
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Fast and Stable Low-Rank Symmetric Eigen-Update

Permalink
https://escholarship.org/uc/item/29c6t2x1

Author
Liang, Ruochen

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/29c6t2x1
https://escholarship.org
http://www.cdlib.org/

Fast and Stable Low-Rank Symmetric Eigen-Update

by

Ruochen Liang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ming Gu, Chair
Professor John Strain

Professor Peter Bartlett

Summer 2018

Fast and Stable Low-Rank Symmetric Eigen-Update

Copyright 2018
by

Ruochen Liang

1

Abstract

Fast and Stable Low-Rank Symmetric Eigen-Update

by

Ruochen Liang

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Ming Gu, Chair

Updating the eigensystem of modified symmetric matrices is an important task
arising from certain fields of applications. The core of the problem is computing the
eigenvalues and orthogonal eigenvectors of a diagonal matrix with symmetric low rank
modifications, i.e. D+UHUT . The eigenproblem of this type of matrix has long been
studied since Golub et.al [45] proposed theoretical considerations about it. Currently,
there exist methods to compute eigenvalues accurately, but the difficulty remains in
numerical stability and orthogonality of computed eigenvectors.

The main contribution of this thesis is a new method to compute all the eigenvalues
and eigenvectors of a real diagonal matrix with a symmetric low rank perturbation. The
algorithm computes an orthogonal matrix Q = [q1, q2, . . . , qn] and a diagonal matrix
Λ = diag{λ1, λ2, . . . , λn} such that AQ = QΛ. Here the matrix A = D + UHUT

has the special structure that D ∈ Rn×n is a diagonal matrix, U ∈ Rn×r is a column
orthorgonal matrix and H ∈ Rr×r is a symmetric matrix. n is the dimension of A and
r << n is the rank of the low-rank perturbation.

Aside from solving the eigensystem update problem mentioned above, our proposed
method can also be used in the divide and conquer eigenvalue algorithm. Cuppen’s
divide and conquer algorithm [16] solves a rank-one update of eigensystem in its merge
step for a symmetric tri-diagonal matrix. A symmetric banded matrix will require
solving the eigensystem of a low-rank perturbed diagonal matrix, i.e., D + UHUT .
Efficient solution to this problem in the merge step can potentially enable application
of divide and conquer algorithm directly on symmetric banded matrix.

In our proposed algorithm, eigenpairs are mostly computed by Rayleigh Quotient
Iteration safe-guarded with bisection, with each eigenpair requiring O(nr2) flops to
compute. Hence the overall computational complexity for our algorithm is O(n2r2).
This is an appealing quadratic algorithm since r is usually considered a small constant
relative to n. To ensure numerical stability, eigenvectors corresponding to eigenvalue
clusters are computed through a special orthogonal deflation method that completely
avoids re-orthogonalization. In case of tight clusters, extended precision arithmetic is

2

used for eigenvectors corresponding to close eigenvalues. We present both theoretical
analysis and numerical results to support our claim that the proposed algorithm is
numerically stable.

i

To my parents and friends, for their consistent love and support.

ii

Contents

Contents ii

1 Introduction 1
1.1 Objective . 1
1.2 Thesis outline . 2
1.3 Notation . 3

2 Problem background and motivations 5
2.1 Background . 5
2.2 Motivations . 8

2.2.1 Rank r modification of symmetric eigensystem 8
2.2.2 Divide and conquer algorithm for symmetric band matrix 9

2.3 Related work . 10

3 Algorithm Overview 12
3.1 Bracketing . 12
3.2 Decomposition methods . 15
3.3 Numerical difficulties . 16
3.4 An implementation of the bracketing algorithm 17

4 Preliminary methods 20
4.1 Deflation pre-process . 21
4.2 LDLT decomposition . 22
4.3 Forward substitution . 26

5 Numerically stable methods 28
5.1 Background on QR decomposition . 29
5.2 QR variant of decomposition method 32
5.3 Orthogonal deflation and eigenvalue clusters 35
5.4 Handling convergence . 39

6 Error analysis for eigensystem 41
6.1 Rayleigh Quotient Iteration . 42

iii

6.2 Bisection and Inverse Iteration . 43
6.2.1 Convergence . 44
6.2.2 Residual and stopping criteria 45
6.2.3 Finite precision residual . 46

6.3 Orthogonality of eigenvectors . 48
6.4 Backward error . 49

7 Numerical Experiments and conclusions 51
7.1 Concluding Remarks . 53

References 55

iv

Acknowledgments

The author would like to express his extreme gratitude to Professor Ming Gu for making
worthwhile the experience of working on this thesis. The author has benefited a lot
from Professor Ming Gu’s expertise and vision in conducting mathematical research as
well as his patience in presenting the work. The author is also grateful to Professor
Ming Gu for introducing him to the field of numerical linear algebra. Professor Gu’s
constant support, numerous suggestions and careful reading have played an important
role in the development of this thesis. Besides, helpful office discussions have greatly
shaped the work and sparked ideas.

The author is also grateful to many friends and fellow Ph.D students who have
made life at Berkeley a fun and enriching experience.

1

Chapter 1

Introduction

In this thesis we present a new algorithm to compute all eigenvalues and eigenvectors of
a diagonal matrix with a symmetric low-ran modification. The algorithm computes an
orthogonal matrix Q = [q1, q2, . . . , qn] and a diagonal matrix Λ = diag{λ1, λ2, . . . , λn}
such that AQ = QΛ. Here the matrix A = D + UHUT has the special structure
that D ∈ Rn×n is a diagonal matrix, U ∈ Rn×r is a column orthorgonal matrix and
H ∈ Rr×r is a symmetric full rank matrix. n is the size of the eigenvalue problem and
r << n is the rank of the low-rank perturbation.

The main advance is in being able to compute numerically orthogonal eigenvectors
without the need of Gram-Schmidt or any other similar technique to explicitly re-
orthogonalize eigenvectors. Existing methods for such low rank update usually treat it
as a sequence of rank-one update and result in expensive accumulation of eigenvectors.
Our new algorithm is the result of a combination of methods that enable us to compute
in O(n2) time, accurate and numerically orthogonal eigenvectors. We believe that our
method can be further applied in some other numerical linear algebra problems.

1.1 Objective

Before sketching the outline of the thesis, we first list some goals of our algorithm:

1. O(n2) complexity. We aim to achieve the minimum complexity in computing all
eigenvectors.

2. An accurate algorithm. With the limit of finite precision arithmetic, we cannot
hope to compute true eigenvalues and orthogonal eigenvectors. A realistic goal
is to compute approximate eigenpairs (λ̂i, q̂i), i = 1, 2, . . . , n such that:

• The residual norms are relatively small:

||Aq̂i − λ̂iq̂i|| = O(nε||A||). (1.1)

CHAPTER 1. INTRODUCTION 2

• The computed eigenvectors are numerically orthogonal:

|q̂Ti q̂j| = O(nε), ∀i 6= j, (1.2)

where ε is a given machine precision. We will discuss how these properties relate
to backward stability of the eigen-decomposition in later chapters.

3. An adaptive algorithm that allows the computation of k largest/smallest eigen-
values and the corresponding eigenvectors at a reduced cost.

Our algorithm presented in chapter 3.4 has achieved the first two goals. It’s overall
complexity is O(n2r2) where r is the rank of the low rank modification. The accuracy
requirements are further analyzed in chapter 6. Due to the nature of our bracketing
algorithm, it is difficult to control the set of computed eigenvalues.

1.2 Thesis outline

The following is a summary of the contents of this thesis.

1. In chapter 2, we present some background explaining our problem. We then
briefly discuss some possible scenarios where our method can be applied - the
low rank eigen update problem and the synthesis step in divide and conquer
algorithm. In section 2.3 we summarize some of the related work in current
literature.

