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Abstract. A mathematical model of compaction in sedimentary basins is presented and ana-
lyzed. Compaction occurs when accumulating sediments compact under their own weight, expelling
pore water in the process. If sedimentation is rapid or the permeability is low, then high pore pres-
sures can result, a phenomenon which is of importance in oil drilling operations. Here we show that
one-dimensional compaction can be described in its simplest form by a nonlinear diffusion equation,
controlled principally by a dimensionless parameter λ, which is the ratio of the hydraulic conductivity
to the sedimentation rate. Large λ corresponds to very permeable sediments, or slow sedimentation,
a situation which we term “fast compaction,” since the rapid pore water expulsion allows the pore
water pressure to equilibrate to a hydrostatic value. On the other hand, small λ corresponds to
“slow compaction,” and the pore pressure is in excess above the hydrostatic value and more nearly
equal to the overburden value. We provide analytic and numerical results for both large and small
λ, using also the assumption that the permeability is a strong function of porosity. In particular, we
can derive Athy’s law (that porosity decreases exponentially with depth) when λ� 1.
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1. Introduction. Sedimentary basins, such as those in the North Sea or the Gulf
of Mexico, form when waterborne sediments in shallow seas are deposited over periods
of tens of millions of years. The resulting sediments, which may, for example, be sands
or river muds washed down from land, then compact under their own weight, causing a
reduction of porosity (and hence the expulsion of pore water) and eventually (as depth
and thus pressure and temperature increase) cementation reactions occur, causing a
transformation from a granular aggregate to rocks, such as shales or sandstones.

Sedimentary basins are prime locations for the formation of hydrocarbons and
are thus important in the oil industry. One particular problem which affects drilling
operations is the occasional occurrence of abnormally high pore fluid pressures, which,
if encountered suddenly, can cause drill hole collapse and consequent failure of the
drilling operation. An understanding of how such high pore pressures occur is there-
fore of some industrial, as well as scientific, interest (Bredehoeft and Hanshaw (1968),
Bishop (1979)). Furthermore, the variation of porosity with depth is a source of infor-
mation for geologists who are concerned with understanding the burial and subsidence
histories of sedimentary basins (Smith (1971), Lerche (1990)). Compaction models
which describe these processes are thus of practical interest.

The basic model of compaction is rather analogous to the process of soil consolida-
tion. The sediments act as a compressible porous matrix, so mass conservation of pore
fluid together with Darcy’s law leads to an equation of the general type φt+∇ · q = 0,
q ∝ −∇p, where φ is porosity, q is fluid flux, and p is fluid pressure. This model
must be supplemented by a constitutive law relating pore pressure p to porosity φ,
and in soil mechanics this takes (most simply) the form of the normal consolidation
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line, which relates φ to the effective pressure pe defined by

pe = P − p,(1)

where P is the overburden pressure. Terzaghi’s principle of effective stress (Terzaghi
(1943)) states that for soils, it is the effective pressure (more generally the effective
stress) which controls the deformation, and the extension of this principle to com-
pacting sediments is termed Athy’s law, after work by Athy (1930), who measured
porosity-depth profiles and proposed that φ = φ(pe). In many cases, an exponential
decrease of porosity with depth occurred, and we will sometimes equivocally refer to
this kind of profile as an Athy profile.

It can be seen that with this constitutive assumption, the basic compaction model
will essentially comprise a nonlinear diffusion equation, and our purpose here is to pro-
vide analytic and numerical solutions which provide signposts to the kind of behavior
that can be expected in more realistic models.

Two principal kinds of realism are of concern, although we do not analyze them
in this paper. The first is diagenesis, which is effectively a dewatering reaction which
occurs when smectite (a water-rich clay mineral) dissolves to form quartz in solution
together with free water, the quartz subsequently precipitating as illite (a water-free
clay). Effectively, the smectite-illite reaction acts as a source for pore water and can
thus enhance (or even be a primary cause of) abnormal pore pressures, though to
what extent is unknown.

The other complication concerns the assumed rheology. Even for soils, the rela-
tionship φ = φ(pe) is irreversible, exhibiting hysteresis, and incorporation of this into
basin loading/unloading histories complicates the model conceptually. Furthermore,
as pressure increases, pressure solution occurs, as precipitation and dissolution depend
on the local grain-to-grain pressure. This leads to an effective creep of the solid grains.
Also, calcite precipitation at grain junctions causes cementation and thus stiffening
of the solid matrix. These effects, and those of diagenesis, are not considered in this
paper.

