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The dispersion relation for disparate mass gas mixtures is derived from a simplified 

two-temperature model. It is shown that the hydrodynamic sound mode (kl+0) goes over 

continuously into either a fast or a slow propagating sound mode (kl+ a), depending on the 

composition. The composition that demarcates the composition regions where the continua- 

tion of the hydrodynamic sound mode is a fast or slow propagating mode is called the critical 

composition. The existence of such a critical composition is confirmed experimentally by new 

Rayleigh-Brillouin experiments on H, + Xe mixtures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Introduction 

In a number of recent studies a fast propagating collective mode was shown 

to exist in high- and low-density disparate mass mixtures [l-lo]. The fast sound 

mode appears outside the hydrodynamic regime and has a propagation velocity 

which is much higher than that of the hydrodynamic sound mode. This new 

phenomenon is associated with dynamic decoupling of the light and heavy 

component at short length scales. 

The renewed interest in the dynamics of disparate mass fluids was initiated 

by the work of Bosse et al. [l]. They observed a new high frequency peak in 

the selfstructure factor Sri&, o) in a computer simulation of liquid Li,,,Pb,.,. 

This peak was associated with the collective Li density fluctuations and was 

named ‘fast sound’. The results were discussed within the framework of the 

Mori-Zwanzig formalism. At small wavenumbers the hydrodynamic sound 

mode and a zero-frequency diffusion eigenmode are predicted. At larger values 

of the wavevector a non-overdamped high-frequency collective mode appears 

that was interpreted as the rapid Li-density fluctuations in a background of 

heavy lead ions. 
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Campa and Cohen predicted the existence of a fast sound mode in dilute 

binary gas mixtures [2] and binary fluid mixtures [3,4], using revised Enskog 

theory. At small wavenumbers the usual hydrodynamic sound mode was 

found. At larger wavenumbers the calculations predict a fast propagating 

sound mode, which has a propagation velocity close to the sound velocity of 

the light component. The fast sound mode can either appear as an extension of 

the hydrodynamic sound mode or as a kinetic mode. Calculations of the 

selfstructure factors showed that this fast propagating collective mode is mainly 

carried by the light particles. 

Experimentally, fast sound was observed in a dense He + Ne mixture by 

neutron scattering [5]. Using Rayleigh-Brillouin light scattering, slow sound 

was observed in dilute He + Xe mixtures [6]. Both fast and slow sound modes 

were observed in gaseous H, + Xe and H, + Ar mixtures using light-scattering 

[7-91. Independently, Clouter et al. confirmed the existence of fast sound in 

H, + Ar and slow sound in H, + SF, [lo]. 

Earlier, ultrasonic measurements indicated the existence of similar dynamic 

decoupling effects in disparate mass gas mixtures. Bowler and Johnson [ll] 

performed these measurements on gaseous He + Xe mixtures. In these experi- 

ments both the velocity and the absorption of the ultrasonic waves are 

measured as a function of the frequency to pressure ratio. They found that the 

experimental dispersion relation of the acoustic mode changes dramatically 

when xne (He-mole fraction) = 0.5. This was confirmed by two-temperature 

model calculations [ 111 and the calculations of Kamgar-Parsi and Cohen [12]. 

These models predict the existence of a ‘critical point’, at which the acoustic 

mode and a diffusive-type mode are degenerate. The dramatic change in the 

experimental dispersion relation of the acoustic mode was attributed to mode 

interference of a diffusive-type mode and the acoustic mode. Bowler and 

Johnson [ll] used a simplified version of the two-temperature model, the four 

moment model, to describe their ultrasonic experiments on dilute gas mixtures. 

This simple model provided a good estimate of some characteristic features of 

the experimental dispersion relation. For example, the four moment model 

predicts a ‘critical composition’ of xne = 0.5, which is in good agreement with 

experiment and the predictions of the more complicated ten moment model 

[11,12]. 