2. In chapter 3, we give an overview of our algorithm including the overall structure
and all the pieces used. We begin by introducing the bracketing algorithm and
its example usage in bisection. Rayleigh Quotient Iteration and bisection are
used to generate our eigenpair estimates. We discuss the convergence properties
of Rayleigh Quotient Iteration and the situations where bisection is used as a
backup strategy. In the last section of this chapter we mention some numerical
difficulties for computing orthogonal eigenvectors.

3. In chapter 4, we show in detail some of the factorization techniques used to
efficiently solve the shifted linear system in Rayleigh Quotient Iteration. The
materials of this chapter represent the major advance towards our O(n2) algo-
rithm. Due to the low rank structure of our problem, a deflation strategy is used
to pre-process the input matrices and compute some eigenpairs if certain condi-
tions are met. chapter 4.2 gives the details of the LDLT decomposition we use to
solve the linear system. Although it suffers from the same numerical instability
as LU , it is used only for efficiency. We also provide a QR-based method to
ensure stability of our solution to the shifted linear system.

CHAPTER 1. INTRODUCTION 3

4. In chapter 5, we discuss the QR-based fall back decomposition method for solving
the shifted linear system in Rayleigh Quotient Iteration. We begin by introducing
some backgrounds of QR decomposition and analysis on current QR algorithms.
Then we introduce our choice of decomposition algorithm, which is based on
Householder reflections. A common challenge for eigensolvers is computing or-
thogonal eigenvectors corresponding to eigenvalue clusters. In order to conquer
this challenge, we present an orthogonal deflation method that avoids using any
kind of re-orthogonalization method as used in conventional software packages
like LAPACK [2]. We finish this chapter by giving details and complexity analysis
of the proposed methods.

5. In chapter 6 we discuss how the accuracy requirements (1.1) and (1.2) are achieved
for all eigenpairs. Since our algorithm uses bisection and inverse iteration, we
also discuss the convergence, stopping criteria and the effect of finite precision
arithmetic on the eigenvectors computed by inverse iteration. Extended precision
with a double double arithmetic implementation is used to ensure orthogonality of
eigenvectors when eigenvalue clusters have small absolute gaps. In the last section
of this chapter we give the backward stability analysis of computed eigensystem
based on equations (1.1) and (1.2).

6. In chapter 7 we present some numerical results of our algorithm. We show that the
accuracy and complexity are as demanded. In addition, we include the average
number of Rayleigh Quotient Iteration needed for each eigenpair as well as the
total number of QR-based decomposition used. We finish this chapter with some
concluding remarks and our thoughts on future development.

1.3 Notation

In this section we aim to clarify notations used throughout the thesis. The reader
might benefit from reviewing this section occasionally throughout the reading of this
thesis. We adopt the convention of denoting matrices with upper roman letters such
as A,B,D,U,H and scalars by lowercase greet letters such as α, λ, η, γ or lowercase
roman letters as a, b. In particular, A and H will denote symmetric matrices and D a
diagonal matrix while L denotes a lower triangular matrix. Overbars and hats will be
frequently used when transformations of matrices are being considered, e.g. Â and Ĥ.
For slicing matrices, we adopt the convention used by MATLAB so that the submatrix
of A in rows i through j will be denoted as A(i : j, :) whereas the ith column of A is
denoted by A(:, i). Entries of matrices are denoted with double index in parentheses,
i.e. A(i, j) represents the ith row, jth column of A. Double subscripts are used to
denote entries in blocked matrices. For example, we use A22 denote the 2nd row, 2nd
column block of a blocked matrix.

CHAPTER 1. INTRODUCTION 4

Vectors are denoted by lowercase roman letters such as u, v, h. The ith component
of a vector v will be denoted by v(i) and the slice of components through i and j
is denoted by v(i : j). Unless otherwise specified, we use n to denote the size of
symmetric matrices and length of vectors. For the case where a matrix has only n
non-trivial entries, we will use only one index to denote those entries. Specifically, we
use D(i) to denote the ith diagonal entry of D, i.e. D(i, i).

The n eigenvalues are denoted by λ1, λ2, . . . , λn and their corresponding eigenvec-
tors are q1, q2, . . . , qn. Q and Λ will be used to denote the matrix with columns as
eigenvectors and the diagonal matrix with eigenvalues on the diagonal. The computed
values are denoted by adding a hat, i.e. λ̂1 is the computed value of λ1.

For discussion of performance, ε is used to denote machine epsilon. However, it
is not limited to IEEE’s single or double precision arithmetic as we use it to denote
a generic precision. In error analysis, it will also be used to represent “the order of
machine epsilon”, i.e. O(ε) to be our desired accuracy. Similarly, we will continue to
“abuse” the “big Oh” notation in our computational complexity discussions. Normally,
the O notation implies a limiting process. For example, when we say an algorithm is
O(n2), the meaning is that it performs less than Kn2 operations when n → ∞. To
be more precise, f(n) is O(n2) if there exist n0, K such that f(n) ≤ Kn2,∀n > n0.
However in most of our discussions, we do not imply a limiting process but instead use
it as a synonym of “order of magnitude”. Our usage should be clear from the context.

At last we would like to point out some sloppy usage of the terms “eigenvalues”
and “eigenvectors”. For example, we use phrases such as “the computed eigenvalues
are close to the exact eigenvalues” or “the computed eigenvectors are numerically
orthogonal”. Or we may use “approximated eigenvalues and eigenvectors”. In both
of the above phrases, “computed/approximated” values refer to the eigenvalues or
eigenvectors computed by an algorithm. And we some times use “orthogonal” to mean
“numerically orthogonal”, i.e. “orthogonal with respect to machine epsilon”. Again,
such usage should be clear based on the context it’s in.

5

Chapter 2

Problem background and
motivations

In this chapter, we start by giving a quick background to the problem of comput-
ing eigenvalues and eigenvectors of symmetric matrices. We then discuss the most
commonly used tridiagonalization technique and how the increase in relative cost of
tridiagonalization makes symmetric band matrix an interesting topic. Later in chap-
ter 2.2 we show the two main motivations to our proposed method, including how our
method fits in the symmetric band matrix eigenproblem and how it solves the low rank
modification problem.

2.1 Background

Computations of eigensystems are seen in a variety of contexts, ranging from chemistry
to economics. Quantum chemists need to compute eigenvalues to reveal the electronic
energy states in a large molecule [20], an engineer may need to solve problems con-
cerning natural frequencies of objects. In addition, eigenvalues can convey information
about the market in some models for economists. Lots of such meaningful realistic
problems can be abstracted to a mathematical problem of finding all numbers λ and
non-zero vectors q such that:

Aq = λq,

where A is a real symmetric matrix of order n, λ is called an eigenvalue of A and q is
called the corresponding eigenvector.

By definition, all eigenvalues of A must satisfy the characteristic equation det(A−
λI) = 0, which is a polynomial of order n and hence always has n roots in the complex
domain. A symmetric matrix further enjoys the following two properties:

1. All eigenvalues are real;

CHAPTER 2. PROBLEM BACKGROUND AND MOTIVATIONS 6

2. There exists n orthogonal eigenvectors.

Hence, a symmetric matrix A has an eigendecomposition:

A = QΛQT ,

where Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix containing all the eigenvalues and
Q is an orthogonal matrix of eigenvectors, i.e., QTQ = I.

There is a long history of methods for such eigendecompositions. Explicitly forming
and solving the characteristic equation seems to have been a popular early choice.
However, roots of such polynomials are very unstable and extremely sensitive to changes
in the coefficients and the inadequacy of finite precision arithmetic in modern computers
further enlarged this problem. Orthogonal matrices and orthogonal transformations,
with its stability and property of preserving eigenvalues became and still remains a
popular choice. i.e., a sequence:

A0 = A, Ai+1 = QT
i AiQi,

where QT
i Qi = I. After realizing the impossibility to transform A directly into a di-

agonal matrix, it seemed a natural attempt to transform A into a tridiagonal matrix
instead. Givens first proposed a method for such transformation using plane rota-
tions [24]. However, most modern algorithms reduce A to a tridiagonal matrix T by a
sequence of n − 2 reflections, now named after its inventor Householder [30]. Mathe-
matically:

T = (QT
n−2 . . . Q

T
2Q

T
1)A(Q1Q2 . . . Qn−2) = ZTAZ.