Early studies of compaction by Athy (1930) and Hedberg (1936) have more re-
cently been followed in work by Gibson (1958); see also Gibson, England, and Hussey
(1967) and Gibson, Schiffman, and Cargill (1981). Other recent models of compaction
include those of Smith (1971), Keith and Rimstidt (1985), Wangen (1992), Shi and
Wang (1986), and Luo and Vasseur (1992). Some of this (and other) work was re-
viewed by Audet and Fowler (1992), whose formalism we follow here. All of the above
papers, however, ignore the complications of diagenesis and realistic rheology. Ricke
and Chilingarian (1974) offer a comprehensive review of sedimentary compaction.

Audet and Fowler (1992) provide a general discussion of how diagenesis and, to
some extent, exotic rheology, can be included in compaction models. Because the
structure of such models is very complicated, their approach was to develop analytic
insight into simpler models first, and they were able to find reasonable approximations
for large λ and large time, and also for small λ, where λ is a dimensionless number
which measures the ratio of the hydraulic conductivity of the sediments to the sedi-
mentation rate. Here we extend and improve those results for smaller times, which
are of more geological significance.

The term compaction has been much used in the geophysical literature, mainly
to describe the extraction of magma from source regions in the earth’s mantle. This
work has been reviewed by Fowler (1990) and was based on original papers by Scott
and Stevenson (1984), McKenzie (1984), and Fowler (1985). The principal difference
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Fig. 1. One-dimensional compacting sedimentary basin. The coordinate z is directed upwards.

between those models and the present one is in the rheology of the solid matrix. The
solid grains in the mantle at depths of 100–200 km respond to a differential pressure
between overburden and pore pressures by grain creep. This leads to a very different
model from the one proposed here, which essentially considers the matrix to deform
elastically. Pressure solution creep might be more analogous to the viscous compaction
of the mantle, and this has been analyzed by Angevine and Turcotte (1983).

2. Model equations. We consider the solid matrix to behave as an elastic solid,
and specifically so that the porosity φ is a function of effective pressure pe. The model
describes the one-dimensional flow of both solid and liquid phases and is based on
the framework developed by Audet and Fowler (1992). For a one-dimensional basin
b(t) < z < h(t), where h(t) is the ocean floor and b(t) is the basement rock as shown in
Fig. 1, the governing model equations for one-dimensional compaction can be written
as follows.

Mass conservation:

∂φ

∂t
+

∂

∂z
(φul) = 0,(2)

−∂φ
∂t

+
∂

∂z
[(1− φ)us] = 0.(3)

Darcy’s law:

φ(ul − us) = −k
µ

(
∂p

∂z
+ ρlg

)
.(4)

Force balance:

∂σ3

∂z
− [ρs(1− φ) + ρlφ]g = 0.(5)
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Constitutive relation:

pe = pe(φ).(6)

In these equations, ul and us are the velocities of fluid and solid matrix, k and µ are
the matrix permeability and the liquid viscosity, σ3 is the vertical component of the
stress tensor, and g is the gravitational acceleration.

We can relate σ3 to the effective pressure and pore pressure as follows. First of
all, we may modify Terzaghi’s relation (1) by writing

pe = P − (1− a)p,(7)

a relationship due to Skempton (1960), who suggested that although for soils a might
be small due to a low grain-to-grain interfacial contact area, this would not necessarily
be the case for a more compacted rocklike matrix. Further discussion of the effective
pressure is given by Bear and Bachmat (1990).

In conditions of uniaxial strain, where the only nonzero strain rate is ∂U/∂z,
where U is vertical strain, the nonzero components of the effective stress tensor

σ′ = σ + (1− a)pδ(8)

are the diagonal components given for an elastic medium by

σ′1 = σ′e −
2

3
G
∂U

∂z
,

σ′3 = −pe +
4

3
G
∂U

∂z
,

(9)

where G is the shear modulus.
Now, from (3), we have

dφ

dts
= (1− φ)

∂us

∂z
,(10)

where

us =
∂U

∂t
+ us

∂U

∂z
,(11)

and d/dts is a material time derivative following the solid matrix; thus

∂us

∂z
=
∂∆

∂t
+ ∆

∂us

∂z
+ us

∂∆

∂z
,(12)

where

∆ =
∂U

∂z
(13)

is the dilation. Thus

∂us

∂z
=

1

1−∆

d∆

dts
,(14)

so that, using (10),

1− φ
1−∆

= constant(15)
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following the solid matrix; that is, it is constant in time for each solid matrix element.
Since each solid element originates at the surface, where conditions are assumed to be
uniform, we can also assume that this expression is constant also in space and equal
to A, say; then if G is constant and

dpe/dφ = −K(16)