In this paper we will present the four moment model and the six moment 

model for gas mixtures and compare these models with the results of our light 

scattering experiments. Both models are simplified versions of the full two- 

temperature model, which incorporates 26 moments [13]. We will study the 

dispersion relation of both models, in a similar way as earlier studies of sound 

propagation gaps in pure fluids [ 141, gas mixtures [15] and double sound 

propagation in gas mixtures [16]. Although the four moment model does not 
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include temperature fluctuations, it is useful since many of the two-temperature 

characteristics can be obtained analytically. The six moment model contains 

the main characteristics of the more elaborate hydrodynamic or kinetic models. 

Moreover, it describes qualitatively the experimental dispersion relations of the 

fast and slow sound mode in binary gas mixtures. Although there are 

quantitative discrepancies between model and experiment, the main advantage 

of the simplified approach is that there are no adjustable parameters involved 

and it offers a useful physical picture. Both models predict dynamic decoupling 

of the light and heavy component at short length scales as well as the existence 

of two dynamic regions in the composition. These composition regions are 

characterized by domination of the dynamics of the light or the heavy particles 

and are separated by a ‘critical composition’. The existence of such a 

composition is confirmed qualitatively by new experiments on H, + Xe mix- 

tures. 

This paper is organized as follows: In section 2 the theory of the simplified 

two-temperature models will be discussed. The dispersion relation and its 

‘critical behaviour’ will be derived. A comparison with experimental results will 

be given in section 3. Discussion and conclusion can be found in sections 4 and 

5. 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATheory 

The following theory is based on the moments of the species velocity 

distribution function A [17]. The basic equations of the full two-temperature 

model (26 moments) can be found in ref. [13]. The predictions of the ten 

moment model for ultrasonic experiments are given by Kamgar-Parsi and 

Cohen [12] and Bowler and Johnson [ll]. These 10 moments correspond to the 

number densities, flow velocities, temperatures, heat fluxes and pressure 

tensors of both species. In the following derivation of the dispersion relation 

we will essentially follow the notation of ref. [ll]. In the present approach only 

six moments will be considered: 

ni = dci h, 
I (1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3nik,Ti = 
I 

dci zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmicfJ , 
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where ni, ui and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi are the number density, the flow velocity and the 

temperature of species i, k, is the Boltzmann constant and mi is the mass of 

particle i. The integrations are performed with respect to ci (= & - ui), the 

peculiar velocity of a particle of type i, where li is a molecular velocity. The 

subscript i = 1,2 denotes the light and heavy component, respectively. Using 

the Boltzmann equation (external forces are not considered here): 

the linearized dynamic equations for the moments can be obtained [17]: 

ani 
--g + n,,V* ui = 0 ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

& li 

Pi0 dt + VP, = Kjj(“j - uj> 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

aTi 
+niok, at + pioV. ~4~ = 3 

Kij 
(m + m2) ka(Tj - Ti) 3 

i#j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

(4) 

(5) 

(6) 

where the partial pressure pi = n,k,T, and pi (= m,n,) is the mass density of 

species i. The subscript 0 denotes an equilibrium value. The parameter 

Kii = APioPjo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[171 can be calculated for any given interaction potential. It can 

also be approximated by a phenomenological model of gas mixture in which 

diffusion is the only relaxation process [ll]. In that case A is related to the 

diffusion coefficient D by 

A= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k3TO 

n,m,m,D ’ (8) 

where no is equilibrium value of the total number density (= n,, + nzo). For 

hard sphere mixtures A can be calculated exactly and is given by 

A=g fig:2 
3 (ml +m2) 

W, (9) 

where the reference speed W = (2k,ToIp)1’2, p is the reduced mass, (+12 = 

(a, + c2)/2 and mj is the hard-sphere diameter of species i. 