The eigendecomposition of T may now be found as:

T = V ΛV T ,

where V TV = I. Since orthogonal transformations preserves eigenvalues, Λ already
contains all eigenvalues of A. A process called back-transformation is used to find the
eigenvectors:

A = (ZV)Λ(ZV)T = QΛQT .

Tridiagonal eigen-decomposition problem is one of the most heavily researched topic
in numerical linear algebra. A variety of algorithms exploit the tridiagonal structure
and remain in the core part of state-of-the-art software packages such as EISPACK [53]
and LAPACK [2]. However, the advancement of modern computer architecture and the
increase in relative costs to move data between memory layers have post new concerns
for tridiagonalization. In most situations, tridiagonalization can be relatively more
expensive in comparison to the costs of computing the eigenpairs. For general real
symmetric matrices, tridiagonalization and reconstruction process can take up 90% of
the running time if only eigenvalues are calculated and 50% if both eigenvalues and

CHAPTER 2. PROBLEM BACKGROUND AND MOTIVATIONS 7

eigenvectors are required [6]. Moreover, unfavorable data access patterns and bad data
locality can cause even more inefficiencies in the tridiagonalization process. The above
effects are only even worse for symmetric band matrix because its tridiagonalization
process is completed by the annihilate-and-chase method, which does not make use of
BLAS-3 operations [6]. This fact has motivated the idea of a “two-step” reduction -
reducing the symmetric matrix A to a symmetric band matrix B, then reducing B to
a tridiagonal matrix T has become popular. Extensive research has gone into this area
and several successful attempts have been made [35].

Given the importance of eigenproblem for symmetric band matrices, researchers
have devoted extensive efforts into it. Currently, the standard method to compute all
eigenpairs of a symmetric band matrix, for example as implemented in LAPACK [2], is
to tridiagonalize the band matrix via orthogonal transformations, then solve the similar
tridiagonal eigenproblem and use back-transformation to get the original eigenpairs.
The standard divide-and-conquer algorithm for finding all eigenpairs of a tridiagonal
matrix, which was first proposed by Cuppen [16], has made such approaches for sym-
metric band eigenproblem more favorable. The core of this algorithm is a method to
efficiently find all eigenvalues and eigenvectors of a diagonal matrix with a rank-one
modification. In addition, a phenomenon called deflation was exploited to boost the
performance of the algorithm. Efficient and numerically stable implementations of
Cuppen’s algorithm have been developed overtime.

Although it exhibits obvious favorable properties in parallelization, the divide and
conquer approach combined with tridiagonalization is even sequentially one of the
most efficient algorithms for finding the eigensystem of a large dense symmetric band
matrix. [18, Chapter 5]

Inspired by the tridiagonal case, attempts have been made to apply this divide and
conquer idea directly to symmetric band matrices. In fact, it can be generalized to
another form called block tridiagonal matrix:

B =

B1 CT

1

C1 B2 CT
2

C2 B3
. . .

. CT
p−1

Cp−1 Bp

where the diagonal blocks Bi are symmetric and the off-diagonal blocs Ci are ar-

bitrary. Symmetric band matrices can be represented by restricting Cis to upper-
triangular matrices. Various attempts to port over the divide and conquer algorithm
have been made through this generalization, from Golub, Arbenz and Gander [45, 5,
4] to more recently by Gansterer et.al [23]. Many theoretical aspects have been inves-
tigated and eigenvalue computations can be done accurately and stably. However, the
main problem remains in numerical stability of computed eigenvectors.

CHAPTER 2. PROBLEM BACKGROUND AND MOTIVATIONS 8

Another attempt of divide and conquer method has succeeded for a special case
of block tridiagonal matrices, i.e. the case where Cis are rank-one matrices. The
result presented in [22] shows that the algorithm is highly efficient and numerically
stable. In general, the off-diagonal matrices Ci are not rank-one for block tridiagonal
matrices arising from applications. Approximating the off-diagonal matrices with rank-
one matrices is often not sufficiently accurate. Gansterer et.al [23] have also proposed
to compute approximate eigenpairs of symmetric band matrices and have achieved
favorable results. A detailed comparison of methods for eigenproblem of symmetric
band matrices is presented in [37].

2.2 Motivations

In various attempts to generalize the divide and conquer approach to symmetric band
matrices, the central problem has appeared to be computing the eigensystem of a
diagonal matrix with symmetric low-rank modification, similar to the rank-one modi-
fication in tridiagonal case. The algorithm we propose in this thesis is aimed to solve
this problem. In this section we list two important motivations for our algorithm.

2.2.1 Rank r modification of symmetric eigensystem

Golub [45] first proposed some theoretical concerns for the problem of finding eigen-
values and vectors of the matrix A+ V V T where A is a symmetric matrix with known
spectral decomposition and V V T is a positive semi-definite matrix of low rank. This
thesis instead looks at a generalized version of the problem without requiring the mod-
ification to be positive semi-definite.

Formally, let
A = QDQT

where Q = [q1, q2, . . . , qn] is an orthogonal matrix and D = diag(λ1, λ2, . . . , λn) is
diagonal. Here λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues and q1, q2, . . . qn are the
corresponding eigenvectors. Let V ∈ Rn×r be a column orthogonal matrix and H ∈
Rr×r be a rank-r symmetric matrix. In this thesis we consider the problem to compute
the eigenvalues λ̃1, λ̃2, . . . , λ̃n and the corresponding eigenvectors q̃1, q̃2, . . . , q̃n of the
modified eigenproblem:

Ãx := (A+ V HV T)x = λ̃x.

Or equivalently:

(D + UHUT)y = λ̃y, V = QU, x = Qy.

One example of such problem occurs if the eigenvalues of an operator such as
Laplacian or biharmonic operator are to be determined by difference methods on a
domain that’s decomposible into small sub-domains on which discretized eigenvalue

CHAPTER 2. PROBLEM BACKGROUND AND MOTIVATIONS 9

problem can be solved easily [45, 5]. Typically, the matrix from difference methods
have the following block structure:

A =

T1 0 . . . 0 R1

0 T2 0 0 R2
...

. . .
...

0 0 Tk Rk

R1 R2 . . . Rk Q

where Ti represents the difference operator on the sub-domains. Ri andQ, caused by

the boundary conditions and interface points, usually have relatively small dimension
r compared to the dimension n of matrix A [45]. Since the eigenvalues of Ti are easily
computed, it is natural to split A as diag(T1, T2, . . . , Tk, Q) plus a rank 2r modification.

2.2.2 Divide and conquer algorithm for symmetric band
matrix

Another important problem of this type is the rank one modification of the tridiago-
nal problem as proposed by Cuppen [16]. However, the same idea cannot be readily
applied to general symmetric band matrix because the eigenproblem of multiple rank
modification of a diagonal matrix cannot be solved with similar ideas.

Consider an n × n symmetric matrix with semi-bandwidth r that is divided into
n/p× n/p blocks according to:

B =

B1 RT
1

R1 B2 RT
2 0

R2 B3 RT
3

.

0 Rp−2 Bp−2 RT
p−1

Rp−1 Bp

The diagonal blocks Bi ∈ Rn/p×n/p, i = 1, 2, . . . , p are symmetric and banded with

bandwidth r. The subdiagonal blocks Ri ∈ Rr×r are upper triangular and non-singular.
For simplicity, the case p = 2 will be examined in detail and general case follows

easily. Let

B =

[
B1 HT

1

H2 B2

]
=

[
B1

B2

]
+R, Bi ∈ Rn/p×n/p

Arbenz [5] shows in his work that R can be represented by a special form:

R =

0 0 0 0
0 M RT

1 0
0 R1 R1M

−1RT
1 0

0 0 0 0

 ,

CHAPTER 2. PROBLEM BACKGROUND AND MOTIVATIONS 10

where M ∈ Rr×r can be chosen differently. One choice of M used in Arbenz’s work [5]
is based on the singular value decomposition (SVD) of R1. Let R1 = UΣV T , then M =
−V ΣV T and R1M

−1RT
1 = −UΣUT . So both matrices are symmetric negative definite

and have the same norm and condition number as R1. Then the above expression
becomes:

B =

[
B1

B2

]
+ ZHZT ,

where Z =

0
U
V
0

 , H = Σ.