(which may depend on φ), we find

∂σ′e
∂z

= −
(

1 +
4G

3KA

)
∂pe
∂z

,(17)

and (5) becomes, using (8),

−
(

1 +
4G

3KA

)
∂pe
∂z
− (1− a)

∂p

∂z
− [ρs(1− φ) + ρlφ]g = 0.(18)

2.1. Boundary conditions. These are five equations for five unknown vari-
ables: one for porosity φ, two for velocities us, ul, and two for effective pressure
pe and pore pressure p. The system is of fourth order, so we will require bound-
ary conditions on ul, us, p, pe; in addition, we assume b(t) is known but h(t) is not,
which is therefore described by a further boundary condition. The natural boundary
conditions are the kinematic boundary conditions at z = b,

us = ul = ḃ,(19)

and a kinematic condition at z = h,

ḣ = ṁs + us,(20)

where ṁs is the sedimentation rate at z = h. Also at z = h,

φ = φ0, p = p0,(21)

where p0 is the overburden pressure, e.g., due to ocean depth. φ0 is the value at
the top of basin during sedimentation. Equation (20) gives h, and then we have four
conditions for ul, us, p, pe as required.

The choice of φ0 will normally follow from the constitutive relation pe = pe(φ),
for example, if we take pe = 0 at z = h. The value of A then follows from a normal
stress balance, since we require also −σ′3 = p0, which implies

4

3
G∆ = pe(φ0)− ap0(22)

at z = h. For example, the reasonable assumption pe = 0, a = 0 implies ∆ = 0 and
thus A = 1− φ0 (everywhere).

2.2. Nondimensionalization. A natural depth scale to choose is that over
which φ changes significantly. Since pe = pe(φ), we can equivalently define a pressure
scale over which φ changes significantly. To be specific, define a pressure scale [p] by
writing

pe(φ) = [p]p̃(φ),(23)
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where [p] is such that p̃ varies by O(1) when φ does. Since the variation of pe is
determined by (18), we can equivalently choose a depth scale d by putting(

1 +
4G

3KA

)
[p] = (ρs − ρl)gd.(24)

Here we assume that G/K is constant, which may be a reasonable assumption. Let
ṁ0
s be a typical value of the (positive) sedimentation rate. We now scale the variables

by writing

z = dz∗, h = dh∗, b = db∗,
us = ṁ0

su
s∗,

ul = ṁ0
su
l∗,

t = (d/ṁ0
s)t
∗,

ṁs = ṁ0
sṁ
∗
s,

p = p0 + (ρs − ρl)gdp∗,
k = k0k̃(φ), k0 = k(φ0).(25)

These variables are substituted into the equations, which then become, on dropping
the asterisks for further convenience,

∂φ

∂t
+

∂

∂z
(φul) = 0,(26)

−∂φ
∂t

+
∂

∂z
[(1− φ)us] = 0,(27)

φ(ul − us) = −λk̃
(
∂p

∂z
+ r

)
,(28)

−∂p̃
∂z
− (1− a)

∂p

∂z
− (1 + r) + φ = 0,(29)

p̃ = p̃(φ),(30)

where

λ =
k0(ρs − ρl)g

µṁ0
s

, r =
ρl

ρs − ρl .(31)

The boundary conditions take the same form as in (19)–(21), except that p = 0
at z = h. We add the first two equations of mass conservation together and integrate
from 0 to z; thus

φul + (1− φ)us = ḃ.(32)

By using Darcy’s law, we obtain

us = λk̃

(
∂p

∂z
+ r

)
+ ḃ.(33)



FAST AND SLOW COMPACTION IN SEDIMENTARY BASINS 371

The boundary conditions can thus be written in the form

∂p

∂z
+ r = 0 at z = b,(34)

φ = φ0, ḣ = ṁs + λk̃

(
∂p

∂z
+ r

)
+ ḃ at z = h.(35)

2.3. Excess pore pressure. The hydrostatic pressure at z is defined as

ph = p0 +

∫ h(t)

z

ρlgdz.(36)

The overburden pressure (strictly, the normal stress) at z is defined as

P = p0 +

∫ h(t)

z

[(1− φ)ρs + φρl]gdz.(37)

The excess pore pressure or abnormal overpressure pex is defined as

pex = p− ph,(38)

which is the pressure in excess of the hydrostatic pressure.
By using these definitions and employing the force balance equation (29), the

dimensionless differential forms of the above definitions are

−∂P
∂z

= 1 + r − φ,(39)