We will use the following set of variables: the number densities ni (i = 1,2), 

the overall flow velocity u = &ui + &u2, the diffusion velocity w = u1 - u2, the 

overall temperature T = x1 T, + x2 T, and the temperature difference A = T, -  

T2, where xi = nio /no and 5, = pialp are the mole fraction and the mass 



R.P.C. Schram, G.H. Wegdam I Fast and slow sound in the two-temperature model 37 

fraction of species zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, respectively. Since we are mainly interested in longitudinal 

sound modes, we will consider only the longitudinal part of the variables, 

parallel to the wavevector k (the x-direction). The nondimensional form of 

these variables is defined by 

nj = niofi, eie , (10) 

u=WCe’*, (11) 

w=Wt+e”, (12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T= T,f’e’” , (13) 

A = To A eie , (14) 

where 8 = kx - ot, k is the length of the wavevector k, w is the angular 

frequency and C? denotes the complex (dimensionless) amplitude of the 

quantity a. We will define the reference frequency v and the reference length 

scale 1 by: 

v = A(m, + m,)n, , (15) 

I=Wlv. (16) 

If eqs. (lo)-(14) are inserted in eqs. (5)-(7), one obtains 

z*fil + ikl(ti + j2G) = 0, (17) 

.z*A2 + ikl(li - &I+;) = 0, (18) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ml017120 
z*G+ikl+- 

m12 

(.qri, + x2fi2) = 0 ) (19) 

1 1 
+ --- 

ml0 m20 

?+mm,,A = -m,,G, 

(20) 

m20--ml0 ,, 

m12 

XlX2W = 
> 

0, (21) 

z* A + ikl f G = -2m,,m,, A, (22) 
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where z* = z/u, with z = -iw and mi, = mil(ml + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm2). The right hand terms of 

eqs. (20) and (22) account for the coupling between the light and heavy 

subsystem. These terms originate from the transferintegrals for momentum and 

kinetic energy, respectively. As can be seen in eqs. (6) and (7), momentum 

and kinetic energy are transferred only by i-j collisions (i # j). Thus, in the 

present approach the dynamics of the light and heavy subsystem are coupled by 

the species flow velocities and species temperatures. 

We will now consider only four moments (eqs. (17)-(20)); the temperature 

fluctuations will be neglected. This is a two-velocity model to which we will 

refer as the four moment model. The dispersion relation for the model reads 

with z” = zlW k, a2 = m10m20 and m12 = xlm10 + x2m20. The scaled dispersion 

relation has only three independent parameters: the reduced wavevector kl, 

the mass ratio m2 lm, and the heavy component mole fraction x2. Note that we 

used two differently scaled eigenvalues, z” and z*, which are related by 

z” = z*lkl. The scaling of 2” is more convenient for comparison with the 

experimental results (section 3). 

A plot of the dispersion relation is given in fig. 1 for two compositions. In 

the limit kl+ 0 the eigenvalues of the diffusive-type modes are 

z = -Dk2, (24) 

z = -v, + O(k2) , (25) 

with v,+, = m12v. The first mode is the particle diffusion mode, the second mode 

is associated with the relaxation of the diffusion velocity w. In addition to these 

two purely damped modes, two propagating modes are found: 

z = +ic,k + O(k2) . (26) 

Since we neglected the temperature fluctuations in the present approach, we do 

not find the usual adiabatic sound velocity for the phase velocity of these 

‘hydrodynamic’ sound modes but instead we find cr = ~k,7’,l(m,x, + m,x,), 

which is the isothermal sound velocity of an ideal gas mixture. 

In the limit of kl-+ m four propagating sound modes are found: 

z = +ic T,& + Q(l) > 

(27) 

(28) 
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Fig. 1. Dispersion relation z* (= Z/V) versus kl (eq. (23), four moment model) for a mixture with 

mass ratio 5. (a) xt = 0.33, (b) n, = 0.29. 

where c=,~ (= v-i) is the isothermal sound velocity of species zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. These 

four modes represent isothermal waves propagating with the sound velocity of 

the pure component, as if the other component were not present. This suggests 

decoupling of the dynamics of the light and heavy component at short length 

scales (kl-, a). 

At intermediate length scales some interesting features of the dispersion 

relation are obtained. As can be seen in fig. la, the two diffusive-type modes 

(eqs. (24) and (25)) merge into the fast propagating sound mode (z = +ic,,,k). 