Let Bi = QiDiQ
T
i , i = 1, 2 be the eigendecompositions of the diagonal blocks, the

synthesis problem to combine these two solutions becomes:

B =

[
Q1

Q2

]
(

[
D1

D2

]
+ UHUT)

[
Q1

Q2

]T
,

where U =

[
Q1

Q2

]T
Z.

Letting D =

[
D1

D2

]
makes the synthesis problem the eigenproblem of the

matrix A = D + UHUT , with H being a diagonal matrix itself. The problem that
this thesis approaches is then a generalization of low-rank modification of diagonal
matrix for a general symmetric non-singular H. An efficient algorithm for this problem
can potentially lead to an efficient and stable divide and conquer algorithm for the
eigenproblem of band symmetric matrices.

2.3 Related work

Arbenz, Gander and Golub [45] first investigated into computing the eigensystem of
symmetric band matrices. The authors provide many important results about the
analysis of low-rank modifications of a diagonal matrix. Two methods were proposed
by Arbenz [4] for computing the eigensystem of a diagonal matrix with symmetric rank-
r modification. The first method approaches the rank-r modification as a sequence of
r rank-1 modifications, whereas the second method views the rank-r modification as
another small r × r eigenproblem and uses its solution to solve the original rank-
r modification problem. If both eigenvalues and eigenvectors are required, the first
approach has high algorithmic complexity (O(n3)), but the second method was found
to suffer from numerical stability issues for eigenvector computations.

Various other attempts have been made regarding the divide and conquer algorithm
for symmetric band matrices. Gansterer et.al [59] proposed a low-complexity method

CHAPTER 2. PROBLEM BACKGROUND AND MOTIVATIONS 11

for the eigensystem of symmetric band matrix. But they proposed to compute the
eigenvectors separately using a modified QR iteration aside from the eigenvalue com-
putation. HaiDar et.al [27] also proposed a divide and conquer algorithm for symmetric
matrices which relies on an eigensolver for symmetric band matrix. The synthesis prob-
lem to find the eigensystem of a rank-r modified diagonal matrix was approached by
r rank-one modifications in their proposed implementations and thus, their method is
only viable for eigenvalue computations.

Rank-2 modification of a diagonal matrix has been analyzed by HyungSeon Oh
and Zhe Hu [39], and a similar approach is suspected for general rank-r modifica-
tion. The special case for divide an conquer algorithm on block tridiagonal matrix
with rank-one off-diagonal blocks has been proposed with a numerically stable imple-
mentation. However, most symmetric band matrices aroused in application does not
have rank-one off-diagonals and approximating them with rank-one matrices are not
always sufficiently accurate. A method for approximating the eigenpairs of such rank-r
modification has been studied by Gansterer et.al [59] as well.

The algorithm proposed in this thesis is motivated by the difficulty in computing
eigenvectors for rank-r modified diagonal matrices as well as its application in divide
and conquer algorithm for symmetric band eigenproblem. Our algorithm tries to uti-
lize the special structure of the modification for fast Rayleigh Quotient Iteration to
find both the eigenvalues and eigenvectors at the same time. The stability issue of
eigenvectors are approached by a combination of Orthogonal Deflation technique and
extended precision arithmetic when necessary.

12

Chapter 3

Algorithm Overview

The algorithm proposed in this thesis takes root from a broader kind of algorithm called
“bracketing”. The main idea is to start from an interval containing all the eigenvalues
of A = D+UHUT , then generate a sequence µk of eigenvalue estimates that will divide
the interval into subintervals until they are too narrow. To improve overall efficiency,
our algorithm also generates a sequence xk of eigenvector estimates such that (µk, xk)
converges to an eigenpair while dividing the intervals.

The eigenpair sequence (µi, xi) is generated by Rayleigh Quotient Iteration:
xk+1 = (A− µkI)−1xk
xk+1 = xk+1

||xk+1||2
µk+1 = xTk+1Axk+1

In chapter 3.1 we introduce general bracketing algorithm as well as our choice of
iteration method that generates a convergent sequence to an exact eigenpair. The
strategy used to divide intervals while generating the sequence is also included. Given
our choice of Rayleigh Quotient Iteration, we discuss the methods used to efficiently
and stably solve the shifted linear system involved. Beginning by setting the objec-
tives of our solution methods, we proceed to examine some existing techniques and
their drawbacks for our use case. and conclude by introducing our choice of decom-
position methods used to solve the shifted linear system. In chapter 3.3, we briefly
talk about potential numerical difficulties in the accuracy of computed eigenpairs and
orthogonality of eigenvectors.A more thorough discussion is presented in chapter 6.
We finish this chapter by presenting a description of high-level implementation of our
bracketing algorithm in 3.4.

3.1 Bracketing

Bracketing is an algorithm that depends on a function Count(x) to count the number
of eigenvalues of A smaller than x. Then it is easy to see that the number of eigen-

CHAPTER 3. ALGORITHM OVERVIEW 13

values in a half open interval [α1, α2) is equal to Count(α2) − Count(α1). A general
bracketing algorithm can refer to any one that involves dividing an interval containing
at least one eigenvalue into subintervals of any size and recomputing the number of
eigenvalues in each subinterval. The algorithm terminates when the subintervals are
narrow enough [19].

In order to compute all the eigenvalues and eigenvectors, bracketing algorithm is
usually combined with another eigenvector solver such as inverse iteration. Bisection,
which is proposed by Wallace Givens in 1954 [24] is a good example for bracketing
algorithm. It permits an eigenvalue to be computed in O(n) flops and thus takes
O(n2) flops to compute all eigenvalues. Faster iteration methods that exhibit super-
linear convergence properties also exist such as Laguerre’s method [56, 42] and Zeroin
scheme [48].

Once an approximated eigenvalue λ̂ is computed, the method of inverse iteration
may be used to compute the corresponding eigenvector approximation:

x0 = b, (A− λ̂I)xk+1 = τkxk, k = 0, 1, 2, . . . ,

where b is the starting vector, xk denotes the eigenvector estimate and τk is the normal-
ization scalar for the kth iteration. There were early fears about the loss of accuracy
in solving the above linear system due to A − λ̂I being near-singular when λ̂ is an
accurate approximation to an exact eigenvalue, but it was later showed that this lack
of accuracy would not affect the computed eigenvectors [46]. We will present some
analysis relevant to our problem in chapter 3.3 and 6. Overall, inverse iteration de-
livers an approximated eigenvector û with a small residual whenever λ̂ is close to the
exact eigenvalue λ, i.e. small norm ||(A − λ̂)û||. Although the small residual implies
a small backward error for computed eigenvectors, it does not guarantee orthogonality
when eigenvalues are close together. For symmetric matrices, when several computed
eigenvalues λ̂1, λ̂2, . . . , λ̂k are close together, their corresponding computed eigenvec-
tors q̂1, q̂2, . . . , q̂k may not be orthogonal. In this case, re-orthogonalization is needed
by computing the QR decomposition of [q̂1, q̂2, . . . , q̂k] = QR and replacing each q̂j with
the jth column of Q; this guarantees the orthogonality of corresponding eigenvectors.

For an improvement in overall efficiency of bracketing, we seek to generate a se-
quence of eigenpair estimates that converges to a real eigenpair while dividing the in-
tervals. We pick Rayleigh Quotient Iteration for its fast convergence.The properties of
Rayleigh Quotient Iteration are well-studied and summarized in the following theorem:

Theorem 3.1 (Global convergence) [43] Let (µk, xk) be the sequence generated by
RQI and rk = (A− µkI)xk be the kth residual.

The sequences {||rk||} and {µk} always converge. However, there are two possible
cases to consider. One possibility is that

lim
k→∞
||rk|| = 0.