−∂ph
∂z

= r,(40)

−(1− a)
∂pex

∂z
=
∂p̃

∂z
+ (1 + ar − φ).(41)

2.4. A general nonlinear diffusion equation. By using (29), (32), and (33),
(27) reduces to a nonlinear diffusion equation for φ:

∂φ

∂t
=

λ

1− a
∂

∂z

{
k̃(1− φ)

[
−p̃′(φ)

∂φ

∂z
− (1 + ar − φ)

]}
− ḃ ∂φ

∂z
.(42)

The boundary conditions are then

−p̃′(φ)
∂φ

∂z
− (1 + ar − φ) = 0 at z = b,

φ = φ0 at z = h,(43)

ḣ = ṁs − λ

1− a k̃
[
p̃′(φ)

∂φ

∂z
+ (1 + ar − φ)

]
+ ḃ at z = h.

Since in practice p̃′(φ) < 0, we see that (42) is a nonlinear diffusion equation, valid in
the domain b < z < h, where h is unknown and is determined by the extra boundary
condition in (43). The problem is thus one of free boundary type.
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2.5. Determination of model parameters. Of the parameters appearing in
(42) and (43), r and a are O(1) constants which are essentially fixed as material
properties. The important parameter which controls compaction is the compaction
number λ. We estimate its size using observations given by other authors (Smith
(1971), Sharp (1976), Sharp and Domenico (1976), Eberl and Hower (1976), Bethke
and Corbet (1988), Lerche (1990), Audet and Fowler (1992)). For example, if we take
d ∼ 1 km, k0 ∼ 1 × 10−18 m2, ρs ∼ 2.6 × 103 kg m−3, g ∼ 10 m s−2, ρl ∼ 1 × 103 kg
m−3, µ ∼ 1 × 10−3 N s m−2, ṁ0

s ∼ 300 m Ma−1 = 1 × 10−11 m s−1; then λ ≈ 1 and
r ≈ 0.63. Typical values of the uncompacted permeability k0 are given by Freeze and
Cherry (1979). The permeability is proportional to the square of the grain size, with
a typical proportionality factor of 10−4 which allows for tortuosity and constriction of
the pore space. Marine clays (particle size less than 2 µm) have permeabilities in the
range 10−16–10−19 m2, silts (particle size 2–60 µm) have permeabilities 10−12–10−16

m2, while sands (60 µm –2 mm) have permeabilities 10−9–10−13 m2. Cemented
clay forms shale, cemented sand forms sandstone, and these have somewhat lower
permeabilities than the corresponding uncemented matrix. We see that a wide range
of permeabilities between 10−9 m2 and 10−19 m2 can occur, so values of λ may lie
in the range 10−1–109. Values of λ which are either small or large are therefore of
interest, although that of large λ is the more likely. This is also the more interesting
case mathematically. An initial porosity of φ0 = 0.5 at the top of the basin is used
by other authors (Smith (1971), Sharp (1976), Bethke and Corbet (1988), Audet and
Fowler (1992)).

2.6. Simplification of the nonlinear diffusion equation. There is no loss
of generality in choosing ḃ = 0 so that z = 0 denotes the basement. Skempton
(1960) suggested that a is small, and in what follows we take a = 0 without expecting
that this choice will have a major effect on the solutions. Based on the work of
Smith (1971), Sharp (1976), and Audet and Fowler (1992), we adopt the following
constitutive functions:

p̃ = ln(φ0/φ)− (φ0 − φ),(44)

k̃ = (φ/φ0)m, m = 8,(45)

ṁs = 1.(46)

With these simplifications, the nonlinear diffusion equation for φ can be written in a
compact form as

∂φ

∂t
= λ

∂

∂z

{
k̃(1− φ)2

[
1

φ

∂φ

∂z
− 1

]}
(47)

with boundary conditions

φz − φ = 0 at z = 0,(48)

φ = φ0, ḣ = 1 + λk̃(1− φ)

[
1

φ

∂φ

∂z
− 1

]
at z = h.(49)

The analysis of this model forms the subject of the rest of this paper. In addition,
the problem is also solved numerically on a normalized grid Z = z/h(t), by using the
predictor-corrector implicit finite-difference method presented by Meek and Norbury
(1982), to make a comparison with the obtained analytic solutions.
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3. Analysis. We expect that values of λ will usually lie in the range 10−2–103.
Since λ is the controlling parameter which characterizes the compaction behavior, we
can expect that λ = 1 defines a transition between slow sedimentation (fast com-
paction) λ >> 1 and fast sedimentation (slow compaction) λ << 1 and that the
evolution features of fast and slow compaction also may be quite different.

