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Simple Summary: This study was conducted to characterise the caecal microbiota in two broiler

management systems (fast and slow-growing) during the growing period, using 16S rRNA sequencing

analysis. Because of the essential role of the caecal bacteria in poultry health and productivity,

these data could be considered as a biomarker of health status and will make it possible to evaluate

different treatments applied in animals. The main results demonstrated that microbiota is in constant

development throughout the growing period for both management systems, and the most abundant

bacteria groups are related to better productive performance and intestinal health.

Abstract: Caecal microbiota and its modulation play an important role in poultry health, productivity

and disease control. Moreover, due to the emergence of antimicrobial-resistant bacteria, society is

pressing for a reduction in antibiotic administration by finding effective alternatives at farm level,

such as less intensified production systems. Hence, the aim of this study was to characterise the

caecal microbiota in two different broiler management systems, fast and slow-growing, using 16S

rRNA sequencing analysis. To this end 576 broilers were reared in two different management systems

(fast and slow-growing). Results showed that Firmicutes represented the dominant phylum for both

systems. At the onset, Proteobacteria was the second prevalent phylum for fast and slow-growing

breeds, outnumbering the Bacteroidetes. However, during the rest of the production cycle, Bacteroidetes

was more abundant than Proteobacteria in both groups. Finally, regardless of the management system,

the most predominant genera identified were Oscillospira spp., Ruminococcus spp., Coprococcus spp.,

Lactobacillus spp. and Bacteroides spp. In conclusion, fast and slow-growing broiler microbiota are in

constant development throughout rearing, being relatively stable at 21 days of age. Regarding the

genus, it should be noted that the three most abundant groups for both systems, Ruminococcus spp.,

Lactobacillus spp. and Bacteroides spp., are related to better productive performance and intestinal health.
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1. Introduction

Microbiota is defined as the microbial community, including commensal, symbiotic and pathogenic

microorganisms, which colonise different areas of animals and have an important influence on animal

health, productivity and disease control [1–9]. Hence, the presence of beneficial microbiota plays an

important role in production, protection from pathogens, control of epithelial cell proliferation and

differentiation, detoxification (controlling the behavioural and neurological functions of the host) and

modulation of the immune system [6,9,10].

Principal factors affecting the microbiota are age, breed, maternal elements, sex, diet, housing,

hygiene, temperature, litter, antibiotic administration and gastrointestinal location [6,11]. Referring to

the last factor mentioned, the caecum is described as the organ with the greatest taxonomic diversity

and abundance, which retains food for the longest period, with the greatest water absorption, and is

responsible for urea regulation and carbohydrates fermentation [6].

Moreover, due to the emergence of antimicrobial-resistant bacteria, society is pressing for a

reduction in antibiotic administration by finding effective alternatives to control infectious diseases at

farm level [12–15]. Some of these alternatives are feed additives (prebiotics, probiotics, symbiotics,

organic acids, enzymes, phytogenics and metals), alternative medical treatments (antibacterial

vaccines, immunomodulatory agents, antimicrobial peptides and bacteriophages) and, finally, different,

less intensified broiler management systems [16–22]. Although the beneficial effects of many of

these alternatives have been demonstrated in vitro, the general consensus is that the effect of these

products depends on the farm, farmer management and animal characteristics, such as the breed

selected [11,14,23].

The variability obtained in different studies highlights the need to know, under production

conditions, how the microbiota evolves, which could assist in decision-making in situ, especially at

critical moments of the production period. For example, when the broiler reaches the farm from the

incubator, an adaptation moment that will mark the development of the production cycle [9,11,24–26];

at the stage when the immune and digestive system is already mature, and therefore, will determine

the potential of the breed in terms of growth and conversion [8,27,28]; or at the end of the cycle, a key

moment, as it is the step before the animals are transferred to the slaughterhouse. The microbiota has

been seen to be an important source of external and internal contamination of the carcass by bacteria of

such great importance as Salmonella and Campylobacter during loading, transport and slaughter [29–32].

Therefore, having a broad knowledge of this composition throughout the cycle can help the sector

choose the different control measures to be applied during rearing, which enhance the presence of

beneficial microorganisms, as well as the immune system, and can control and even eliminate the

presence of pathogenic microorganisms at critical moments in the production cycle [6,9,32]. However,

today there is still a need to develop cost-effective and straightforward molecular techniques that can

be used for this purpose at field level.

In this context, the aim of this study was to characterise the caecal microbiota in two different

broiler management systems, fast and slow-growing, during their respective growing periods, using

16S rRNA sequencing analysis.