CHAPTER 3. ALGORITHM OVERVIEW 14

In this case the sequence µk converges toward an eigenvalue λj of A, and {xk} converges
in the direction of the corresponding eigenvector. The second possibility is that

lim
k→∞
||rk|| = η > 0 (3.1)

This case is characterized by the following features:

• (a) The sequence µk converges toward a point µ∗ = (λi + λj)/2, where λi and λj
are two distinct eigenvalues of A;

• (b) limk→∞ x2k = x∗ and limk→∞ x2k+1 = x∗∗ where x∗ 6= x∗∗;

• (c) The limit vectors x∗ and x∗∗ are eigenvectors of (A− µ∗I)2 but not of A;

• (d) The second situation is “unstable” under small perturbation of xk.

The “instability” in the second case means that as ||rk|| approaches η, small per-
turbations in xk can possibly reduce ||rk|| under η. Once ||rk|| becomes smaller than
η, the decreasing property of ||rk|| drives it down to zero [44]. This “instability” also
introduces unpredictability of the behavior of Rayleigh Quotient Iteration since the
sequence can potentially converge to different limit points due to small perturbations.
This unpredictable behaviour is perhaps the reason why Rayleigh Quotient Iteration
has never been considered a practical way for computing a complete eigensystem. In
our proposed algorithm, bisection is used as a backup strategy when Rayleigh Quotient
Iteration does not converge to an eigenpair or converges to a known eigenpair.

In order to divide the intervals in our Worklist, whenever a new eigenvalue estimate
µk is generated, by Rayleigh Quotient Iteration or by bisection, it is located in one of
the intervals in Worklist with Count(µk) i.e. the number of eigenvalues smaller than
µk computed. Then the interval [α, β) containing µk is divided into [α, µk) and [µk, β).
The number of eigenvalues in both intervals are calculated as Count(µk) − Count(α)
and Count(β)− Count(µk) respectively.

Rayleigh Quotient Iteration will be stopped when an estimate (µ, x) generates a
small residual ||(A− µ)x||. The following theorem justifies the stopping criteria in the
sense of backward error:

Theorem 3.2 (Backward error bound) Let u be any nonzero vector in Rn such
that ||u||2 = 1. Let ρ = ρ(u) = uTAu denote the corresponding Rayleigh Quotient and
let

r = Au− ρu,

denote the corresponding residual. Then there exists an eigenvalue λ of A satisfying:

|λ− ρ| ≤ ||r||2.

CHAPTER 3. ALGORITHM OVERVIEW 15

Theorem 3.2 and the local cubic convergence property suggest that Rayleigh Quo-
tient Iteration be terminated as soon as ||r||2 falls below a certain threshold value. Our
choice of the threshold value and a further use of ||r||2 to bound the the deviation of
eigenvectors from orthogonality will be discussed in Chapter 6.

3.2 Decomposition methods

Traditionally, one of the main difficulties for making Rayleigh Quotient Iteration effi-
cient is solving the shifted linear system as the system changes every iteration. When
used to generate sequence of estimates in a bracketing algorithm, it is required that
the iteration also outputs Count of the shift, namely the number of eigenvalues smaller
than the shift. The following summarizes the objectives of our decomposition method
used to solve the shifted linear system:

1. Efficiency. Given that Rayleigh Quotient Iteration takes constant number of
iterations to converge for a single eigenpair, it takes O(n) number of iterations
for the whole eigensystem. Thus, each iteration needs to at least achieve a better
asymptotic complexity than O(n2) to make the overall complexity feasible.

2. Stability. The solution of the shifted linear system (A − λ̂I)x̂ = b needs to be
backward stable in every iteration. Namely, we would like to achieve a small
backward error:

||(A− λ̂I)x̂− b||
||A||||x̂||

.

3. Computation of Count(λ̂). Our decomposition method needs to also compute
the number of eigenvalues of A that are smaller than λ̂ to update the number of
eigenvalues in each interval after we divide the interval in the Worklist by λ̂.

Gaussian elimination with partial pivoting in conjunction with back substitution
can be used to obtain solution of a linear system Ax = b for any non-singular A.
Plain Gaussian elimination assumes a general matrix and takes O(n3) to complete,
which is out of the scope of our efficiency requirement. For a banded matrix, Gaussian
elimination can be adapted to be much more efficient. For example,a symmetric band
matrix A with constant bandwidth b can be decomposed in O(n) time [34] provided that
no pivoting is used. In this case the factors L and U in the LU decomposition A = LU
are both banded matrices with bandwidth b and the subsequent back substitutions can
also be completed in O(n) time.

Variants of Gaussian elimination can have better efficiency when applied to sym-
metric matrices. The Cholesky decomposition A = LLT [15], for example, can cut
the number of flops by half for a symmetric positive definite matrix A. However, the

CHAPTER 3. ALGORITHM OVERVIEW 16

positive definiteness of the shifted matrices A − λ̂ depends on the shift λ̂ and thus is
not guaranteed in our use case.

Our decomposition method is based on another variation of Gaussian elimination
on symmetric matrices called LDLT decomposition [34], or “square-root-free Cholesky
factorization”. Similar to Gaussian elimination, it can be modified to gain efficiency
when applied to a banded matrix. More importantly, the matrix D has the same inertia
with A− λ̂ and readily gives Count(λ̂) as the number of negative diagonal entries. We
present a more detailed discussion of this variation in chapter 4.2.

When stability is concerned, Gaussian elimination and its variants adopt pivoting
strategies, which require comparison of elements in columns and sometimes rows. In
our case, the entries in A − λ̂I = D − λ̂I + UHUT are not directly given and thus
pivoting requires computation of the entries beforehand. Since this pre-computation
adds significant overhead to the decomposition method and numerical instability hap-
pens very rarely, we adopt the strategy to keep the method efficient but unstable for
most of the time and fallback to a more stable solution when needed. In the case of a
solution with large backward error, we will recompute it with a QR-based decomposi-
tion algorithm to guarantee numerical stability. The method is described in detail in
chapter 5.

In summary, our decomposition method is a combination of an efficient but unstable
LDL factorization with a slower but stable QR-based version. In both cases, the
number of flops required is O(nr2) and Count(λ̂) is computed. Although the stable
version has a larger constant hidden in the “big oh” notation, it is only used very
occasionally.

3.3 Numerical difficulties

The quality of an approximate eigenvector x is measured by its residual with the
following result [51]:

Theorem 3.3 Let A be a real symmetric matrix with λ being a simple eigenvalue. Let
v be a normalized eigenvector, then for any vector x and scalar µ, closer to λ than any
other eigenvalue:

| sin∠(v, x)| ≤ ||Ax− µx||/gap(µ),

where gap(µ) = min |γ − µ| : γ 6= λ, γ ∈ spectrum(A). In addition, the error in the
eigenvalue is also bounded by the residual norm, i.e:

|µ− λ| ≤ ||Ax− µx||.

The orthogonality of computed eigenvectors also depends on the residual norm. Sup-
pose v1, v2 are exact eigenvectors with approximations x1, x2, if:

| sin∠(x1, v1)| ≤ nε||A||, | sin∠(x2, v2)| ≤ nε||A||

CHAPTER 3. ALGORITHM OVERVIEW 17

where ε is a given machine precision, then

| cos∠(x1, x2)| ≤ | sin∠(v1, x1)|+ | sin∠(v2, x2)| ≤ 2nε||A||.
In general, the best we can hope for is to produce a residual r = Ax − µx whose

norm is relatively comparable to machine precision, i.e.:

||r|| ≤ nε||A||.
By the above results, , if gap(µ) > tol ∗ ||A||, where tol is a gap threshold (say 10−3),
then

| sin∠(v, x)| ≤ nε/tol.

and accuracy is ensured. Many eigensolvers (i.e. inverse iteration) can produce ac-
curate and numerically stable eigenvectors if the eigenvalues are separated by a large
enough absolute gap, i.e gap > tol ∗ ||A||. On the other hand, in the case where
gap < tol ∗ ||A||, the residual norm must be much smaller than nε||A|| in order to
deliver the same accuracy.

