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Fast and simple high-capacity 
quantum cryptography with error 
detection
Hong Lai1, Ming-Xing Luo2, Josef Pieprzyk3, Jun Zhang4, Lei Pan4, Shudong Li5,6 & 
Mehmet A. Orgun7,8

Quantum cryptography is commonly used to generate fresh secure keys with quantum signal 
transmission for instant use between two parties. However, research shows that the relatively low key 
generation rate hinders its practical use where a symmetric cryptography component consumes the 
shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, 
which leads to a higher consumption of the internal one-time-pad communication bandwidth, since 
it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, 
we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme 
can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- 
valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and 
Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately 
be simplified to matrix multiplication, which is implemented and optimized in modern computers. 
Most importantly, considerably information capacity can be improved effectively and efficiently by 
the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical 
conditions, such as the communication bandwidth.

Quantum cryptography provides a feasible solution to the key generation and key management issues for 
one-time pad (OTP) encryption. Recall that for the classical implementation of OTP, a cryptographic key needs 
to be generated and distributed to the communicating parties via a secure channel and well ahead of the use of 
OTP. This constraint is no longer valid in the quantum setting. The randomness necessary to create and distribute 
a cryptographic key is readily obtained by the parties from observations of quantum signals exchanged between 
the parties. The quantum key distribution (QKD) provides a straightforward implementation of OTP which 
preserves its unconditional security1,2. However, most QKD protocols suffer from its relatively low rate of key gen-
eration, limiting its widespread applications in deployment. This is caused by the nature of quantum computing 
where it uses polarization to encode only one qubit for each photon. A costly remedy exists with little practical 
use–qutrit or ququart exploitation can be achieved by adding much more complications to the QKD apparatus.

This paper addresses the problem of efficient generation of cryptographic keys in QKD. This problem has 
been investigated by many researchers3–5. Zhou et al.3 present a four-intensity measurement-device-independent 
QKD protocol with a decoy state, which significantly improves the rate of key generation. This protocol works 
well if messages are not too long. Ma et al.4 argue that the rate of key generation for QKD can be increased by 
using an entanglement parametric down-conversion (PDC) source. Other methods aiming to improve the rate of 
key generation include information encoding using high-dimensional (HD) photonic degrees of freedom (such 
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as position momentum6 and time energy7,8). At a practical level, however, it is difficult to increase the number of 
dimensions of the states encoded by phase over two, or at most, four.

Therefore, it is desirable to devise a more practical approach of encoding high dimensional states into a pho-
ton. On the one hand, spontaneous parametric down conversion (SPDC) is a simple way to produce squeezed 
and polarization-entangled light. On the other hand, recent advancements of orbital angular momentum (OAM) 
techniques are able to achieve faster generation of quantum states9, and to enable better control10 and easier inte-
gration with other systems11. First QKD protocols based on OAM have been proposed in refs 12–14. Based on 
these, Simon et al.15 propose Fibonacci-valued OAM states for high-capacity QKD protocols together with SPDC. 
Their protocols are easier and simpler to implement than existing SPDC and OAM protocols. However, the rate 
of key generation can be improved up to 4 times only, which is inadequate for any practical use. Also it is impos-
sible to support long-distance transmission with lower error rate. This means that protocols trade transmission 
distances with error rates (the further the transmission distance the higher the error rate and vice versa).

It seems that achieving a considerable key rate with a small data size is rather challenging in practical settings. 
In this paper, we extend and enhance the use of the protocol of Simon et al.’s, by enabling each detected Fibonacci 
number to encode up to a decent number of secret key bits per transmitted entangled photon, while achieving 
transmission over longer distance with lower error rates. To be exact, we present an approach that uses matri-
ces together with slightly modified QKD protocol15 to improve the rate of key generation. We observe that the 
conjugate relation (i.e., Ln+2 =​ Fn+1 +​ Fn−1) between Lucas and Fibonacci numbers16, can be used to reduce side 
channel information leakage at the key preparation stage and hence to increase the security of QKD protocols5. 
Our observation is valid due to the contribution by Simon et al.15 who have shown that both Fibonacci-valued 
and Lucas-valued states can also be generated passively by using a beam splitter or by monitoring the idler of a 
SPDC source.

We propose a quantum cryptography protocol that is based on Fibonacci and Lucas matrix coding. Our new 
protocol effectively addresses the problem of random key generation for OTP. In particular, our proposed QKD 
protocol have the following characteristics.

1.	 It is a slight modification of the QKD protocol based on Simon et al.15. However, our protocol is free from 
the restrictions of orbital angular momentum and down-conversion bandwidths.