In the same M-range the hydrodynamic sound mode (z = +ic,k) goes over 

continuously into the slow propagating sound mode (z = +ic, &). At a slightly 

lower concentration of the heavy component the situation is reversed (fig. lb). 

Now the extension of the hydrodynamic sound mode is the fast propagating 

mode. Whether the extension of the hydrodynamic sound mode is a fast or 

slow propagating mode is thus found to depend on the composition. It is 
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therefore useful to define a ‘critical composition’ xS,crit that demarcates the 

regions of fast and slow continuation of the hydrodynamic sound mode. The 

existence of such a critical composition was already mentioned by Campa and 

Cohen [18]. At the ‘critical point’ the modes are two-fold degenerate so that 

the dispersion relation should be of the following form: 

(2”- Z”,,J(Z”--Z”,,i,)‘= 0 ) (29) 

where Zcrit is the root of eq. (23) at the critical point. The coefficients of eq. 

(29) and eq. (23) equal when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAml2 = a and 

6 
x =- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2,crit 1 + S ) 

(31) 

where 6* = ml/m,. These critical parameters only depend on the mass ratio. 

The eigenvalues at the critical point are 

(32) 

For 0 < (Y G +, that is for m,lm, 3 17 + 12fi (- 34), the imaginary part of 

Fcrit equals zero, meaning that a sound propagation gap occurs at the critical 

point. This is demonstrated in fig. 2a, b for mass ratios smaller and larger than 

34. As was shown in earlier papers, sound propagation gaps occur when the 

dissipative forces exceed the elastic forces [ 15,191. 

At this point it is interesting to compare these results with the conditions for 

a sound propagation gap according to a simplified hydrodynamic model for 

mixtures [20,21]. In that hydrodynamic model viscosity and heat conduction 

are neglected; only diffusion is considered. It .can beshown @S-] that sound 

propagation gaps can occur only when 

(S2 - l)* 
VlX2 @ 2xl + x2)2 > 8 ’ (34) 

where y is the specific heat capacity ratio. The function at the left hand side of 

this inequality is proportional to the Brillouin width and has a maximum at 
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0 0.05 0.10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.15 
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Fig. 2. Dispersion relation z* versus kl (eq. (23), four moment model) for a mixture with critical 

composition. (a) m,/m, = 30, (b) m,lm, = 40. 

x2 = 6 ‘/( 1 + 6 ‘). If this value of x2 is inserted in eq. (34) we find that the 

condition for sound propagation gaps to occur is 

(35) 

If temperature fluctuations are neglected (y = l), we find the condition reduces 

to the simple relation 

$17+12ti. (36) 

This is exactly the same condition for sound propagation gaps as was found for 

the present four moment model. The composition and the reduced wavevector 
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are different than the results found in eqs. (30) and (31), however. The basic 

equations of both models are different; the simplified hydrodynamic model 

uses only three hydrodynamic variables: density, concentration and flow 

velocity, while in the four moment model the diffusion velocity is incorporated 

as well. Apparently, the inclusion of the diffusion velocity does not affect the 

condition for a sound propagation gap in an isothermal ideal gas mixture. 

In order to obtain the correct hydrodynamic limit we will now consider the 

simplified two-temperature model which will be referred to as the six moment 

model. When the temperature fluctuations are included the following disper- 

sion relation can be calculated from eqs. (17)-(22): 

(37) 

A plot of this dispersion relation is shown in fig. 3. As can be seen from eq. 

(37) one of the modes has the eigenvalue z = 0 for all values of kl. In the limit 

kl+O the eigenvalues of the other five modes are 

z = kicsk + O(k*) , (38) 

z = -Dk2, (39) 

z = -vw + 6’(k2) , (40) 

z = -v, + 0(k2) , (41) 

with V* = 2a2v. Contrary to the results of the four moment model, the correct 

adiabatic sound velocity cs = ficT for the sound modes is obtained (eq. (38)). 