In our proposed algorithm, extended precision arithmetic is employed in some parts
of the computation in the case of a small absolute gap. The implementation is done
with double double arithmetic to simulate quadruple precision for efficiency. Detailed
analysis of accuracy and orthogonality is presented in chapter 6.

3.4 An implementation of the bracketing

algorithm

Our algorithm is similar to other bracketing algorithms in that we maintain a worklist
of tasks and find eigenvalues one at a time while splitting the intervals. We define task
to be a 4-tuple T = (α, β, nα, nβ), where [α, β] is a non-empty interval, nα and nβ are
the Counts associated with α and β respectively, i.e the number of eigenvalues of A
smaller than α, β.

Unlike usual bracketing algorithm, the aforementioned unpredictable behaviour of
Rayleigh Quotient Iteration means that the estimates could converge or land anywhere,
even outside of all intervals in our Worklist. Hence, bisection is used as a backup
strategy to ensure that progress is made in every iteration, i.e. at least an interval gets
a split.

Another challenge for Rayleigh Quotient Iteration is efficiently and stably solving
a shifted linear system in every iteration. The RQI subroutine handles this with a
decomposition method and the details are discussed in chapter 4 and 5.

In our implementation, a new estimate of eigenpair is first generated every iteration
by Rayleigh Quotient Iteration, i.e the RQI subroutine in the pseudo-code:

xk+1 = (A− µkI)−1xk
xk+1 = xk+1

||xk+1||2
µk+1 = xTk+1Axk+1

CHAPTER 3. ALGORITHM OVERVIEW 18

Algorithm 3.4.1 The algorithm to find all eigenpairs

1: procedure BRACKET(n, r,D, U,H, left, right, nleft, nright, τ,W,Q)
2: . Computes all eigenvalues

of D + UHUT in the interval [left, right] and their corresponding eigenvectors to
the desired accuracy τ . The initial task (left, right, nleft, nright) is given.

3: if (nleft ≥ nright .or. left > right) then
4: return
5: end if
6: enqueue (left, right, nleft, nright) to Worklist
7: Deflate(D,U, deflate,W,Q) . Number of deflated eigenpairs = deflate
8: while Worklist is not empty do
9: Pick (α, β, nα, nβ) from the Worklist
10: µ, x = InitialGuess(n, r,D, U,H, α, β)
11: multiplicity = 0
12: while not converged do
13: x′, µ′, nµ = RQI(D, U, H, µ, x)
14: residual = |(D + UHUT − µ′I)x||
15: if µ is not found in any interval then
16: Bisection(n, r,D, U,H, multiplicity)
17: if (multiplicity > 0) then
18: exit
19: end if
20: else
21: Dequeue (α, β, nα, nβ) from Worklist such that µ ∈ [α, β]
22: end if
23: if residual < τ .and. µ′ is found in some interval then
24: HandleConvergence(Worklist, n, r,D, U,H, µ, x, multiplicity)
25: exit
26: end if
27: if (nµ > nα) then
28: enqueue (α, µ, nα, nµ) to Worklist
29: end if
30: if (nµ < nβ) then
31: enqueue (µ, β, nµ, nβ) to Worklist
32: end if
33: µ = µ′, x = x′

34: end while
35: if multiplicity > 1 then
36: HandleCluster(n, r,D, U,H, µ, x,W,Q, multiplicity)
37: else

CHAPTER 3. ALGORITHM OVERVIEW 19

38: W (deflate+ 1) = µ
39: Q(defalte+ 1, :) = x
40: end if
41: deflate = deflate + multiplicity
42: end while
43: end procedure

The Deflate subroutine (chapter 4.1) used in Algorithm 3.4.1 is a pre-process
method to detect and compute certain eigenvalues and vectors if the input matrix
satisfies certain conditions. This is similar to the one used in rank-one case [18].
InitialGuess is a subroutine to pick a random unit vector with its Rayleigh Quotient
as the starting eigenpair estimate. HandleConvergence subroutine(chapter 5.4) checks
the multiplicity of converged eigenpair and enqueues the remaining tasks to Worklist.
HandleCluster is a subroutine that finds eigenvectors corresponding to an eigenvalue
cluster in a stable way, and this will be furthered discussed in section 5.3.

Bisection(n, r,D, U,H,multiplicity) is the fallback strategy mentioned in section
3.1. It is used when Rayleigh Quotient Iteration converges to an eigenpair not in the
Worklist or when RQI does not make big enough progress, i.e. it falls in the second
situation of theorem 3.1. The method takes the first interval in the Worklist, uses the
mid point µ′ as its next eigenvalue estimate and slices the interval accordingly. As for
the eigenvector estimate, it picks a random unit vector if Rayleigh Quotient Iteration
already converges , or uses the solution of the shifted equation (A − µ′I)x = y as the
next estimate, where y is the last eigenvector estimate. The choice is dependent on the
current progress made in terms of reducing the residual ||(A − µI)x||. multiplicity is
an integer returned by Bisection indicating the multiplicity of the eigenvalue found in
the interval, or 0 if not converged.

The computational bottleneck for our proposed algorithm is Rayleigh Quotient
Iteration,i.e. the RQI method, which takes O(nr2) flops for each iteration. Given the
fast convergence properties of Rayleigh Quotient Iteration, it is reasonable to assume
that it converges within constant number of iterations (empirically 5 to 7). Hence, the
overall complexity of our algorithm is O(n2r2) to compute all n eigenvalues and their
corresponding eigenvectors.

20

Chapter 4

Preliminary methods

In this chapter, we discuss the details of some basic and efficient methods used in our al-
gorithm. We begin in chapter 4.1 by introducing a deflation pre-process technique used
to simplify the eigenproblem when certain conditions are met. This is similar to the
deflation method used in the divide and conquer algorithm for tridiagonal eigenprob-
lem. In addition to boosting performance, this pre-process procedure ensures that the
input after deflation has an upper bound on possible eigenvalue cluster size, i.e. mul-
tiplicity of eigenvalues. For symmetric matrices, computed eigenvectors corresponding
to eigenvalues with multiplicity > 1 usually suffer from loss of orthogonality. Usually,
eigensolvers use extra re-orthogonalization subroutines for such eigenvalue clusters and
our algorithm is of no exception. Our algorithm adopts a deflation-based method to
compute numerically orthogonal eigenvectors for such eigenvalue clusters. The upper
bound on eigenvalue cluster size ensures that such special method is not extensively
used and the overall efficiency is not affected much. The details of this method can be
found in chapter 5.3.

Later, we introduce the decomposition method used to solve the shifted linear
system in Rayleigh Quotient Iteration and compute Count(λ̂) for bracketing algorithm
3.4.1. Our objectives and concerns about the choice of decomposition method have
been mentioned in chapter 3.2. We pick a modified version of LDLT decomposition
as it fulfills our efficiency requirement, computes Count(λ̂) with no extra effort and
is stable most of the time. In chapter 4.2 we explain how the input matrix could be
decomposed recursively one column at a time and thus achieve a favorable data re-use
pattern.

Similar to LU decomposition, it suffers from numerical instability. More over, since
our shifted matrix A−λ̂I is indefinite, the diagonal entries of D in LDLT decomposition
is not necessarily positive. We use a small threshold value to replace the diagonal entry
of D that’s close or equal to zero. For numerically unstable case, the solution of the
shifted linear system is recomputed using a stable QR-based decomposition method.
The details can be found in chapter 5.

CHAPTER 4. PRELIMINARY METHODS 21

4.1 Deflation pre-process

Deflation was used in the tridiagonal Divide and Conquer eigenvalue algorithm to
simplify the synthesis step and make later accumulation of eigenvectors more efficient.
For rank-one case B = D + ρuuT , if two diagonal entries of D are equal, i.e. D(i) =
D(j), or when u(i) = 0, then D(i) is an eigenvalue of B and ei is the corresponding
eigenvector [18]. One benefit being that it finds an eigenpair without computation
and the other benefit is the simple form of the computed eigenvector, which makes
subsequent multiplications of eigenvectors more efficient. In fact, this deflation occurs
frequent enough in the divide and conquer algorithm for tridiagonal matrix such that
it is one of the most efficient sequential algorithm for tridiagonal eigensystem [20].