2.	 The key generation rate and the key update rate in our protocol are significantly higher than the existing 
solutions due to the use of the recurrence relations in Fibonacci or Lucas matrices.

3.	 A signal information leakage can be substantially reduced. This is because we use both Lucas-valued and 
Fibonacci-valued OAM entangled states, but the values carried by the transmitted entangled photons are 
all Fibonacci numbers. It is more difficult for the adversary Eve to know the signal information with entan-
gled photons in a spontaneous parametric down conversion (SPDC) source17,18.

4.	 The verification of the integrity of encryption/decryption is possible due to the unique mathematical prop-
erty of a Fibonacci or Lucas matrix. This feature does not exist in any previous QKD protocols.

Results
We illustrate how to use the Fibonacci and Lucas matrix coding to develop a new high-capacity QKD protocol. 
We also provide a security analysis of the new protocol.

Fibonacci and Lucas Matrix Coding.  According to the definitions of Fibonacci and Lucas numbers (for 
details, see Appendixes I and II), we discuss how they can be used to construct relevant Fibonacci matrices Qp

n and 
Lucas matrices Rp

n. Then we explore their basic properties. Finally we investigate the relation between Qp
n and Rp

n.
The process of creating a sequence of Qp

n is iterative. We start from = ( )Q 0 1
1 11  and then construct subse-

quent matrices Q2, Q3, …​, Qp according to the following relations:
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where Oij, i =​ j =​ 1, 2, …​, p −​ 1 is a matrix of the dimension i ×​ j with zero entries and Ii, i =​ 1, 2, …​, p −​ 1 is an 
identity matrix of the order i. It is easy to show that the matrices …Q Q Q, , ,n n
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According to Eq. (3), Qp
n has its inverse, where p =​ 0, 1, 2, 3, …​. As explained in Appendix I, it is easy to find its 

inverse −Qp
n (see Eqs (26) and (27)). For example, the first four matrices Q n

2  and their inverses are shownin 
Table 1.

The Lucas matrix (for details, see Appendix II) R1 can be used to generate matrices of higher dimensions R2, 
R3, …​, Rp according to the following recurrence:
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where Oij, i =​ j =​ 1, 2, …​, p −​ 1 is a zero matrix of the dimension i ×​ j, and Ii, i =​ 1, 2, …​, p −​ 1 is an identity matrix 
of order i. Matrices …R R R, , ,n n
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For Qp
n, it is easy to find its inverse −Qp

n (see Eqs (33) and (34) given in Appendix II).

Fibonacci and Lucas matrix encryption and decryption algorithms.  Let the plaintext be a sequence of integers:  
p1, p2, p3, p4, p5, p6, p7, p8, p9, …​

These integers can be represented in the form of a square matrix M of order p +​ 1, p =​ 0, 1, 2, …​. Note that the 
elements of M can be taken as an odd or even number of digits as we want. Therefore, the matrix encryption and 
decryption algorithms can be defined at a high level as follows19:

= ×E M K (7)

and

= × −M E K (8)1

where K can be Qp
n or Rp

n, and K−1 is the inverse matrix of K.

High-capacity quantum cryptographic protocol.  To extend and enhance the framework of Simon  
et al.’s15, we use the Fibonacci and Lucas-valued OAM states detected in a transmission between Alice and Bob. 
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Table 1.   Q2
n and −Q2

n, where n = 2, 3, 4, 5.

Figure 1.  A schematic diagram for the Fibonacci- and Lucas- valued entanglement spontaneous 
parametric down conversion (SPDC) QKD. Alice and Bob connect to an entangled SPDC source by optical 
links. There is a C, a D1 and a D2 OAM sorter in Alice’s and Bob’s laboratories respectively. Either of the two 
entangled photons coming out from the SPDC source goes to Alice’s and Bob’s laboratories, and then the 
entangled photon randomly goes through the C, D1 or D2 sorter. The C sorter is used for allowing photons to 
arrive at the arrays of single-photon detectors when they are Fibonacci values. The D1/D2 sorter is used for 
filtering and blocking any non-Fibonacci values against various possible problems, and the D1 and the D2 sorters 
are used for allowing “diagonal” superpositions of the form | 〉 + | 〉−L F( )n n

1
2 3  and | 〉 + | 〉−F F( )n n

1
2 2 , 

respectively. Here, PBS stands for a polarized beam splitter.
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The states are used to construct the Fibonacci matrix Qp
n and the Lucas matrix Rp

n as the key (see Figs 1 and 2). 
Note that here the Fibonacci and Lucas values reconstructed from Fibonacci and Lucas-valued OAM states are 
used as the seed for generating recursive matrices Qp

n and Rp
n in terms of the assumption given below. We take an 

advantage of the recurrence relation of Fibonacci and Lucas matrices to significantly improve the information 
capacity of entangled photons to carry more than 4 bits of a cryptographic key.