2. Materials and Methods

In this experiment, all animals were handled according to the principles of animal care published

by Spanish Royal Decree 53/2013 [33]. All protocols were approved by the Ethical Review Panel of the

Directorate-General for Agriculture, Fisheries and Livestock from the Valencian Community by the

code 2018/VSC/PEA/0067.
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2.1. Experiment Design

The study was performed in an experimental poultry house in the Centre for Animal Research and

Technology (CITA, in its Spanish acronym (Valencian Institute for Agrarian Research, IVIA, Segorbe,

Spain)). To this end, 576 broilers (males and females) provided from the same hatchery were randomly

housed in two identical poultry rooms (replicates A and B) and 288 animals were housed in each room

(144 fast and 144 slow-growing breeds). In addition, animals were distributed in 24 pens (12 pens for

each group, fast and slow-growing broiler management system) in a final stocking density of 35 kg/m2

for fast-growing management system, and in a final stocking density of 17 kg/m2 for slow-growing

management system, with wood shavings as bedding material. Two management systems were

evaluated: fast and slow-growing, and two commercial breeds were used (Ross® and Hubbard®,

respectively). The fast-growing management is characterised by using an efficient feed conversion and

good meat yield breed [34], with the appropriate feed, and an early slaughter age (42 days). In contrast,

the slow-growing management system is a less intensified type of production, focused on the criteria of

animal welfare and absence of antibiotics [35], with a different feed and a later slaughter age (63 days).

To simulate the real conditions of broiler production, the houses were supplied with programmable

electric lighting, automated electric heating and forced ventilation. The environmental temperature

was set at 32 ◦C on arrival day and gradually reduced to 19 ◦C by 41 days post hatch.

The birds received drinking water and were fed ad libitum. Nutritional and product safety

analysis were assessed before the arrival of animals in the Poultry Quality and Animal Feed Centre

of the Valencia Region (CECAV, in its Spanish acronym (Centro de Calidad Avícola y Alimentación

Animal de la Comunidad Valenciana, Castellón, Spain)). Two different age commercial diets were

offered to the animals: from arrival until 21 days post hatch, chicks were fed a pelleted starter diet,

and from 21 days old to the slaughter day a pelleted grower diet was offered to animals. The diets

for each management system were formulated to meet each breed’s metabolic requirements and to

provide equal nutrient profiles [36]. The starter diet was the same for both breeds (Camperbroiler

iniciación, Alimentación Animal Nanta, Spain), while the grower feed was the standard diet specific

for each one: A-32 broiler and A-80 Pollos crecimiento (Alimentación Animal Nanta, Spain) for the

fast and slow-growing breeds, respectively. Nutritional composition of the diets has been detailed

in Table 1. Only one batch of feed per age (starter and grower) was manufactured. Moreover, no

coccidiostats or antimicrobials were added to either diet, and high biosecurity levels were maintained

in the experimental poultry house during the rearing. Mortality rates and diarrhoea presence were

recorded daily. Finally, animals were weighed at weekly intervals and feed consumption per pen

was recorded.

Table 1. Composition of starter and grower diets for fast-growing (FG) and slow-growing (SG) breeds.

Analytical
Constituents (%)

Diet

Starter Grower FG Grower SG

Crude fat 3.5% 3.1% 3.8%
Crude protein 20.5% 19.4% 18.0%

Crude fibre 2.6% 3.1% 3.2%
Crude ash 6.6% 5.0% 5.5%

Lysine 1.14% 1.13% 0.94%
Methionine 0.62% 0.51% 0.40%

Calcium 1.00% 0.78% 1.00%
Phosphorus 0.69% 0.51% 0.43%

Sodium 0.15% 0.14% 0.17%

Ingredients
Corn, soy flour, wheat, soy oil,

calcium carbonate, monocalcium
phosphate, sodium chloride

Corn, soy flour, rice bran,
calcium carbonate,
sodium chloride

Wheat, soy flour, barley, soy oil,
calcium carbonate, monocalcium

phosphate, sodium chloride,
sodium bicarbonate
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2.2. Sample Collection

To assess the development of microbiota composition throughout the growing period, animals

from each experimental group were randomly selected and caecal samples were collected at different

times of the growing period: on arrival day (1 day), at mid-period (21 days for both groups) and before

slaughter (42 days of age in fast-growing, and 63 days in slow-growing). On arrival day, 30 animals

per group (fast or slow-growing) were selected and sampled just before being assigned to the houses

(n = 30/group). Later, at mid-period, and before slaughter, caecal samples from 30 animals per group

and house were collected again at each sampling moment (n = 60/group/sampling moment). Caecal

samples were taken individually and placed in sterile jars. The samples were processed immediately

after collection.