In this section, we generalize the deflation to general low-rank case D + UHUT .
Similarly, it detects conditions in matrices D and U to find special eigenpairs without
computation and decreases the size of the problem. In addition, the deflated input
matrix has a small upper bound on its eigenvalue cluster sizes, or it can be deflated
otherwise. This upper bound is crucial to the efficiency of our method for finding
orthogonal eigenvectors corresponding to eigenvalue clusters.

Deflation occurs when one of the following conditions is met:

Proposition 4.1 Let A = D + UHUT ,

• If D(i1) = D(i2) = . . . = D(ik) = λ and k > r, then λ is also an eigenvalue of A
with cluster size k − r.

• If ||U(i, :)|| = 0, then (D(i), ei) is an eigenpair of A.

Proof 4.1 • For the first part, without lose of generality assume that i1 = 1, i2 =
2, . . . , ik = k. Then since U is an n× r column orthogonal matrix, the rank of U
is r and the null space of UT (1 : k, :) is then k − r.

If k > r, then the null space of UT (1 : k, :) is non-empty and let UT (1 : k, :)x = 0.
Then D ∗ [x, 0]T = λ[x, 0]T implies that Ax = λx. The cluster size of the eigen-
value λ will be the dimension of the null space of UT (1 : k, :), which is k − r.

• If ||U(i, :) = 0||, then
Aei = diei + UT ei = diei.

So (di, ei) will be an eigenpair.

In practice, a threshold value ε is used to both determine if an entry in D repeats k
times and to set U(i, :) = 0 if ||U(i, :)|| < ε. The formal deflation is completed in three
steps:

CHAPTER 4. PRELIMINARY METHODS 22

1. Check the row norms of U and deflate the rows that have small norms;

2. Sort the array D, permute rows of U correspondingly;

3. Check for clusters of values in D and deflate clusters.

This deflation technique together with the low-rank structure of our matrix puts
an upper bound on the eigenvalue clusters:

Proposition 4.2 (Cluster size upper bound) Let A = D + UHUT . If A has a
cluster of eigenvalues (λ) with size more than 2r, then there exist k > 0 and indices
i1, i2, . . . , ik+r such that D(i1) = D(i2) = . . . = D(ik+r) = λ.

Proof 4.2 Suppose A has a clustered eigenvalue λ of size 2r + k with k > 0, then
dim(NULL(A− λ)) = 2r + k. Since rank(U) = r, dim(NULL(UT)) = n− r. Then

dim(NULL(A− λ) ∩NULL(UT)) = r + k.

Suppose x1, x2, . . . , xr+k is a basis for the intersection. Then:

Axi = Dxi = λxi, i = 1, 2, . . . , r + k.

This means Dxi(j) = λxi(j),∀j = 1, 2, . . . , n. Since x1, x2, . . . , xr+k are linearly inde-
pendent, then there exists at least r + k distinct non-zero entries l1 < l2 < . . . < lr+k
such that:

Dxlm(jlm) = λxlm(jlm), m = 1, 2, . . . , r + k,

which implies:
D(jl1) = D(jl2) = . . . = D(jlr+k

).

The above proposition shows that a large eigenvalue cluster in A leads to at least
an entry in D repeating more than r times. Then by the first condition of deflation(ref
4.1), we can deflate an eigenpair of A. Applying this idea recursively, we can conclude
that no eigenvalue clusters of size larger than 2r can exist for a deflated input matrix
A. Since the deflation step does only sorting and without any flops, it puts a moderate
overhead of at most O(n log n) (i.e. sorting) to the overall complexity.

4.2 LDLT decomposition

LDLT decomposition is an variant of LU decomposition for symmetric matrix:

A− λ̂I = LD̂LT ,

CHAPTER 4. PRELIMINARY METHODS 23

where L ∈ Rn×n is a lower triangular matrix with unit diagonals, and D̂ is a diagonal
matrix. This factorization comes directly from LDU decomposition where the factors
L and U are forced to have unit diagonals. Since A is symmetric, A = LDU = UTDLT .
By the uniqueness of LU decomposition, U = LT and A = LDLT . This factorization
can be obtained by doing Gaussian elimination, then extract the diagonal entries of D
from U . However, this approach does not take advantage of symmetry. An efficient
algorithm should avoid calculating and storing the upper triangular part of L at all and
only consider the non-trivial entries. Below is an example of implementation provided
by Golub and Van Loan [25, Chapter 4.2.1].

Algorithm 4.2.1 LDLT decomposition for a symmetric matrix

1: procedure LDLT (A, n) . Output a lower triangular factor L and an array d
storing the diagonal entries of D

2: for j=1:n do
3: for i = 1:j-1 do
4: v(i) = L(j, i)d(i)
5: end for
6: v(j) = A(j, j)−

∑j−1
i=1 L(j, i)v(i)

7: d(j) = v(j)
8: L(j + 1 : n, j) = (A(j + 1 : n, j)−

∑j−1
i=1 L(j + 1 : n, i)v(i))/v(j)

9: end for
10: end procedure

In the above implementation, if v(j) gets too close or equal to zero in line 7, then A is
singular or near singular and does not permit a LU decomposition. When using LDLT

for solving the shifted linear system, A− λ̂ can get near singular when λ̂ approaches a
real eigenvalue. In the implementation of our decomposition algorithm, we use a small
threshold value with the same sign as v(j) to prevent overflow in the next step.

If A is symmetric positive definite, D factor is also positive definite and the factor-
ization can be computed in a stable and efficient way. However, when A is indefinite,
the D factor becomes indefinite as well and LDLT decomposition is not numerically
stable. Furthermore, such factorization may not even exist for certain non-singular
matrices A, e.g. matrices with zeros on the diagonal.

Pivoting strategies are usually adopted to overcome such issues. Partial pivoting
is the most commonly adopted pivoting strategy for LU decomposition. In every
iteration, it picks the entry with largest absolute value in a column and swap it with
the current pivot element i.e. A(i, i). This can control element growth to some extent
in the trailing matrix after one iteration. However, there are known test matrices [29]
for which this pivoting strategy results in very large entries in the U factor, which
translates to large entries in the D factor for LDLT decomposition, which leads to loss
of accuracy. Complete pivoting guarantees a non-exponential element growth rate and
can thus deliver stability for all matrices. However, it requires examining all remaining

CHAPTER 4. PRELIMINARY METHODS 24

entries for every iteration and puts a O(n3) overhead to the factorization algorithm.
There is extensive literature on pivoting strategies specifically for LDLT decomposition,
such as diagonal pivoting proposed in [11], which is more similar to complete pivoting
in Gaussian Elimination. This strategy is employed in LAPACK implementations for
solving indefinite symmetric linear systems and the stability is proved in [38].

Since the entries of A − λ̂I = D − λ̂I + UHUT are not directly given, we do not
adopt any pivoting strategy as they require pre-computation of all entries for later com-
parisons. Instead, we propose a method that modifies Algorithm 4.2.1 and processes A
column by column to improve efficiency. We also try to optimize storage by avoiding
computation and storage of the L factor i.e. the sums

∑j−1
i=1 L(j, i)v(i),

∑j−1
i=1 L(j+1 :

n, i)v(i). In addition, linear systems can be solved by forward and backward substitu-
tions with L and the number of eigenvalues smaller than λ̂ is equal to the number of
negative entries in the D factor by the law of Inertia:

Theorem 4.1 (Inertia) The inertia of a symmetric matrix is the triple Inertia(A) ≡
(γ, ψ, π), where γ is the number of negative eigenvalues of A, ψ is the number of zero
eigenvalues of A and π is the number of positive eigenvalues of A.
Let X be a non-singular matrix, then A and XAXT have the same inertia. [18]

In the actual implementation of the decomposition method, we try to optimize for
storage by avoiding the actual computation of the L factor and thus avoid the need to
store it. Instead, we use an auxiliary matrix G ∈ Rr×n, the ith column of which stores
a vector that can be used to recover the ith column of L later. This leads to O(nr)
extra storage instead of the O(n2) needed to store the L factor or the lower triangular
part L.