3.1. Slow compaction (λ << 1). For λ � 1, z ∼ 1, and t ∼ 1, (47) implies
that ∂φ/∂t ≈ 0, so with φ = φ0 on z = h, then φ ≈ φ0 and k̃ ≈ 1 for z > 0.
Furthermore, we see that h ≈ t. The boundary condition at the base is not satisfied,
and a boundary layer is necessary there. For sufficiently small times, we can take
φ ≈ φ0 near z = 0 as well so that (47) may be approximated (uniformly) as

∂φ

∂t
= λ′

∂2φ

∂z2
, λ′ = λ

(1− φ0)2

φ0
,(50)

with appropriate boundary conditions for the basal boundary layer being

∂φ

∂z
− φ = 0 on z = 0,(51)

φ→ φ0 as z →∞,(52)

where the latter represents the matching condition outside the boundary layer in which
z ∼ λ′1/2. The solution can be easily obtained by a standard Laplace transformation
method (Carslaw and Jaeger (1959)) as

φ = φ0erf

[
z

(4λ′t)1/2

]
+ φ0e

z+λ′terfc

[
z

(4λ′t)1/2
+ (λ′t)1/2

]
.(53)

We see that the assumption that φ is close to φ0 is self-consistent for t � 1/λ′

and in particular for times (of interest) of O(1). In fact, expansion of (53) with
η = z/2(λ′t)1/2 = O(1) and λ′t small shows that φ = φ0 + O[(λ′t)1/2]. The solution
indicates that compaction develops only in a small range near the basin basement,
with a thickness growing with

√
λ′t. When a = 0, we are in the case discussed by

Audet and Fowler (1992) with a similarity solution (their equation (5.26)).
Audet and Fowler (1992) gave a slightly different result for this case by putting

φ − z = φ0 on z = 0. While their result is asymptotically equivalent to (53) for
λ′t � 1, it is likely to be less accurate for larger times, a fact which is confirmed by
numerical integration, as shown in Fig. 2.

The dimensionless overburden, hydrostatic, and excess pore pressures satisfy, re-
spectively,

−∂P
∂z

= 1 + r − φ,(54)

−∂ph
∂z

= r,(55)

−∂pex

∂z
= (1− φ)(1− φz/φ).(56)
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Fig. 2. Comparison of solutions of (47)–(49) in the vicinity of the basement z = 0 in terms of
the normalized height Z = z/h(t), for λ = 0.01. The solid lines represent a direct numerical solution,
while the dashed lines are the solutions of (50)–(53). Audet and Fowler’s further approximation
(1992, eq.(5.26)) is shown as the dotted profiles. It can be seen that the dotted profile deviates from
the correct solution at larger values of t.

It follows that

pex =

∫ h

z

(1− φ)dz − ln(φ0/φ) + φ0 − φ,(57)

and hence, for λ′t� 1, we have the leading-order solution pex ≈ (1−φ0)(h− z). The
other terms are only small corrections. The excess pressure develops proportionally
to basin thickness.

A comparison of the above solution with the numerical results is plotted in Fig.
3. It can be seen that the agreement is very good and that, for λ << 1, overpressure
is essentially proportional to basin thickness.

3.2. Fast compaction (λ >> 1). For large values of λ, we assume expansions
of the form

φ = φ(0) +
1

λ
φ(1) +

1

λ2
φ(2) + · · · .(58)

h = h(0) +
1

λ
h(1) +

1

λ2
h(2) + · · · .(59)
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Substituting the above expansions into (47)–(49) and equating the coefficients of
powers of 1/λ, we have

∂

∂z

{
k̃0(1− φ(0))2

[
1

φ(0)
φ(0)
z − 1

]}
= 0,(60)

φ
(0)
t =

∂

∂z

{
k̃0(1− φ(0))2 1

φ(0)

[
φ(1)
z −

φ(1)

φ(0)
φ(0)
z

]}
,(61)

where k̃0 = (φ(0)/φ0)m and we have in (61) anticipated the result in (65) below. The
boundary conditions become the following.