The particle diffusion mode and diffusion velocity mode (eqs. (39) and (40)) 

were also found in the four moment model. In addition, a diffusive-type mode 

is found which is associated with the relaxation of the temperature difference 

(es. (41)). 
In the limit of kl+ m the eigenvalues of the propagating modes are 

z = *ic s,lk + o(I) > (42) 

z = *ic,,,k + O(1) . (43) 

These decoupled sound modes are propagating with the adiabatic sound 

velocity of the pure component ~s,~ = Gc=,~. 
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Fig. 3. Dispersion relation z* versus kl (eq. (37), six moment model) for a mixture with mass ratio 

5. (a) x2 = 0.33, (b) x2 = 0.29. 

In the intermediate regime (kl- 1) one can still determine a critical 

composition within the six moment model although this cannot be done 

analytically. 

The predictions for the critical compositions of both models are given in 

table I and fig. 4a. The results for the six moment model follow the theoretical 

Table I 

Calculated values for .x2,crit for various mixtures. 

Mixture mJm, 

H,+He 2.0 

He+Ne 5.0 

H,+Ne 10.0 

H,+Ar 19.8 

He+Xe 32.8 

H,+Xe 65.1 

Four moment model Six moment model 

0.415 0.430 

0.308 0.316 

0.240 0.227 

0.183 0.150 

0.148 0.123 

0.110 0.071 
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Fig. 4. (a) %crit versus m, im, for four moment (solid), six moment model (V). (b) (/cl),,,, versus 

m,lm, for four moment model (solid). 

predictions of the four moment although for large mass ratios zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,lm, the 

differences between both model predictions increase. In fig. 4b the predictions 

for the critical reduced wavevector (kl),,it are shown only for the four moment 

model, since it is difficult to define a critical reduced wavevector in the six 

moment model. The value for (/~l),,~~ decreases with increasing mass ratio 

m,lm,. This means that decoupling already occurs at relatively long length 

scales for disparate mass gas mixtures. 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparison with experimental results 

We performed Rayleigh-Brillouin light scattering experiments on dilute 

H, + Xe and H, + Ar gas mixtures. The measurements were carried out at 
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room temperature (T = 294 K) and the pressure was varied in the range 

l-50 bar. The plate spacing of the Fabry-Perot interferometer was 0.71 cm for 

one H, + Xe mixture (xx= = 0.02) and 0.94cm for all other mixtures. The 

spectra were fitted by a sum of Lorentzians in order to obtain the propagation 

frequencies, widths and amplitudes of the modes. One central Lorentzian 

(Rayleigh line) and two pairs of symmetrically shifted Lorentzians (Brillouin 

lines) were used in our fitting routine. Further details about the experimental 

setup and the fitting procedure can be found in ref. [8]. 

It was shown experimentally, by performing density- and wavevector-depen- 

dent measurements, that the phase velocity (w/k) and the reduced wavevector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

kl (I is a characteristic length scale) are in fact the correct scaling parameters 

for the dispersion relation of dilute gas mixtures [22]. Since the present 

measurements were performed at constant wavevector (k = 1.727 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo7 m-l), 

the data will be plotted as 2” (= zlWk) versus kl, instead of the usual way of 

plotting dispersion relations, as in figs. l-3. The reference length scale 1 is 

calculated using eqs. (8), (15) and (16), 

and the experimental value for the diffusion coefficient D (table II). It is 

assumed that D varies inversely proportional with pressure, where the value at 

p = 1 bar is used as reference. 

The length scale I differs from the characteristic length scale we used in 

previous publications: the effective ‘mean free path. The effective mean free 

path was calculated using the persistence of velocities, which does not appear 

explicitly in the present theory. Using this characteristic length scale we were 

able to scale the dispersion of the slow sound mode of various mixtures onto a 

single curve [8]. 

Our experimental results will only be compared with the six moment model. 

Although the four moment model is very useful in studying many aspects of the 

dispersion relation analytically, it does not give the correct hydrodynamic limit 

for the sound modes. Therefore, only the six moment model will be consid- 

ered. 