Assumption.  Assume that the order of the key matrix (the Fibonacci matrix Qp
n or the Lucas matrix Rp

n) is deter-
mined by the quantum random number generators of Alice and Bob. The positions of Fibonacci and Lucas num-
bers in Qp

n and Rp
n are determined by the outcome of Fn mod 4 or Ln mod 4, respectively. For instance, if Fn =​ 13, 

then Fn mod 4 =​ 13 mod 4 =​ 1. For Fn =​ 8, Fn mod 4 =​ 8 mod 4 =​ 0. Note that the positions of the Fibonacci 
numbers 13 and 8 in the matrices Qp

n are illustrated below:
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The steps of our protocol are described below.
Step 1 Preparation of Fibonacci and Lucas-valued OAM states.

We slightly modify the experimental setup of Simon et al.’s15 (see Figs 1 and 2). Alice prepares Fibonacci and 
Lucas-valued OAM states and makes two-photon output states according to the following encoding

∑ | 〉| 〉 + | 〉| 〉− − − −F F F F( ) ;
(9)n

n n n n AB1 2 2 1

∑ | 〉| 〉 + | 〉| 〉 .− − − −F F F F( )
(10)n

n n n n AB1 3 3 1

One photon of the entangled pair goes to the Alice laboratory and the other to the Bob laboratory. The selection 
of destination is random. Note that the main difference between our proposed protocol and Simon et al.’s15 is that 
we use the Fibonacci or Lucas values recovered from photons as a seed for constructing the Fibonacci matrix Qp

n 
or the Lucas matrix Rp

n. This trick improves the information capacity of photons considerably. We are free to select 
the proper pump values, say, 8, 11, 13, 18, 21, 29, 34, 47.
Step 2 Eavesdropping detection.

As in the Simon et al.’s protocol15, there are six possible cases that need to be considered for entangled photons 
that arrive at Alice’s and Bob’s laboratories. They are listed below.

Case I.	 Both photons go to C.
Case II.	 One photon goes to C and the other to D1.
Case III.	 One photon goes to C and the other to D2.
Case IV.	 Both photons go to D1.
Case V.	 Both photons go to D2.
	 One photon goes to D1 and the other to D2.

Figure 2.  The experimental setup for the QKD protocol based on passive detected-state  
Fibonacci- and Lucas-valued entangled states. ∑ | 〉 = ∑ | 〉| 〉 + | 〉| 〉− − − −F F F F F( )n n n n n n n AB1 2 2 1 ; 
∑ | 〉 = ∑ | 〉| 〉 + | 〉| 〉− − − −L F F F F( )n n n n n n n AB1 3 3 1 . ∑ | 〉Fn n  and ∑ | 〉Ln n  are two-photon output Fibonacci and 
Lucas entangled states, respectively.
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In order to determine the case and detect eavesdropping, Alice and Bob need to exchange classical informa-
tion over a classical channel (the channel can be an unprotected broadcasting). Let us introduce three events 
encoded as 0, 01 and 10. The event 0 occurs when the entangled photon goes to C. The second 01 when it goes to 
D1 and the third encoded as 10 when it goes to D2. Assume that there exists an eavesdropper Eve who intercepts 
an entangled photon, which travels to Alice (or Bob). Clearly, Eve has no information of which type of a detection 
measurement (C, D1 or D2) takes place in Bob’s laboratory. So, Eve has to guess. Eve makes a mistake if the photon 
goes to

•	 C in Eve’s laboratory while Bob’s laboratory applies either D1 or D2 or
•	 D1 in Eve’s laboratory while Bob’s laboratory applies either C or D2 or
•	 D2 in Eve’s laboratory while Bob’s laboratory applies either C or D1

The Alice measurement is going to be erroneous with the probability of 2
3
. Eve’s activity is detected by Alice when 

Alice and Bob compare their transcripts.
Step 3 Reconstruction of the seed for the key matrix.

After eavesdropping detection, if the error rate re is larger than the preset threshold r, Alice and Bob discard 
this communication and return to Steps 1–2. Otherwise, they can exchange classical bits to determine the correct 
Fibonacci number. Alice and Bob discard the trial if the exchanged classical bits (between Alice and Bob) satisfy 
one of the following three cases: (I) are both 01 (D1 sorters), (II) are both 10 (D2 sorters), (III) are 01 and 10 (D1 
and D2 sorters), i.e., Cases IV-VI. If the exchanged classical messages are 0, 01 or 0, 10, Alice and Bob need to 
exchange one more classical message. That is, Alice or Bob need to exchange another classical bit 0 or 1, to let each 
other know that their trial is either Case II or Case III. This is sufficient for Alice (Bob) to know Bob’s (Alice’s) 
state.