At z = h(0):

φ(0) = φ0,

φ(1) + h(1)φ(0)
z = 0.(62)

At z = 0:

φ(0)
z = φ(0),
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φ(1)
z = φ(1),(63)

with

ḣ(0) = 1 + k̃0(1− φ(0))
1

φ(0)

[
φ(1)
z −

φ(1)

φ(0)
φ(0)
z

]
(64)

on z = h(0), where again we use (60) to anticipate (65).
Integrating equation (60) and using the boundary condition (63), we have

k̃0(1− φ(0))2

[
1

φ(0)
φ(0)
z − 1

]
= 0,(65)

and hence

1

φ(0)
φ(0)
z − 1 = 0 with φ(0) = φ0 at z = h(0).(66)

Its solution is

φ(0) = φ0e
−(h(0)−z).(67)

This leading-order solution corresponds to equilibrium compaction to which the poros-
ity curve will tend when t→∞. The exponentially decreasing dependence of porosity
on depth was found by Athy (1930) by fitting observed data of Paleozoic shales from
Kansas and Oklahoma. Athy’s porosity curve represents compaction equilibrium at-
tained over a very long time span. Hedberg’s (1936) porosity curve for the Tertiary
shales in Venezuela is similar to Athy’s curve.

Using (67), (61) becomes

−ḣ(0)φ0e
−(h(0)−z) =

∂

∂z

{
k̃0(1− φ(0))2 1

φ(0)
[φ(1)
z − φ(1)]

}
.(68)

Integrating the above equation using (63), we have

φ(1)
z − φ(1) − ḣ(0)φ0(1− ez)e−h(0)

φ(0)

k̃0(1− φ(0))2
= 0.(69)

Using (69), (64), and (67), we obtain a relation for ḣ(0):

−(1− ḣ(0))(1− φ0) + ḣ(0)φ0(1− e−h(0)

) = 0.(70)

Integrating this equation, we have

h(0) = (1− φ0)t+ φ0[1− e−h(0)

].(71)

Clearly, if t is large, then exp[−h(0)] << 1; we thus have

ḣ(0) ≈ 1− φ0.(72)

If t is small, then exp[−h(0)] ∼ 1, and

ḣ(0) ≈ 1.(73)
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3.3. Strongly varying permeability: m � 1. With k̃0 = (φ(0)/φ0)m, we
see that as φ(0) decreases, k̃0 can decrease dramatically if m is relatively large. The
perturbation expansions in (58) and (59) are valid only if λk̃ >> 1, and we can
therefore define a critical porosity φ∗ when λk̃ = 1. With k̃ = (φ/φ0)m, we have

φ∗ = φ0exp

[
− 1

m
lnλ

]
,(74)

and with values φ0 = 0.5, m = 8, λ = 100, this critical value is φ∗ = 0.28. As the
slowly compacting layer thickens, we see that the perturbation solution is valid until
φ(0) = φ∗, which is when

h(0) = Π =
1

m
lnλ ≈ 0.58(75)

with the same values of m and λ, and using (71), this occurs at t = t∗, where

t∗ =
Π− φ0(1− e−Π)

1− φ0
≈ 0.71.(76)

For t > t∗, the solution above can be expected to apply for z > h(0) −Π.
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Fig. 4. Comparison of the large λ solution, (67), with numerical results (solid) in terms of
a normalized depth Z = z/h. For t = t∗ given by (76), the asymptotic result is accurate, but for
t > t∗, it becomes invalid when φ < φ∗ = 0.28, for the values used here of λ = 100, φ0 = 0.5, m = 8.

A comparison of the solution with related numerical results is presented in Fig. 4.
The comparison clearly shows that Athy’s exponential porosity-depth relation (Athy
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(1930)) is valid only in the range of 0 − 0.58d km in such sedimentary basins where
the parameter λ >> 1. If d = 1 km, then the range is 0–580 m. We now extend the
analysis for λ� 1 to deal with this situation.

4. Thick layer sediments with φ < φ∗ and t > t∗. Note that, from its
definition, φ∗ << 1 if λ >> 1, so we must formally assume m >> 1 in order to
have φ∗ of order 1. Thus, we now consider a limit in which m is large. We write the
equations in terms of φ∗ defined by (74) as follows:

φt =
∂

∂z

[(
φ

φ∗

)m
(1− φ)2

(
1

φ

∂φ

∂z
− 1

)]
;(77)

on z = h,

φ = φ0,

(
φ

φ∗

)m
(1− φ)

(
1

φ

∂φ

∂z
− 1

)
= −(1− ḣ);(78)

on z = 0,

φz = φ.