Table II 

Parameters used to calculate .? = rlWk and kl = Wklv (T = 294 K). The diffusion 

coefficients (T = 300 K, p = 1 bar) are obtained from ref. 1231. 

Mixture *Jm, D ( 10T4 m’s_‘) W (ms-‘) Y (lo9 s-l) 

H,+Xe 65.1 0.6233 1.568 19.7 

H,+Ar 19.8 0.8240 1595 15.4 
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Fig. 5. Dispersion relation 2” 
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(= zlWk) versus kl for H, + Ar, xXe = 0.23. Six moment model 

In fig. 5 the results for a H, + Ar mixture, xAr = 0.23, are shown. Consid- 

ered the fact that there are no adjustable parameters, the agreement with the 

six moment model is satisfactory. For this mixture the agreement with kinetic 

calculations was also good [7]. Experimentally, it was already shown for 

various He + Xe mixtures, that the slow sound mode propagates with a phase 

velocity (= o/k) close to the adiabatic sound velocity of pure Xe [6]. In this 

case the phase velocity of the slow sound mode is close to cs Ar, the adiabatic 

sound velocity of pure Ar, while the phase velocity of the fast sound mode is 

somewhat smaller than cs H . This is also the case for H, + Xe (.xxe = 0.17), as 

is shown in fig. 6: the fast’ sound mode has a much smaller phase velocity than 

the adiabatic sound velocity of pure H,, the slow sound mode however has a 

phase velocity close to the sound velocity in pure Xe. The agreement with the 

six moment model is less convincing for this mixture, experimentally the 

1.0 

Im [i] 
__ 

0 
0 0.2 0.4 0.6 0.8 1 

kl 

Fig. 6. As fig. 5 for H, + Xe, .xXe = 0.17. 

1 
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transition from hydrodynamic sound to slow sound takes place at somewhat 

larger values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkl. This may be related to the fact that the composition is 

already close to the critical composition (the model predictions change 

dramatically in the vicinity of the ‘critical point’). The agreement with another 

H, + Xe mixture (xxe = 0.33) is reasonable, however (fig. 7). Due to the 

relatively high Xe-concentration, no fast sound mode could be observed for 

this mixture [8,9]. 

To our knowledge there are no experimental results in which hydrodynamic 

sound becomes a fast propagating mode at present. According to the predic- 

tions of the six moment model, this can be observed in H, + Xe mixtures with 

xxe < 0.071. Therefore, we have studied a H, + Xe mixture with a very low 

Xe-concentration (xxe = 0.02). Some typical experimental light scattering 

spectra (Z(k, w)) are shown in fig. 8a. As can be seen in the spectra the peak 

position of the strongly damped Brillouin line shifts to higher frequencies as kl 

is increased. This can be observed in more detail in the spectrum of w*Z(k, w) 

(fig. 8b), which is proportional to the longitudinal current autocorrelation 

function. In fig. 9 the corresponding dispersion relation is shown. At the 

highest pressure (p = 20 bar) the hydrodynamic regime is apparently not yet 

reached. The phase velocity of the sound mode differs considerably from the 

calculated sound velocity of the mixture, which indicates that deviations from 

hydrodynamic behaviour start at even higher pressures (smaller values of kl). 

The phase velocity of the fast mode however is close to the adiabatic sound 

velocity of pure H,. 

It is shown that for H, + Xe mixtures with a relative large Xe-concentration 

(XC = 0.17,0.03) the extension of hydrodynamic sound is the slow sound 

mode. For the mixture with the low Xe-concentration (xxe = 0.02) the 

extension of hydrodynamic sound is a fast propagating mode. This is in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 7. As fig. 5 for H, + Xe, x,, = 0.33. 
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Fig. 8. (a) Experimental light scattering spectra I(k, w) (a.u.) versus w for H, + Xe, xxe = 0.02. 