If the exchanged classical bits between Alice and Bob are 0, they know the trial is Case I. They know each oth-
er’s value as the values can be identified from Eqs (9) and (10). In other words, Alice knows that the Bob Fibonacci 
number is one or two positions before her number (and vice versa, because the angular uncertainty principle links 
angular position and angular momentum φ π π∆ ∆ = −L P1 2 ( )1

2
). However, this case is more complicated 

than Case II and Case III. To identify the correct OAM value, they need to exchange more classical messages. As 
we say in Step 1, the pump values of 8, 11, 13, 18, 21, 29, 34, 47 are used, so, the Fibonacci numbers encoded in the 
entangled photons can be 3, 5, 8, 13, 21, 34. As we can see the Fibonacci number is either even or odd, then, by 
prior agreement, for Alice, the classical bits 0, 1 are used to denote the first and second even Fibonacci numbers 
of 3, 5, 8, 13, 21, 34, while the classical bits 00, 01, 10, 11 are used to denote the first, second, third and fourth odd 
Fibonacci numbers of 3, 5, 8, 13, 21, 34 (see Table 2).
On receiving a classical bit from Alice, Bob can obtain the Alice Fibonacci number, because the number position 
is adjacent to the position of his Fibonacci number. Likewise, Bob sends the corresponding classical message to 
Alice in terms of Table 2, and Alice can also confirm the Bob Fibonacci number. That is to say that Alice and Bob 
are able to confirm to each other’s the detected numbers by exchanging classical information. For example, if 
Alice’s detected number is 3, then Alice sends the classical message 00 to Bob over the classical channel and Bob’s 
detected number is 8. So, Bob can obtain the seed 11, and Bob sends the classical message 00 to Alice over the 
classical channel. Alice can also obtain the seed 11.
Step 4 Cryptographic key generation with Qp

n and Rp
n.

After the pump values of Fibonacci and Lucas numbers are determined by Alice and Bob, they can use them 
as the seed for the key matrix, i.e., the Fibonacci matrix Qp

n or the Lucas matrix Rp
n. The orders of Qp

n and Rp
n are 

determined by their quantum random number generators in their laboratories. If the obtained Fibonacci number 
is F4 =​ 5 and its matching order is 4, then the inverse of the matrix can be found in Table 1. The matrices can be 
used to perform basic cryptographic operations such as encryption and decryption. To illustrate them, consider 
the following example. Assume that a message is a sequence of integers

…4150 2313 6877 9960, 132 214 054, (11)

Integers of the message in Eq. (11) can be put as entries of matrices M1, M2, …​, which is

=




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


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
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


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
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M

4 1 5 0
2 3 1 3
6 8 7 7
9 9 6 0

,

1 3 2
2 1 4
0 5 4

,

(12)

1

2

The possible Fibonacci values 
obtained by Alice 3 5 8 13 21 34

The classical bits sent by 
Alice/Bob 00 01 0 10 11 1

Table 2.   The possible Fibonacci values obtained by Alice and their corresponding classical representations.
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According to Eq. (7), M can be encrypted as follows

= × =
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A c c o r d i n g  t o  h i s  o r d e r  a n d  E q u a t i o n  ( 8 ) ,  t h e  c r y p t o g r a m 
= = E E E 2314501912135434777245604065225404559041 2  can be split and decrypted by using the 

inverse matrix, so Bob obtains

= × =












×







−
−







=













−M E Q
23 14 5 0
19 12 1 3
54 34 7 7
72 45 6 0

2 3 0 0
3 5 0 0

0 0 1 0
0 0 0 1

4 1 5 0
2 3 1 3
6 8 7 7
9 9 6 0 (15)

1 3
3

= × =











×







−

−







=












−M E R
40 65 2
25 40 4
55 90 4

0

0
0 0 1

1 3 2
2 1 4
0 5 4 (16)

2 2 2
5

18
5

11
5

11
5

7
5



(17)

Step 5 Integrity verification
According to =E MQp

n, =E MRp
n, we obtain

=

= ×

= −

det E det MQ

det M det Q

det M

( ) ( )

( ) ( )

( 1) ( ); (18)

p
n

p
n

np

=

= ×

= − .+

det E det MR

det M det R

det M

( ) ( )

( ) ( )

( 1) 5 ( ) (19)

p
n

p
n

p n p( 1)

If the transmitted and received matrices are E and E′​ respectively, then E′​ satisfies Eqs (18) or (19). Hence, the 
integrity of E is proved.