2.3. DNA Extraction

Caecal content was removed and homogenised. On the first day of rearing, five pools of six animals

from each experimental group were prepared (n = 5/group). Then, for the mid and end period, five

pools of six animals from each group and house were made (n = 10/group/sampling moment). DNA of

the pool content was extracted according to the manufacturer’s instructions (QIAamp Power Fecal

DNA kit, Qiagen, Hilden, Germany) and frozen at −80 ◦C for shipment to the Centre for Biomedical

Research of La Rioja (CIBIR, in its Spanish acronym, Logroño, Spain).

2.4. 16S rRNA Sequencing Analysis

First, all samples received were analysed in a Fragment Analyzer (Genomic DNA 50 Kb kit, AATI)

to ensure their integrity. Additionally, the initial DNA concentration was measured by means of a Qubit

fluorometer (dsDNA HS Assay kit, Invitrogen). From 12.5 ng of DNA (evaluated in Qubit) of each

sample, the library was prepared following the instructions of the 16S rRNA Metagenomic Sequencing

Library Preparation (Illumina) protocol [37]. Primer sequences cover the V3–V4 regions of the 16S rRNA

gene. The following primers also include the Illumina adapters: 16S Amplicon PCR Forward Primer= 5′

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG) and 16S Amplicon

PCR Reverse Primer= 5′ (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT

CTAATCC). The sequencing run was performed in a MiSeq (Illumina) system in 2 × 300 bp format.

The quality of the raw unprocessed reads was evaluated using the FastQC software [38]. After the

removal of adapters by Trim Galore [39], the quality of clean reads was re-evaluated with FastQC.

Then, because the fragments sequenced for each of the samples were overlapped in their central region,

the V3–V4 region of the 16S rRNA gene was partially reconstructed into fragments of approximately

550–580 bp. The OTU (Operational Taxonomic Unit) picking and analysis was performed with QIIME

(v1.9.1) pipeline [40], following the methodology “pick open reference OTUs” against the taxonomy

reference base Greengenes 13.8 at 97% nucleotide identity. Finally, InteractiVenn software was used for

Venn diagram construction [41].

Calculation of the alpha diversity indexes was done by QIIME (v1.9.1), which generates multiple

rarefactions on the OTU table at different sequencing depths, calculates the alpha diversity indexes at

each depth, and finally coheres the data, generating rarefaction graphs for each index. To Identify OTUs

with differential abundance in this study, the analysis was performed using two tests: a non-parametric

analysis (Kruskal–Wallis) and a parametric test (MetagenomeSeq). In both cases, analysis set out

from the standardised and filtered table of OTUs to eliminate those OTUs that may be spurious.

Analysis was carried out at three taxonomic levels: Phylum, Genera and OTU. Then, the alpha

diversity indexes were statistically compared between groups of samples through the Python script

“compare_alpha_diversity.py” included in the QIIME v1.9.1 package. It performs a two-sample t-test

by using by default, as in our case, a non-parametric (Monte Carlo) method and permutation value of

999. The t-test value and a p-value (Bonferroni correction) were obtained for each couple of defined

groups. In this study, a rarefaction depth of 72,060 reads was selected for this analysis [42].
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Beta diversity was evaluated based on indices or coefficients of similarity, dissimilarity or distance

between the samples from qualitative (presence/absence of OTUs) or quantitative (proportional

abundance of each OTU) data. The OTU filtering and normalisation from the OTU table was performed

using the QIIME v1.9.1 protocol. A threshold of 0.01% was applied, meaning that the OTU sequences

with an abundance below the 0.01% are assigned as spurious sequences, and therefore removed from

the analysis. The OTU table normalisation, applying the Cumulative Sum Scaling (CSS) method

through the MetagenomeSeq package was chosen as an alternative to the rarefaction one, according to

previous studies [43,44]. In QIIME’s metagenomics protocol, beta diversity was measured through

a distance or dissimilarity matrix between each pair of samples. This matrix was visualised with

Principal Coordinate Analysis (PCoA) graphs in 2D and 3D, which allow analysis of the distance

between each pair of samples.