Now if φ > φ∗, (φ/φ∗)m is exponentially large, and therefore, neglecting φt in
(77), (

φ

φ∗

)m
(1− φ)2

(
1

φ

∂φ

∂z
− 1

)
≈ −(1− φ0)(1− ḣ),(79)

using the boundary condition (78) at z = h. We still have (since (φ/φ∗)m � 1)

φ ≈ φ0exp[−(h− z)],(80)

from which φt ≈ −ḣφz, and an improved approximation to (79) is therefore, using
this in (77),(

φ

φ∗

)m
(1− φ)2

(
1

φ

∂φ

∂z
− 1

)
≈ ḣ(φ0 − φ)− (1− φ0)(1− ḣ).(81)

This approximation, however, becomes invalid when h − z ≈ Π, and specifically we
define ξ and Ψ in the transition region near h− z = Π by

z = h−Π− lnm

m
+

ξ

m
,

φ = φ∗exp

[
1

m
(−lnm+ Ψ)

]
,(82)

from which it follows by a matching principle (Hinch, 1991) that Ψ ∼ ξ as ξ →∞. Ψ
satisfies the equation
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−ḣΨξ +

1

m
Ψt

)
φ∞exp

[
1

m
(Ψ−Ψ∞)

]

=
∂

∂ξ

[
eΨ

{
1− φ∞exp

[
1

m
(Ψ−Ψ∞)

]}2

(Ψξ − 1)

]
,(83)

where we define

φ∞ = φ∗exp

[
1

m
(−lnm+ Ψ∞)

]
,(84)

and Ψ∞ will be defined below.
Neglecting terms of O(1/m) in (83), we find

K − ḣφ∞Ψ = eΨ(1− φ∞)2(Ψξ − 1),(85)

where

K = ḣφ∞Ψ∞ − (1− φ∞)2eΨ∞ ,(86)

and Ψ increases monotonically from Ψ∞ as ξ → −∞ to O(ξ) as ξ → +∞. The value
of Ψ∞ must now be found by matching to the solution below z = h−Π.

4.1. Prescription of ḣ. Before finding this solution, we can find ḣ by comparing
(85) to (81). We write the latter equation in terms of Ψ and ξ, to obtain{

1− φ∞exp

[
1

m
(Ψ−Ψ∞)

]}2

eΨ(Ψξ − 1)

≈ m
[
ḣ

{
φ0 − φ∞exp

[
1

m
(Ψ−Ψ∞)

]}
− (1− φ0)(1− ḣ)

]
,(87)

whence

(1− φ∞)2eΨ(Ψξ − 1)

≈ m[(1− φ∞)ḣ− (1− φ0)]− ḣφ∞(Ψ−Ψ∞) + · · · ,(88)

and in order that this matches to (85), we require (using the definition of K in (86))
that

ḣ =
1− φ0

1− φ∞ −
(1− φ∞)2

m
eΨ∞ . . . .(89)

Solution below the transition layer. We write the equation for Ψ, (83), in
terms of z. It is

Ψtφ∞exp

[
1

m
(Ψ−Ψ∞)

]
=

∂

∂z

[
eΨ

{
1− φ∞exp

[
1

m
(Ψ−Ψ∞)

]}2(
1

m
Ψz − 1

)]
,(90)
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Fig. 5. Comparison of asymptotic solutions (81) and (94) (dashed lines) and numerical results
(solid lines), for times t = 2 and t = 5, taking λ = 100.

and at leading order,

φ∞Ψt + (1− φ∞)2eΨΨz = 0,(91)

a hyperbolic equation. The loss of the highest derivative means that only one bound-
ary condition can be satisfied, and because the characteristics of (91) move upward,
the appropriate condition to satisfy is that at z = 0, which is Ψz = m. It seems
that this condition is not correctly ordered, thus warranting consideration of a fur-
ther basal boundary layer, but we show that by solving (91) together with Ψz = m
on z = 0, we obtain a uniformly valid solution below z = h−Π.

We suppose that the initial data for (91) are

Ψ = Ψb(τ) when z = 0, t = τ,(92)

where, if h = Π + 1
m lnm at t = t0 (≈ t∗), then

Ψb(t0) = 0,(93)

and we choose Ψb(τ) in order that Ψz = m at z = 0. The solution is easily found to
be

Ψ = ln

[
1 +mz

1 +m (1−φ∞)2

φ∞
(t− t0)

]
(94)

and Ψb = 0. This satisfies the boundary condition on z = 0; moreover, we see that
(∂2/∂z2)eΨ = 0 so that the diffusion term in (90) is of order 1/m2, so long as Ψz is
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of order 1. From (94), this is true for z ∼ O(1), so that (94) is (very) accurate away
from the base. Near z = 0, however, Ψz ∼ O(m), so the diffusion term is of order 1
there and not negligible. Since this is only true for z ∼ O(1/m), the implication is
that the solution (94) is uniformly accurate to O(1/m) for Ψ in z < h− Π, with less
accuracy near the base. This appears to be borne out in Figs. 5, 6, and 8 below.
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Fig. 6. Comparison of asymptotic solutions (81) and (94) (dashed lines) and numerical results
(solid lines) with different values of m: t = 2 in all plots, λ = 100, and the curves correspond to
values m = 8, 16, 24.