Security Analysis.  The encryption defined by Fibonacci and Lucas matrices is an instance of symmetric-key 
cryptography. Fibonacci and Lucas matrices have the particular property, i.e., the recurrent property which helps 
us to know a Fibonacci or Lucas matrix with any one of Fibonacci or Lucas number in the matrix. We call the 
a Fibonacci or Lucas number the seed. As we know, for symmetrical cryptography, the main deficiency is the 
problem of key distribution. However, in our proposed protocol, the key is generated based on Simon et al.’s 
protocol15, which is quantum-resistant for enhanced security. That is, Fibonacci or Lucas cryptography can be 
combined with the quantum one-time-pad for unconditional security. Therefore, in this section, we provide a 
sufficient security analysis of why seeding the Fibonacci and Lucas matrices used to encrypt the message (and 
subsequent sending of it) does not increase Eve’s information about the secret key as follows.



www.nature.com/scientificreports/

7Scientific Reports | 7:46302 | DOI: 10.1038/srep46302

(1)	 Firstly, similar entangled states are prepared with the improved experimental setup, by the virtue of the recur-
rence relations of Fn+2 =​ Fn+1 +​ Fn and Ln+2 =​ Fn+1 +​ Fn−1. Clearly, the entangled photons detected by Alice, 
Bob and the adversary Eve are Fibonacci-valued. When Eve receives the entangled photon and even she can 
detect its values, it is more difficult for her to distinguish Fibonacci entangled states from Lucas entangled 
states than that in Simon et al.’s protocol15. More precisely, if Eve makes a D1-type measurement on an entan-
gled photon heading to Bob, which is actually in the eigenstate |Fi〉​. Then she will detect one of the two super-
position states |Fi−2〉​ +​ |Fi〉​ or |Fi〉​ +​ |Fi+2〉​, with the probability of 1

2
, respectively. Then Eve transmits either of 

these two superposition states to Bob. If Bob receives one of these superpositions and makes a C-type meas-
urement, he will read out one of the values Fi, Fi−2, or Fi+2, with the respective probabilities of 1

4
, 1

2
, 1

4
. How-

ever, he should obtain |Fi〉​ with the probability of 1 if there is no eavesdropper. If Eve makes a D2-type 
measurement on an entangled photon heading to Bob, which is actually in the eigenstate |Fi〉​, then she will 
detect one of the two superposition states |Li−2〉​ +​ |Fi〉​ or |Fi〉​ +​ |Li+2〉​, with the probability of 1

2
, respectively. 

Then Eve transmits either of these two superposition states to Bob. If Bob receives one of these superpositions 
and makes a C-type measurement, he will read out one of the values Fi, Li−2, or Li+2, with the respective prob-
abilities of 1

2
, 1

4
, 1

4
. However, he should obtain |Fi〉​ with the probability of 1 if there is no eavesdropper. In these 

situations, these superposition states do not help Eve to know the seed, but expose her eavesdropping action. 
Consequently, Alice and Bob discard such entangled photons.

(2)	 Secondly, if Eve makes a C-type measurement on an entangled photon heading to Bob, which is actually in 
the eigenstate |Fi〉​, then she will detect |Fi〉​ with the probability of 1. Then Eve transmits |Fi〉​ to Bob. If Bob 
receives it and makes a C-type measurement, he will also read out one of the values Fi, with the probability of 
1. Though Eve’s eavesdropping action cannot be detected, it is still impossible for her to know the definite 
OAM value. This is because in Step 3, which classical bit representation of which Fibonacci number is agreed 
with between Alice and Bob in advance, and the classical channel is the broadcast channel. In other words, 
when Alice/Bob sends classical messages to Bob/Alice through the classical channel, Bob/Alice can deter-
mine the seed, but Eve cannot without knowing Alice and Bob’s prior agreement, she just knows 0 and 1 that 
are used to denote even Fibonacci numbers, and 00, 01, 10, 11 to denote odd Fibonacci numbers. So, for Eve, 
it is at random. Eve has no choice but to guess the obtained Fibonacci and Lucas numbers by Alice and Bob 
with a probability of 1

8
. Moreover, to prevent Eve from capture two small pulses for the two entangled photons 

at the same time, the time interval for sending entangled photons is random.
(3)	 Thirdly, the positions of obtained Fibonacci and Lucas numbers in matrices Qp

n and Rp
n are not fixed. Instead, 

the positions are determined by Fn/Ln mod 4. It suggests that our method can be further against Eve’s attack. 
If Eve guesses the wrong obtained Fibonacci or Lucas number by Alice and Bob, she places the position of the 
wrong obtained Fibonacci or Lucas number in Q n

1  and R n
1  with a probability of 3

4
.