Moreover, to analyse the statistical significance of sample groupings by using beta diversity

distance matrices, the “compare_categories.py” Qiime v1.9.1 script was used. This script, which uses

the R vegan and ape packages, allows analysis of the strength and statistical significance of sample

groupings. Several methods are available, and two of them were selected for this study: ANOSIM

and Adonis. Both methods were applied to the three different calculated matrices (Bray–Curtis,

Unweighted Unifrac and Weighted Unifrac).

2.5. Data Availability

Bioproject: PRJNA612272.

BioSample: SAMN14365530: Fast and slow-growing broiler breeds. Caecal microbiota characterisation.

3. Results

During this study, a total of 50 caecal pools (25 per experimental group) were collected, processed

and sequenced. No clinical signs were observed during rearing, and the productive parameters

obtained were in accordance with the breed standards (Table 2). There were no statistical differences

between replicates (p-value > 0.05).

Table 2. Weight of the animals (weight ± s.d) and conversion rate (CR ± s.d.) during the productive

cycle for fast (FG) and slow-growing (SG) management systems.

Fast-Growing (FG) Slow-Growing (SG)

Days of Life Weight (g) CR Weight CR

0 47.20 ± 0.98 41.31 ± 1.24
7 184.80 ± 8.92 1.16 ± 0.10 146.05 ± 6.25 1.26 ± 0.14

14 492.90 ± 44.81 1.25 ± 0.18 368.23 ± 43.77 1.29 ± 0.35
21 823.32 ± 41.88 1.23 ± 0.16 547.21 ± 18.42 1.22 ± 0.63
28 1503.41 ± 77.66 1.30 ± 0.15 936.98 ± 31.20 1.34 ± 0.44
35 2043.72 ± 163.78 2.73 ± 0.74 1283.64 ± 93.16 2.70 ± 0.83
42 2605.91 ± 242.06 3.06 ± 1.30 1631.83 ± 105.98 3.29 ± 1.07
49 2049.22 ± 146.00 3.05 ± 1.08
56 2439.40 ± 183.25 3.17 ± 1.76
63 2776.33 ± 181.86 4.34 ± 1.99

3.1. 16 rRNA Profiling of Fast and Slow-Growing Management Systems

The MiSeq sequencing of the 50 samples produced a total of 14,143,246 sequencing reads with an

average of 282,864.9 reads per sample. Quality and chimera filtering produced a total of 12,661,675

filtered reads with an average of 253,233.5 reads per sample and ranging from 109,447 to 356,331 reads.

Assessment of rarefaction curves based on the Chao1, Shannon, Simpson and Observed OTUs

biodiversity indexes calculated for the six sequence read groups (day-old chicks, mid-period and

slaughter day results for fast and slow-growing management systems) indicated that four of the curves



Animals 2020, 10, 1401 6 of 16

tended to reach a plateau (Tables S1–S4). However, samples from groups 1 and 2 (day-old chicks from

both groups) are at the limit of the rarefaction, leaving a rarefaction number of 72,060 reads (Figure 1).
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Figure 1. Evaluation of alpha diversity in fast and slow-growing management systems using different

calculation measures. (A): Chao 1. (B): Shannon. (C): Simpson. (D): Observed OUTs. AD SG:

slow-growing breed at arrival day; AD FG: fast-growing breed at arrival day; MP SG: slow-growing

breed at mid-period; MP FG: fast-growing breed at mid-period; E FG: fast-growing breed at the end of

the growing period; E SG: slow-growing breed at the end of the growing period.

The Chao1 alpha diversity index reveals a notable difference between the caecal microbiota

depending on the moment of sampling (arrival, mid, end period) (Table 3). For the fast-growing

management system, statistically significant differences (p-value < 0.05) were found between sampling

moments. Samples from day-old chicks (88.3) displayed a lower level of complexity of the microbiota

compared to that found at mid-period (384.4), and samples from mid-period animals displayed a lower

level of complexity than the samples from the end of the growing period (420.3). Similarly, for the

slow-growing management system, alpha diversity index increased throughout the growing period

with statistically significant differences between sampling moments, with a result of 111.9, 373.8 and

447.2 on arrival day, at mid-period and at the end of the growing period, respectively.

Table 3. Alpha diversity according to management system (FG or SG) and sampling moment based on

Chao 1 index.