From top to bottom p = 3.0 bar, kl= 0.14; p = 5.5 bar, kl= 0.075; p = 12.8 bar, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkl = 0.0325; 

p = 21.8 bar, kl = 0.0192. (b) Corresponding current autocorrelation functions w*Z(k, w) (a.u.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 9. As fig. 5 for H, + Xe, xxe = 0.02. 
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qualitative agreement with the prediction of the six-moment model; ~x,__~~ = 

0.071. The present results for H, + Xe give a strong indication for the existence 

of a critical composition. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADiscussion 

Fast and slow sound seems to be a general feature of the dynamics of 

disparate mass mixtures [l-lo]. This suggests that the dynamic decoupling of 

the sound modes is primarily related to a high mass ratio. This may justify the 

use of a simplified two-temperature model for qualitative purposes. In this 
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simplified model, dissipation is only due to the coupling of the velocity fields 

and the species temperatures. We find some interesting features of this model 

such as a critical composition and the occurrence of sound propagation gaps. In 

the four moment model the critical composition can be obtained analytically. 

The critical composition demarcates the composition ranges where the light or 

the heavy component dominates the dynamics of the mixture. If we now 

consider the ratio of the momentum densities of both species, and assume that 

the flow velocity ui is proportional with the thermal velocity (= dm) 

w41, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

PlUl l-X, 
-=-ss 
P2U2 x2 

The momentum densities balance at x2 = S/(1 + a), which is precisely the 

critical composition that is predicted by the four moment model. Apparently it 

is the ratio of the momentum densities that determines whether the extension 

of the hydrodynamic sound mode is the fast or the slow propagating mode. 

Inclusion of the species temperatures (6 moment model) results in slightly 

different values for the critical composition (table I). 

At this stage it is interesting to consider the ultrasonic experiments on dilute 

He + Xe mixtures [ll]. In the ultrasonic case the wavevector (complex) is 

measured as a function of frequency (real), contrary to the light-scattering case 

where frequency (complex) is measured as a function of wavevector (real). The 

four moment model predicts, for the ultrasonic case, a critical point at 

(w/v),,~~ = a2/(1 - a4) and x2,crit = 0.5. At large frequencies (W/V) % (w/Y),,~~ 

two sound modes are predicted. Due to the large absorption of the ultrasonic 

waves at low densities, only one (forced) sound mode could be observed 

experimentally. The ten moment model predicts a critical composition x2 crit = 

0.540, which is only slightly different from the four moment model result. For 

hard sphere mixtures it was found that the two-temperature model predicts 

0V5 < X2,crit < 0.6 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,lm, > 5 [12]. Experimentally the critical point occurs at 

X2,crit = 0.5. Using the same approximations as in the previous paragraph we 

find that the ratio of the kinetic energy densities is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pl4 l-x, 
-=- 
p2u; x2 . 

(46) 

This ratio equals 1 when the number densities balance, x2 = 0.5. This may 

indicate that in ultrasonic experiments the dynamics are governed by kinetic 

energy densities or number densities. The connection between the eigenmodes 
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as measured by light scattering and forced modes as measured by ultrasonic 

experiments is still unclear [4]. 

The basic feature of the four moment model is the coupling between the 

light and heavy species, which is a friction term that acts on the velocity 

difference w (eq. (20)). The scaling parameter kl represents the ratio of an 

‘elastic force’ and a ‘friction force’: 

Wk 

k1 = An&n, + m2) ’ (47) 

so the ki--+O limit corresponds to the long wavelength limit as well as to the 

strong coupling limit. In the following intuitive reasoning only propagating 

modes will be considered. Due to the strong coupling between the velocity 

fields u1 and u2, there is no relative motion between both subsystems in the 

kl+ 0 limit. So in this limit a collective sound wave can propagate through the 

mixture. In the short wavelength limit (kl+ CQ), or the weak coupling limit, 

both the velocity fields u1 and u2 are decoupled and sound waves can 

propagate independently through the light and heavy species. If kl- 1 the 

elastic force and friction force are of comparable magnitude. In this kl-regime 

the dynamics of both subsystems decouple and even a sound propagation gap 

can occur. The mass ratio is an important parameter: for large mass ratios 

m,lm, dynamic decoupling takes place at relatively low values of kl (fig. 4b). 