(4)	 Lastly, the construction of the final key matrices including the Fibonacci and Lucas matrices is determined by 
these matrices’ orders p, which are determined by the quantum random number generators in Alice’s and 
Bob’s laboratories. Therefore, Eve cannot know the value p. Furthermore, the order determines how to split 
the encrypted message when decrypting them. Even if Eve guesses the correct seed, it is very difficult for her 
to guess all the right orders for all seeds during the construction of the final key matrices. As long as Eve does 
not guess all the orders for all corresponding matrices, she also splits the encrypted message in a wrong way. 
Moreover, in our protocol, we use matrix multiplication to encrypt the message. In matrix multiplication, if 
the orders of two square matrices are not equal, they cannot be performed multiplication operation. In other 
words, Eve cannot know any information about the messages if she guess a wrong order matching the matrix. 
Most importantly, there are no relations among these established Fibonacci or Lucas matrices. So, for Eve, p 
is at random, the probability for Eve to know the right Qp

n or Rp
n is 

p
1 , and the probability for Eve to know a 

right Qp
n or Rp

n is × ×
p

1
8

1
4

1 , i.e., 
p

1
32

.

Therefore, by seeding the Fibonacci and Lucas matrices used to encrypt the message to achieve fast and simple 
high-capacity quantum cryptography, our proposed protocol does not increase Eve’s information about the secret 
key.

Discussion
In this section, we discuss the possibility to improve Simon et al.’s15 experimental setup for quantum cryptogra-
phy based on the Fibonacci matrix Qp

n and the Lucas matrix Rp
n, which have more additional features to be 

obtained, including the higher transmission rates, no limit of communication bandwidths, the considerable infor-
mation capacity, the selection property of Fibonacci or Lucas numbers, and the powerful detection and correction 
ability.

Entangled Fibonacci- and Lucas- sequence spiral source.  In 2013, Simon et al.15 proposed a 
high-capacity QKD by Fibonacci coding. In particular, with a Vogel spiral15 (which refers to the “Fibonacci 
angle”), they use a source of entangled Fibonacci-valued OAM states to prepare Fibonacci-valued entangled pairs, 
which then leave the spiral and enter the down-conversion crystal. Moreover, due to the conjugation relation 
between Lucas numbers and Fibonacci numbers, Simon et al.15 showed that Lucas-valued states can also be gen-
erated passively by using a beam splitter or by monitoring the idler of an SPDC source. In addition, the phases 
of signal photons are totally random due to the spontaneous feature of the SPDC process. This intrinsic phase 
randomization improves the security of the QKD system by making it immune to source attacks. Therefore, we 
improve the experimental setup in Simon et al.’s protocol to generate both Fibonacci- and Lucas-valued OAM 
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states (see Figs 1 and 2, note that Simon et al.15 state that in the chosen operating range, it is easy to adjust the 
fraction of the values that fall on the Fibonacci or Lucas sequence), so that these nonorthogonal states naturally 
appear and randomly change with Fibonacci- and Lucas-valued entangled pairs.

The overall transmission rate.  Assume that the detection probabilities of the entangled photons in the 
state of Eqs (9) and (10) are independent. Let ξA, ξ ′A and ξB, ξ ′B  be the detection efficiencies for a Fibonacci and 
Lucas entangled photon for Alice and Bob, respectively. Both ξA, ξ ′A and ξB, ξ ′B  take into account the channel losses, 
detector efficiencies, coupling efficiencies, and losses inside the detector box. For a 2n-photon pair, the overall 
transmission rate is

ξ ξ ξ ξ ξ= − − − − + − − ′ − − ′[(1 (1 ) ][(1 (1 ) ] [(1 (1 ) ][(1 (1 ) ] (20)n A
n

B
n

A
n

B
n

2

Given that the channel loss is included in ξA, ξ ′A and ξB, ξ ′B , our method can be used to the SPDC source on 
either Alice’s (or Bob’s) side or between Alice and Bob.

The information capacity.  Due to the recursive property of the Fibonacci matrix Qp
n and the Lucas matrix 

Rp
n, just one entangled photon can be used as the seed to distribute the entire key, i.e., the information capacity Ic 

can be even equal to the length of the key 
key, i.e., = Ic key. This is because the secret can be used to construct a 

matrix of any order.