We can now finally obtain Ψ∞ by matching (94) with (85) as z → h − Π and
ξ → −∞. In fact, putting z = h−Π− 1

m lnm+ ξ
m , (94) becomes

Ψ = ln

[
h−Π + 1

m (1− lnm+ ξ)
(1−φ∞)2

φ∞
(t− t0) + 1

m

]
,(95)

from which we require

Ψ∞ = ln

[
φ∞(h−Π)

(1− φ∞)2(t− t0)

]
+ o(1).(96)

This completes the asymptotic solution.
Comparisons of the approximate solution derived above with the numerical solu-

tion are shown in Figs. 5 and 6. For a value λ = 100, Fig. 5 shows the comparison
at times t = 2 and t = 5, while Fig. 6 compares approximate and exact solutions at
t = 2 for increasing values of m. The accuracy increases with m, as we expect. Figure
7 shows computed and approximate values of h(t).
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Fig. 7. Comparison of approximate h(t) solution from (89) and (96) (dashed line) and numerical
results (solid line); λ = 100.

When λ >> 1 and φ > φ∗, substituting (80) for φ into (56), we have

∂pex

∂z
= 0.(97)

This equation with the boundary condition pex = 0 at the top z = h(t) gives pex = 0
for the leading-order solution. This means excess pressure does not occur for short
times or in the top region where h − z < Π. This region is clearly shown in Fig. 8.
For larger times, the approximate solution suggests that φz << φ, whence

∂pex

∂z
≈ −(1− φ),(98)

which shows that the excess pore pressure develops at large times even if λ >> 1.
The comparison of the numerical results for the pore pressure with that calculated

from the asymptotic solutions (dashed lines) is shown in Fig. 8. The overpressure
only develops in the lower region, while the pore pressure remains hydrostatic in the
top region within a depth of order Π from the surface.

5. Conclusions. In the absence of diagenesis and temperature effects, the gen-
eralized one-dimensional model of compaction given by Audet and Fowler (1992)
reduces to a nonlinear diffusion equation in a domain with a moving boundary. When
scaled, this model depends primarily on one dimensionless parameter λ, which is the
ratio of the sedimentation time scale to the Darcy flow time scale. Thus, λ >> 1 if



FAST AND SLOW COMPACTION IN SEDIMENTARY BASINS 383

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pressure

sc
al

ed
 h

ei
gh

t: 
Z

overburden

pore

hydrostatic

Fig. 8. Hydrostatic, pore, and overburden pressures at t = 5, λ = 100. Dashed lines are
computed by using (81) and (94).

sedimentation is very slow, while λ << 1 if it is very fast. Realistically, both limits
are possible, depending principally on the permeability. In addition, strong variability
of the permeability through the exponent m complicates the solution method.

In particular, we find that in the limit λ << 1 (slow compaction), the model
can be simply analyzed by means of a boundary layer analysis at the sediment base.
Essentially, sediment is added so fast that the porosity remains virgin except near the
base, where compaction occurs. The pore pressure is then essentially lithostatic; that
is, excess pore pressures exist over the whole domain.

The more interesting (and probably more relevant) case is when λ >> 1 (fast com-
paction). For sufficiently small times (and thus also basin thicknesses), the porosity
profile is exponential with depth, and the pore pressure has relaxed to a hydrostatic
value. However, because of the large exponent m in the permeability law k̃ = (φ/φ0)m,
we find that even if λ >> 1, the product λk̃ may become small at sufficiently large
depths. In this case, there is a critical depth such that, when the basin thickness ex-
ceeds it, the porosity profile consists of an upper part near the surface where λk̃ >> 1
and the exponential profile is attained, and a lower part where λk̃ << 1, and the
porosity is higher than equilibrium. Straightforward asymptotic methods are difficult
to implement because the limit m >> 1 implies exponential asymptotics, but we use
a hybrid method which appears to correspond accurately to numerical computations.
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The methods presented in this paper pave the path for the analysis of compaction
in sedimentary basins when more complicated loading histories are studied, and also
when more realistic phenomena are included, such as diagenesis, or state-dependent
rheology (Schofield and Wroth (1968)).
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