64Mb GeForce2, a SGI 300MHz R12000 with InfiniteReality2
graphics, and a Pentium-III 750Mhz laptop with ATI Rage Pro LT graphics.

Effects of Error Tolerance on Performance of Wavy

Error GeForce2 InfiniteReality2 ATI Rage Pro LT

d/4 0.710ms 1.270ms 5.560ms

d/2 0.315 1.000 1.850

d 0.211 0.930 0.895

2d 0.176 0.879 0.631

4d 0.165 0.876 0.535

Table 3: The effect on performance when changing the distance error
tolerance d. We used proximity queries on the wavy demo with no collision
response. The error determines the number of pixels used in the image-
based operations. Systems with low graphics performance are more directly
affected by the choice of d (see ATI Rage Pro LT); however, as the error is
increased there is less dependence on graphics performance and the faster
laptop CPU overtakes the InfiniteReality2 system.

4 CONCLUSION
We have presented a hybrid geometry- and image-based algorithm

for computing geometric proximity queries between two arbitrary

2D objects using graphics hardware. This approach has a number

of advantages over previous approaches since the unified

framework allows us to compute all the queries, including

penetration depth and contact normals. Furthermore, it involves no

precomputation and handles non-convex polygons; as a result, it is

also applicable to dynamic or deformable geometric primitives. In

practice, we have found the algorithm to be simple to implement,

quite robust, fast (considering the complexity of the queries), and

very flexible. We have developed an interactive 2D dynamic

simulation system for rigid and deformable objects to illustrate the

effectiveness of our approach. We are currently extending this

framework to 3D for interactive proximity queries on complex,

dynamic geometry.
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PLATE 1: Map (large non-convex objects, frequent simultaneous close contact). Our approach computes proximity query information
needed for penalty-based collision response between complex non-convex objects. For each penetrating point, we compute a minimal
penetration depth and direction and apply a penalty force to resolve the collision. Intersections between the top-level axis-aligned
bounding boxes were used as potential intersection regions. A coarse hierarchical search with oriented bounding boxes would find
smaller potential intersection regions, thus improving performance. Even with this simplified search, we achieved interactive
performance on several difference machines with widely varying CPU/graphics combinations (see Table 2).

    
PLATE 2: Cars (convex objects, less frequent contact), Gears (non-convex, less frequent interlocking contact), and Links (non-convex
objects, frequent simultaneous interlocking contacts) demos. Collision responses in some specialized 3D scenes, such as those whose
objects collide only in the 2D plane, can be computed using our approach. The 2D projection of each object onto the plane is used for
the dynamics simulation. The left-image shows our method applied to a standard non-penetrating backtracking collision response
method where contact points and normals are computed. All of the other simulations use the penalty-based collision response based on
penetrating points and their penetration depths and directions. The right two images show collision responses between complex
interlocking non-convex objects which are easily handled without specialized techniques such as convex decomposition.

    
PLATE 3: Wavy (large deformable-bodies, continuous contact). Other important characteristics of our proximity query algorithm include
not requiring any precomputation or complex data structures. Here we show proximity information being used for collision response
between dynamically deformable bodies. The left image shows a wave propagating through the right object and hitting the left object.
The collision response causes the object to become indented and creates a reaction wave in the left object. Many dynamics simulations
resolve collisions by backing up the simulation to a moment before contact, we use a penalty-based method that applies a force at each
penetrating point based on the amount of penetration. The center image shows the penalty-based response between two objects that
were initially overlapping by a large amount. The right image shows the distance field around the contact area.