No limit of communication bandwidths.  Simon et al.’s15 protocol needs more Fibonacci or Lucas 
numbers to improve key capacity, however, the method is under the limit of orbital angular momentum and 
down-conversion bandwidths. Therefore, they cannot choose more proper Fibonacci or Lucas numbers to 
achieve longer distances and lower error rates simultaneously. Moreover, every entangled photon can only be 
used to encode at most four bits. So, a large number of entangled states should be prepared to establish the 
key. As a result, when the key is updated frequently with the purpose of security, one-time-pad communication 
bandwidth increases in a proportional way. However, our protocol improves the key capacity greatly by taking 
advantages of the recursive property of Fibonacci and Lucas matrices and the method of preparing entangled 
states by Simon et al.’s15 setup. Therefore, only a few entangled photons are needed to establish the key in practical 
settings. Therefore, our protocol is free from the limitation of orbital angular momentum and down-conversion 
bandwidths. Given this, in our protocol, the key can be established in a short time, and the frequent key update is 
free from the limitation of communication bandwidths.

The selection property of Fibonacci or Lucas numbers.  Simon et al. used their experiments to come 
to the conclusion that if the pump values from smaller Fibonacci numbers are used, the photons can travel longer 
distances but at the expense of higher error rates. If, however, the pump values from larger Fibonacci numbers 
are used, then error rates reduced but maximal distances over which photons can travel are shorter. That is, to 
meet the requirements of available orbital angular momentum and down-conversion bandwidths and the longer 
distances and lower error rates, the proper pump values can be selected in our protocol, for example, Fibonacci 
numbers 8, 13, 21, 34 and Lucas numbers 11, 18, 29, 47. Therefore, the values carried by entangled photons are 3, 
5, 8, 13, 21, 34.

Error detection and correction abilities.  An additional feature of our protocol is the error detection for 
the cipertext compared with the existing quantum cryptography, which can keep the integrity of the secret. 
Stakhov19 has proposed an error correction algorithm for Fibonacci coding. We present a brief description of  
this algorithm. For =E MQp

n, =E MRp
n, we can verify their integrity in terms of Eqs (15) or (16),  

i.e., = = × = −det E det MQ det M det Q det M( ) ( ) ( ) ( ) ( 1) ( );p
n

p
n np  = = ×det E det MR det M det R( ) ( ) ( ) ( )p

n
p
n  

= − .+ det M( 1) 5 ( )p n p( 1)

If the transmitted matrix is E and the received matrix is E′​, and E′​ satisfies Eqs (15) or (16), then there are no 
errors. Otherwise, there exist errors. In this case, correction is needed, and Stakhov19 has shown that the correc-
tion ability of Fibonacci Q n

1  and Q n
2  matrix coding method is 93.33% and 99.80%, and when p is larger, the correc-

tion ability is higher than 99.80%, which exceeds all the other well-known correcting codes.
Because of the considerable information capacity, no limit of communication bandwidths, and the powerful 

detection and correction abilities, our protocol provides a practical secure way to share more private information 
with high photon-information efficiency in a short time. In realistic conditions, it is more applicable and feasible 
in a practical implementation with a slight modification of Simon et al.’s protocol. Table 3 compares the features 
of our proposed protocol with those of the most relevant quantum key distribution protocols in refs 1, 2 and 15. 
The comparison suggests that our protocol is more suitable for real-world applications.

Conclusions
We have developed a new quantum cryptosystem, i.e., quantum cryptography based on Fibonacci matrix Qp

n and 
Lucas matrix Rp

n, which employs technologies similar to Simon et al.’s protocol to overcome the previous limita-
tions on communication bandwidths and demonstrate that the number of secret key bits per transmitted entan-
gled photon can be increased up to the length of the key, which is well-over previous demonstrations that were 
limited to up to 4. Under realistic conditions, the proposed protocol also provides a practical secure way to share 
more private information with considerably high photon-information efficiency in a short time. Moreover, it can 
be fast and simple to implement technical realization.
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Methods
Here, we introduce the method of Fibonacci matrix Qp

n or Lucas matrix Rp
n to quantum cryptography.

Let the initial message be a “digital signal” of integers: p1, p2, p3, p4, p5, p6, p7, p8, p9, …​
Assume that we choose the first nine readings and form a 3 ×​ 3 matrix P1, which is regarded as a plain text 

matrix.