SAMPLING TIME FG SG

Arrival day 88.3 a 111.9 d

Mid-period 384.4 b 373.8 e

End period 420.3 c 447.2 f

FG: Fast-growing breed. SG: Slow-growing breed. a,b,c: Different superscripts within column FG indicate a
significant difference within group (p ≤ 0.05). d,e,f: Different superscripts within column SG indicate a significant
difference within group (p ≤ 0.05).
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3.2. Differential Gut Microbiota Composition

Inspection of predicted taxonomic profiles at phylum level for all samples based on a

MetagenomeSeq parametric test is summarised in Table 4. This analysis showed that Firmicutes

represented the dominant phylum of the caecal community in both management systems at all sampling

times in the production cycle (p-value < 0.05). At the onset of the growing period, Proteobacteria was the

second prevalent phylum for fast and slow-growing breeds, outnumbering the Bacteroidetes phylum.

However, during the rest of the production cycle, the Bacteroidetes phylum was more abundant than

Proteobacteria in both groups.

Table 4. Taxonomic profiles at phylum level according to management system (FG or SG) and sampling

moment based on MetagenomeSeq parametric test.

Breed Fast-growing Slow-growing

Sampling Time AD MP E AD MP E

Actinobacteria 0.0% 0.3% 0.5% 0.2% 0.3% 0.4%

Bacteroidetes 5.0% a 1.9% b 5.7% c 5.7% l 1.9% m 9.3% n

Cyanobacteria 0.0% d 0.5% d 0.7% e 0.0% 0.4% 1.1%

Firmicutes 58.6% f 95.1% g 90.3% h 61.1%o 95.2% p 85.6% q

Proteobacteria 36.4% i 1.3% j 1.5% k 32.8% r 1.2% s 1.7% s

Tenericutes 0.0% 0.3% 0.6% 0.2% 0.4% 1.1%
Unassigned; NA 0.0% 0.6% 0.8% 0.0% 0.6% 0.8%

AD: Arrival day, MP: Mid-period, E: End. a–k: Different superscripts indicate a significant difference within each
phylum during rearing for fast-growing management system (p ≤ 0.05). l–s: Different superscripts indicate a
significant difference within each phylum during rearing for slow-growing management system (p ≤ 0.05).

For the fast-growing management system, there were statistically significant differences between

the phyla prevalence and the time of sampling (arrival day, mid-period and end period). Proteobacteria

and Bacteroidetes phyla were more abundant at the arrival day (36.4% and 5%, respectively). However,

Firmicutes was the most prevalent phylum at mid-period (95.1%).

For the slow-growing management system, Bacteroidetes (5.7% at arrival day) and Firmicutes (95.2%

at mid-period) showed the same pattern as in the fast-growing breed. However, statistically significant

differences were shown between day-old chicks and the mid-period percentage of Proteobacteria (32.8%

and 1.2%, respectively), which subsequently remained stable until the end of the cycle (1.7%).

Furthermore, in this study 46 taxa were identified at genus level (Figure 2). Regardless of the

management system and time point, the most predominant genera identified were Oscillospira spp.

(7.5%), Ruminococcus spp. (3.6%), Coprococcus spp. (2.9%), Lactobacillus spp. (2.5%) and Bacteroides spp.

(2.0%). In order to further identify microbiota composition for both breeds, we focused on 33 genera,

which were shown to be present at an average relative abundance of more than 0.5% in at least one

sample group [45].

In addition, it is important to highlight that 75% (24/32), 93% (40/43) and 97.8% (45/46) are common

genera for both experimental groups at the beginning, mid- and end period, respectively (the different

genera are detailed in Table S5).

For the fast-growing management system, the results of the genera analysis are shown in

Table 5. At arrival day, predominant bacteria of microbiota were Unclassified members (U. m.) of the

Enterobacteriaceae family (36.4%), U. m. of the Clostridiaceae family (6.2%), U. m. of the Ruminococcaceae

family (5.7%), U. m. of the Lachnospiraceae family (4.9%), Clostridium spp. (4.1%), U. m. of the

Enterococcaceae family (3.7%), Oscillospira spp. (3.5%) and Enterococcus spp. (3.0%). At mid-period,

the predominant genera in caecal samples were U. m. of the Ruminococcaceae family (18.1%), U. m. of

the Lachnospiraceae family (10.4%), Oscillospira spp. (9.6%), Coprococcus spp. (4.0%), Lactobacillus spp.

(3.9%) and [Ruminococcus] spp. (3.3%). Finally, at the end of the growing period, the most prevalent

bacteria were U. m. of the Ruminococcaceae family (17.7%), U. m. of Lachnospiraceae family (10.2%),

Oscillospira spp. (8.8%), Coprococcus spp. (3.5%) and Bacteroides spp. (3.1%).
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Figure 2. Taxonomic analysis at genus level throughout the growing period. (A): Evolution of genera

throughout the growing period for fast-growing management system (AD: arrival day, MP: mid-period,

E: end). (B): Evolution of genera throughout the growing period for slow-growing management system

(AD: arrival day, MP: mid-period, E: end).