Campa and Cohen [26] have shown that the temperature-temperature 

correlation function SIT(k, w) exhibits a clearly resolved slow sound peak 

whereas the density-density correlation function Sii(k, w) does not. Although 

this is a useful tool in theoretical studies, Sz(k, co) cannot be measured 

experimentally. The current-current correlation function, which is propor- 

tional to w’S(k, w), can be determined experimentally and gives better 

resolved fast and slow sound peaks than S(k, w) [7-91. 

If higher moments such as heat flux and pressure tensor are included (i.e. 

the 10 moment model), similar results for the critical features of the dispersion 

relation are obtained. For example, for a mass ratio m,lm, = 19.8 (H, + Ar), 

the ten moment model predicts a critical composition xAr,crit = 0.12. Kinetic 

calculations [4] on the same system show that this composition is 0.1~ xAr,cr,t < 

0.2. 

An interesting feature of the present theory is the continuation of the 

hydrodynamic sound mode in a fast propagating mode. To our knowledge this 

is not predicted by any hydrodynamic theory. Continuation of the hydro- 

dynamic mode in a slow propagating mode is predicted by the simplified 

hydrodynamic model [20]. The light-scattering experiments of Baharudin [25] 

on a dilute He + Kr mixture (xKr = 0.61) confirm this theory. For disparate 
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mass gas mixtures, the simplified hydrodynamic model predicts that in the 

‘isoconcentration limit’ (large k), the phase velocity of the extended sound 

mode is very close to adiabatic sound velocity of the heavy component. The 

phase velocity of the extension of the hydrodynamic mode (large kl) is also 

within 2% equal to the adiabatic Kr sound velocity, which is consistent with the 

predictions of the six moment model. 

Westerhuijs et al. [27] have performed neutron scattering experiments on a 

He + Ne mixture (xNe = 0.35). They have proposed a model using the 

Zwanzig-Mori operator formalism and fitted this model to the neutron 

scattering spectra. The five basic variables of this model are the microscopic 

densities and longitudinal velocities of both species and the microscopic energy 

density. Extrapolation of the fitting results to the limit k+O gave the correct 

adiabatic sound velocity of the mixture and showed that the slow sound mode 

is the extension of the hydrodynamic sound mode at large wavevectors. The 

theoretical prediction of the six moment model for a dilute He + Ne mixture is 

x Ne,crit = 0.306. It would be interesting to see whether a critical composition 

can also be determined using neutron scattering data of dense binary mixtures. 

5. Conclusion 

A simplified version of the two-temperature model for gas mixtures, the four 

moment model, predicts the existence of a critical composition xZ,crit that 

demarcates two dynamic regions. For x2 >xZ,crit the hydrodynamic sound 

mode becomes a slow propagating mode and for x2 <.xZ,crit the hydrodynamic 

sound mode becomes a fast propagating mode for large reduced wavevectors. 

These dynamic regions are characterized by domination of the light or heavy 

component momentum density. The four moment model is useful in studying 

many aspects of the dispersion relation analytically, but it does not give the 

correct hydrodynamic limit for the sound modes due to neglect of the 

temperature fluctuations. Therefore, our experimental results were only com- 

pared with the six moment model which has similar critical features as the four 

moment model and furthermore predicts the correct phase velocity for the 

hydrodynamic sound mode. 

The existence of a critical composition is confirmed experimentally for the 

H, + Xe system. For _xxe = 0.17 and 0.33, the continuation of the hydro- 

dynamic sound mode is the slow sound mode which propagates with a phase 

velocity close to the adiabatic sound velocity of pure Xe. It was also found 

that, for xxe = 0.02, the extension of the hydrodynamic sound mode is a fast 

mode which propagates with a phase velocity close to the adiabatic sound 



52 R.P.C. Schram, G.H. W egdam I Fast and slow sound in the two-temperature model 

velocity of pure H,. These findings qualitatively confirm the predictions of the 

six moment model; the critical composition for H, + Xe equals +e,crit = 0.071. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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