=











P

p p p
p p p
p p p (21)

1

1 2 3

4 5 6

7 8 9

And the key K, i.e., Qp
n or Rp

n is obtained by Steps 1–3 in the proposed protocol. In general, the cryptosystem 
consists of the plain text matrix P, the cipher text matrix C, and the key K

P C K{ , , } (22)

Then encryption and decryption algorithm is
If =K Qp

n

then ← ×C P Qp
n;

← × −P C Qp
n

Endif
If =K Rp

n

then ← ×C P Rp
n;

← × −P C Rp
n

Endif
Appendix I
Definition 1. (Fibonacci numbers)20 The sequence =

+∞F{ }n n 1 of Fibonacci numbers is defined by the recurrence 
relation

= ++ +F F F (23)n n n2 1

Clearly, the integers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …​ are members of Fibonacci sequences. Using the definition 
of Fibonacci numbers, one can prove that

= −−
+F F( 1) (24)n

n
n

1

Now we are ready to introduce a Fibonacci Q-matrix21,22 as

= .( )Q 1 1
1 0 (25)1

According to Stakhov’s work19, we can write a Fibonacci Q-matrix of dimension 2 as follows:

= ( )Q 0 1
1 1 (26)1

Now, we can derive a relevant recurrence relation in the form:

=










=





+ +
+ +






=









+










−

+

− − − −

− − −

− −

−

− −

− −

Q
F F
F F

F F F F
F F F F

F F
F F

F F
F F (27)

n n n

n n

n n n n

n n n n

n n

n n

n n

n n

1
1

1

2 3 1 2

1 2 1

2 1

1

3 2

2 1

Protocols Ref. 1 Ref. 2 Ref. 15 Our protocol

The maximal information capacity 1 2 4
key

The correction ability n/a n/a n/a Higher than 93.33%

The ability to verify the integrity of 
ciphertext No No No Yes

The limitation to bandwidths Yes Yes Yes No

Achieving longer distances and lower 
error rates No No No Yes

Table 3.   Performance comparison of our QKD with the most relevant previous QKDs. 
key denotes the 

length of the key, “n/a” which means not applicable.
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= +− −Q Q (28)n n
1

1
1

2

Note that Q n
1  satisfies the following two properties:

•	 = +Q Q Qn m n m
1 1 1  and

•	 = − =Det Q Det Q( ) ( 1) ( ( ))n n n
1 1 .

The inverse matrix −Q n
1  of Q n

1  is obtained as follows

=





−
−






=− +

−
Q

F F
F F

n k, where 2
(29)

k k k

k k
1

2 2 1 2

2 2 1

=





−
−






= +− + + +

+
Q

F F
F F

n k, where 2 1
(30)

k k k

k k
1

(2 1) 2 2 2 1

2 1 2

For example, according to Eqs (26) and (27), we can obtain −Q n
1  of Q n

1  when n =​ 4, 5, 6, 7 (see Table 4).
Appendix II
Definition 2. (Lucas numbers)16 The Lucas numbers are defined as follows:

=






=
=

+ ≥ .− −

L
n
n

L L n

2, when 0,
1, when 1,

, when 2 (31)
n

n n1 2

In particular, L0 =​ 2, L1 =​ 1, L2 =​ 3, L3 =​ 4, L4 =​ 7 …​ Moreover, Lucas numbers and Fibonacci numbers have a 
conjugate relation16 of the following form:

= ++ + −L F F (32)n n n2 1 1

Let us define a 2 ×​ 2 matrix R as

= ( )R 2 1
1 3 (33)1

Therefore, according to Eqs (20), (29) and (30), we have

=









= × −−

+
( )R

L L
L L Q 1 2

2 1 (34)
n n n

n n

n
1

1

1
1

=


 ×

−




= − × −

= × − +

( )Det R Det Q( ) 1 2
2 1

( 1) ( 5)
5 ( 1) (35)

n n

n

n

1 1

1

The inverse matrix −R n
1  of R n

1  can also be derived in terms of Eqs (26), (27), (31) and (32), which is as follows

=







−

−







=−

+

−
R

L L

L L
n k5 5

5 5

, where 2

(36)

k

k k

k k
1

2

2 1 2

2 2 1

=







−

−







= +− +

+ +

+
R

L L

L L
n k5 5

5 5

, where 2 1

(37)

k

k k

k k
1

(2 1)

2 2 2 1

2 1 2

n 4 5 6 7

Q n
1 ( )2 3

3 5 ( )3 5
5 8 ( )5 8

8 13 ( )8 13
13 21

−Q n
1

−
−( )5 3

3 2
−

−( )8 5
5 3

−
−( )13 8

8 5
−

−( )21 13
13 8

Table 4.   Q1
n and −Q1

n, where n = 4, 5, 6, 7.
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