For the slow-growing management system, the results of the genera analysis are shown in

Table 6. The pattern for day-old chicks was similar to that observed at this sampling time for the

fast-gowing group. The most abundant bacteria were U. m. of the Enterobacteriaceae family (32.6%),

U. m. of the Ruminococcaceae family (7.5%), U. m. of the Lachnospiraceae family (6.5%), Oscillospira

spp. (5.8%), U. m. of the Clostridiaceae family (4.8%) and U. m. of the Enterococcaceae family (3.6%).

At mid-period, predominant genera were U. m. of the Ruminococcaceae family (18.4%), U. m. of the

Lachnospiraceae family (10.3%), Oscillospira spp. (9.6%), Coprococcus spp. (3.8%), Lactobacillus spp. (3.4%)

and Ruminococcus spp. (3.3%). Lastly, at slaughter day, U. m. of the Ruminococcaceae family (17.0%)

were the most abundant bacteria, followed by U. m. of the Lachnospiraceae family (8.6%), Oscillospira

spp. (7.7%), Coprococcus spp. (3.2%), Bacteroides spp. (4.1%) and Parabacteroides spp. (3.1%).

Table 5. Taxonomic profiles at genus level according to sampling moment in fast-growing

management system.

Phylum Family Genus AD MP E

Unassigned 0.0% 0.6% 0.8%

Bacteroidetes

Bacteroidaceae Bacteroides 1.5% 0.5% 3.1%
Porphyromonadaceae Parabacteroides 1.2% 0.4% 0.7%

Rikenellaceae - 2.0% 1.1% 1.2%
Odoribacteraceae Butyricimonas 0.3% 0.0% 0.7%

Cyanobacteria - - 0.0% 0.5% 0.7%
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Table 5. Cont.

Phylum Family Genus AD MP E

Firmicutes

Planococcaceae - 0.0% 0.5% 0.4%

Enterococcaceae
- 3.7% 0.0% 0.0%

Enterococcus 3.0% 0.2% 0.1%
Lactobacillaceae Lactobacillus 0.9% 3.9% 2.8%

- - 0.2% 0.5% 0.6%
- - 13.7% 29.4% 28.9%

Christensenellaceae - 0.0% 0.2% 0.6%

Clostridiaceae

- 0.6% 0.0% 0.3%
- 5.6% 0.2% 0.2%

Clostridium 4.1% 0.5% 0.5%

Lachnospiraceae

- 4.9% 10.4% 10.2%
Blauria 0.7% 2.0% 2.1%

Coprococcus 1.6% 4.0% 3.5%
Dorea 0.2% 1.4% 1.1%

Epulopscium 2.6% 0.0% 0.0%
[Ruminococcus] 2.5% 3.3% 2.9%

Ruminococcaceae

- 5.7% 18.1% 17.7%
Anaerotruncus 0.0% 0.5% 0.4%

Faecalibacterium 0.9% 1.5% 2.0%
Oscillospira 3.5% 9.6% 8.8%

Ruminococcus 2.1% 5.0% 4.4%

Erysipelotrichaceae
- 0.9% 0.9% 0.4%

Coprobacillus 0.4% 0.9% 0.5%
cc_115 0.0% 0.9% 0.6%

Proteobacteria Enterobacteriaceae - 36.4% 1.3% 1.5%

AD: arrival day, MP: mid-period, E: end.

Table 6. Taxonomic profiles at genus level according to the sampling moment in slow-growing

management system.

Phylum Family Genus AD MP E

Unassigned 0.0% 0.6% 0.8%

Bacteroidetes

Bacteroidaceae Bacteroides 2.6% 0.4% 4.1%
Porphyromonadaceae Parabacteroides 1.0% 0.5% 1.1%

Rikenellaceae - 2.0% 1.1% 3.1%
Odoribacteraceae Butyricimonas 0.0% 0.0% 1.1%

Cyanobacteria 0.0% 0.4% 1.1%

Firmicutes

Planococcaceae - 0.2% 0.5% 0.4%

Enterococcaceae
- 3.6% 0.0% 0.0%

Enterococcus 1.0% 0.2% 0.4%
Lactobacillaceae Lactobacillus 1.2% 3.4% 2.9%

- - 0.4% 0.6% 0.3%
- - 14.6% 29.9% 30.0%

Clostridiaceae
- 4.8% 0.2% 0.3%

Clostridium 2.7% 0.4% 0.4%

Lachnospiraceae

- 6.5% 10.3% 8.6%
Blauria 0.8% 1.8% 1.5%

Coprococcus 1.6% 3.8% 3.2%
Dorea 0.8% 1.3% 0.7%

Epulopscium 2.4% 0.0% 0.0%
Ruminococcus 2.1% 3.3% 2.3%

Ruminococcaceae

- 7.5% 18.4% 17.0%
Anaerotruncus 0.0% 0.5% 0.3%

Faecalibacterium 1.5% 1.8% 1.5%
Oscillospira 5.8% 9.6% 7.7%

Ruminococcus 1.7% 5.1% 3.6%

Erysipelotrichaceae
- 1.0% 0.9% 0.6%

Coprobacillus 0.4% 0.9% 0.5%
cc_115 0.0% 0.8% 0.6%

Proteobacteria Enterobacteriaceae - 32.6% 1.2% 0.9%

Tenericutes - - 0.2% 0.4% 0.7%

AD: Arrival day; MP: Mid-period; E: End.
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Finally, to assess differences in microbiota between sampling moments, beta diversity was analysed

based on Bray–Curtis dissimilarity, Weighted UniFrac and Unweighted UniFrac indexes for these

groups, after which the UniFrac distance matrix was represented through Principal Coordinate Analysis

(PCoA). The R2 values obtained depending on the statistical test used were: Bray–Curtis R2 = 0.85,

Unweighted UniFrac R2 = 0.73 and Weighted UniFrac R2 = 0.89 (these data are detailed in Table S6).

These results support that microbiota diversity is significantly affected by the age of animals for both

management systems (p-value = 0.001) (Figure 3). There is a notable difference between day-old

chicks and the rest of the sampling moments for each group. However, mid-period and end sampling

moments are also separated in PCoA graphics, indicating that microbiota diversity continued to

increase, although to a lesser extent, until the end of the growing period.
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Figure 3. Evaluation of the beta diversity based on Bray–Curtis dissimilarity between sampling moments

(arrival day, mid-period and end of the rearing period) for each management system. (A): Beta diversity

represented by a Principal Coordinate Analysis (PCoA) graphic for fast-growing management system.

(B): Beta diversity represented by PCoA graphic for slow-growing management system.

4. Discussion

The present study assessed the caecal microbiota in two different management systems:

fast-growing and slow-growing, with two different genetic broiler breeds, during their respective

growing periods. In fact, knowing the main microbiota composition during the growing period and

how management practices could influence its modulation could help quick decisions be taken at farm

level [46,47]. In this sense, it might be interesting to consider microbiota composition as a biomarker of

poultry health and productive performance [7,9,48]. It is well demonstrated that a greater complexity of

the gut microbiota is observed as animals grow [49–51]. Our findings showed that there is an important

change in microbiota composition from animals’ arrival to the mid-period, and a less pronounced

variation has been observed from mid-period to the end of rearing. Microbiota becomes relatively

stable at 21 days of rearing, coinciding with the gut maturation in broilers [26,27,49,50]. Although

some authors reported that bacterial diversity in the intestinal tract is higher in breeds with high

feed efficiency [9,52],the results of this study showed a similar microbiota diversity for both breeds

through the production cycle [26,53]. This evidences the importance of flock management during the

production cycle in terms of microbiota balance control [9,11,54]. It is important that any antibiotic

alternative introduced in farms, such as feed additives or management practices, should promote

microbiota development of phyla related to gut health and productive performance.

Regarding gut microbiota composition, the predominant phyla obtained in this study for

both management systems were Firmicutes and Bacteroidetes, followed by Proteobacteria [9,27,50,55].

The colonization of the gastrointestinal tract starts at the moment of hatching [2,9,56]. During thefirst

days, it becomes successively colonized by Protebacteria, specially by the Enterobacteriaceae family, and by

Firmicutes [11]. Afterwards, Firmicutes dominate the caecal population, followed by Bacteroidetes [55,57].
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Firmicutes, constitutes a heterogeneous phylum containing bacterial groups with different metabolic

activities, and several studies have shown that a high level of this phylum is correlated with good

intestinal health [58,59]. The Bacteroidetes phylum is stable through the growing period for both

systems, playing an important role in converting fermentable starch to simple sugars and these, in turn,

to volatile fatty acids to meet the energy demand of the host, so their presence could be particularly

affected by diet components [49,56,60]. At the onset of rearing, Proteobacteria are also found in a

high concentration for both groups. An increment of this phylum is associated with dysbiosis and,

consequently, with an increase in the presence of zoonotic bacteria belonging to this phylum, such as

Salmonella or Campylobacter. For this reason, it is important to ensure strict management practices at

the start of the growing period, as any stress could produce an increase in this phylum, and could

result in a higher shedding of pathogenic bacteria and environmental contamination throughout

rearing [9,58,61,62]. It is an important concern for the poultry sector to maintain these bacteria under

control from the beginning to the end of rearing, the last step before loading, transport and processing

of chickens at the slaughterhouse. Nowadays, Campylobacter and Salmonella are still the two most

important causes of zoonotic diseases in Europe, and poultry products are the main source of human

infection [63].

At genus level, it is important to highlight that 75%, 93% and 97.8% are common to both

management systems, at the beginning, mid- and end period, respectively. These results could suggest

that, despite management practices in the field, the microbiota could have a similar development for

both broiler production systems [26,64]. Moreover, although there exist some variations at genus level,

the results obtained in terms of microbiota composition are broadly similar for both management

systems. According to other authors, slight changes in microbiota composition have not always

entailed a performance consequence [53,65].

The most predominant genera were Oscillospira spp., Ruminococcus spp., Coprococcus spp.,

Lactobacillus spp. and Bacteroides spp., in line with data reported by other authors [27,47,55]. These genera

are associated with higher production rates, so it might be said that high levels of these genera are

indicators of adequate intestinal health in poultry [5,6,47,50]. Among these, Ruminococcus spp. is

known for its ability to degrade complex carbohydrates and thus may have contributed to an improved

degradation of dietary fibre [66,67]. Moreover, Lactobacillus spp. is an important probiotic in promoting

healthy gut, as these bacteria are believed to be responsible for starch decomposition and lactate

fermentation [6,47,50,56]. In turn, Bacteroidetes spp. plays an important role in breaking down complex

molecules to simpler compounds which are also essential for growth of the host and gut microbiota

development [56,66]. In this aspect, feed has a vital influence on genus development [58,68–70]. In this

study, fast-growing birds were fed a corn-based diet and slow-growing birds were fed a wheat-based

one. Different studies support that diets based on barley or wheat instead of corn-based ones increase

the prevalence of Lactobacillus spp. at caeca level [69,71,72], but these diets also could favour the

proliferation of Clostridium perfringens and predispose young chicks to necrotic enteritis [68,73,74].

Nevertheless, corn- or soy-based diets could be deficient in available phosphorus and supplementation

is often necessary [75]. Therefore, the most important aspect of diet management is to meet the

metabolic requirements of animals by using a balanced diet formulation [36,68]. The application at

field level of management techniques that produce the correct balance of any group of microorganisms

that benefit intestinal health could result in animal health and productivity. Likewise, management

techniques that favour the development of undesirable bacterial groups always need to be discarded.

In short, there are numerous factors that influence on microbiota composition development, and all

of them should be valued globally in situ, according to their specific production characteristics [11].

Therefore, developing molecular techniques that can be applied in the field to measure the balance of

the microbiota in each specific case could help us assess the impact of different management techniques

on day-to-day work, and could be a promising line of research for our sector.
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5. Conclusions

In conclusion, fast and slow-growing broiler microbiota is in constant development throughout

rearing, being relatively stable at 21 days of age. Firmicutes and Proteobacteria are the most abundant

phyla at the onset of the production cycle. However, while the Firmicutes increased their concentration

for the two management systems throughout the growing period, the Proteobacteria decreased until the

end of the cycle. Regarding the genus, it should be noted that the three most abundant groups for both

systems, R uminococcus spp., Lactobacillus spp. and Bacteroides spp., are related to better productive

performance and intestinal health.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/8/1401/s1,
Table S1. Statistical comparison of alpha diversity between sample groups based on Chao 1 index, Table S2.
Statistical comparation of alpha diversity between sample groups based on Shannon index, Table S3. Statistical
comparation of alpha diversity between sample groups based on Simpson index, Table S4. Statistical comparation
of alpha diversity between sample groups based on Observed OTUs index, Table S5. Different taxonomic profiles
at genus level according to the moment of the growing period in fast (FG) and slow-growing (SG) breeds, Table S6.
Statistical comparison between beta diversity indexes calculated according to the different methods.
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