The blocked structure for one iteration of our decomposition method is:[
1 0
l L22

]
∗
[
d1

D̂22

]
∗
[

1 lT

0 LT22

]
=

[
a11 AT21
A21 A22

]
.

[
d1 d1l

T

d1l d1ll
T + L22D̂22L

T
22

]
=

[
a11 AT21
A21 A22

]
.

The above equations give the update formulas:
d1 = a11
d1l = A21

L22D̂22L
T
22 = A22 − d1llT .

Putting U and H back into the update formula:

l = U(2 : n, :)HUT (:, 1)/d1;

CHAPTER 4. PRELIMINARY METHODS 25

Let g = HUT (:, 1) and the trailing matrix update becomes:

Â22 = A22 −
1

d1
U(2 : n, :)HUT (:, 1)U(1, :)HTUT (2 : n, :)

= U(2 : n, :)(H − 1

d1
HUT (:, 1)(HUT (:, 1))T)UT (2 : n, :) +D22

= U(2 : n, :)(H − 1

d1
ggT)UT (2 : n, :) +D22

This equation shows that the trailing matrix Â22 has a similar structure as the original
problem. Hence, we establish a recursive scheme that does a rank-one update of H in
every iteration and stores vector g as columns of the auxiliary matrix G for later use
in forward substitutions for solving the linear system. Restoration of the L factor and
the rank-one update done in our decomposition are as follows:

l = U(2 : n, :) ∗ g/d1, Ĥ = H − 1

d1
ggT .

Here is the pseudo code of the above algorithm:

Algorithm 4.2.2 LDLT algorithm on D,U,H

Require: H = HT

procedure DEIGLDL(D,U,H, λ̂, D̂, G, info)
for i=1,n do

G(:, i)← H ∗ U(:, i)
D̂(i)← D(i)− λ̂+G(:, i)T ∗ U(:, i)
if D̂(i) < ε then

D̂(i)← D̂(i) > 0?ε : −ε
if i == n then

info = 0
else

info = 2
end if

end if
G(:, i)← G(:, i)/D̂(i)
H ← H − D̂(i) ∗G(:, i) ∗G(:, i)T

end for
end procedure

In each iteration, the first step to compute HU(:, i) takes 2r2 flops and the last step
of rank-one update on H also costs 2r2. Hence the total number of flops done by this
method in one iteration is O(4r2), which accumulates to O(4nr2) in n iterations. The

CHAPTER 4. PRELIMINARY METHODS 26

number of memory accesses for each iteration is 2r, i.e. reading a column from matrix
U and writing a column to matrix G. Hence the total number of memory access is
O(nr) and this is the lower bound we can possibly achieve as processing the matrix
U takes O(nr) memory accesses. Hence, the computational intensity(flops / memory
access) of Algorithm 4.2.2 is O(r).

As shown in Algorithm 4.2.2, a threshold value is used to prevent overflow when
entries in D̂ gets close to zero. This happens more often when the shift λ̂ approaches an
exact eigenvalue of A and the shifted matrix A− λ̂I becomes near-singular. Although
it can be shown that this method is numerically stable in the tridiagonal case [18], it
suffers from the same instability issues as the LU decomposition in our case. Given
reasons mentioned earlier in this chapter, we do not adopt any pivoting strategy for
numerical stability. Alternatively, we provide a backup stable decomposition method
when numerical instability happens. The details are presented in chapter 5.

4.3 Forward substitution

We conclude this chapter by presenting the actual method used for forward substitu-
tions with the auxiliary storage matrix G introduced in Algorithm 4.2.2.Solving linear
system LD̂LTx = b with outputs of the Algorithm 4.2.2 is done in three steps:

1. Forward solve Ly = b;

2. Scaling y ← y/D̂;

3. Backward solve LTx = y.

Based on the equations mentioned in chapter 4.2, the matrix L can be restored by:

L(i, j) = U(i, :) ·G(:, j), ∀2 ≤ i ≤ n, 1 ≤ j ≤ i− 1.

The ith equation of the forward solve:

y(i) = b(i)−
i−1∑
j=1

L(i, j) ∗ y(j) (4.1)

= b(i)− U(i, :) ∗
i−1∑
j=1

G(:, j)y(j). (4.2)

Noticing that the ith entry of the solution: y(i) is only calculated from b(i), U(i, :)
and

∑i−1
j=1G(:, j)y(j), we can optimize the method by accumulating G(:, j)y(j) after

solving for the jth entry of y. Then every entry y(i) requires O(r) flops to solve, i.e.
the inner product between U(i, :) and the accumulation

∑i−1
j=1G(:, j)y(j). Hence the

CHAPTER 4. PRELIMINARY METHODS 27

total flops done by this algorithm is O(nr) and we use extra storage of a length r vector
to hold the accumulation sum

∑i−1
j=1G(:, j)y(j).

Algorithm 4.3.1 Solving the linear system Lx = b or LTx = b

procedure DEIGTRS(U,G, b, opt) . b will be overwritten by the solution
temp = zeros(n, 1)
if opt == ‘N’ or ‘n’ then

for i = 2, n do
temp = temp + b(i− 1) ∗G(:, i− 1)
b(i) = b(i)− U(i, :)∗ temp

end for
else

for i = n-1, 1, -1 do
b(i) = b(i)−G(:, i)∗ temp
temp = temp + U(:, i) ∗ b(i)

end for
end if

end procedure

function DEIGLNS(D̂, U,G, b) . b will be overwritten by the solution
DEIGTRS(U,G, b, ‘N’)
for i = 1, n do

b(i) = b(i)/D̂(i)
end for
DEIGTRS(U,G, b, ‘T’)
return b

end function

28

Chapter 5

Numerically stable methods

In this chapter, we include the details of the methods mentioned in previous chapters
for numerical stability. We begin by introducing some background information about
QR decomposition in chapter 5.1. Then we move on to discuss in chapter 5.2 how
Householder transformations are used to efficiently transform the shifted linear system
into an upper triangular one and the stability comes directly from orthogonal trans-
formations. To enable Householder transformations, an auxiliary variable is needed to
transform the system into a slightly larger one and we will justify the efficiency given
the larger problem size. Due to increased flops done and less favorable data access
patterns, this Householder based QR decomposition has a higher computational cost.
As mentioned in chapter 4.2, it will only be used when Algorithm 4.2.2 encounters
numerical instability, which happens pretty rarely.

As mentioned in chapter 3.3, one of the difficulties for symmetric eigenvalue problem
is the loss of orthogonality of eigenvectors corresponding to eigenvalue clusters. The
reason is briefly mentioned in chapter 3.3 and will be revisited in more detail in chapter
6. In section 5.3, we introduce a method based on eigenvalue deflation [50, Chapter
4] that computes numerically orthogonal eigenvectors given one initial eigenvector and
an eigenvalue cluster. To clarify the abuse of the word “deflation”, eigenvalue deflation
is different than the deflation pre-process mentioned in chapter 4.1. It is often used in
iterative algorithms to find the rest of eigenvectors given one computed eigenpair, such
as the restarting part in Arnoldi algorithm [61]. In our approach, we aim to “deflate”
an eigenpair to get a smaller matrix with the same low-rank structure, whose eigenvec-
tors corresponding to the eigenvalue cluster are orthogonal to the given eigenvector.
The eigenvectors of deflated matrix are then computed by inverse iteration with the
computed eigenvalue as shift and accumulated to eigenvectors of the original matrix
by multiplying orthogonal matrices.

To conclude this chapter, we discuss our strategy for handling various situations
when the bracketing algorithm converges to an eigenpair, or an eigenvalue may it be
from bisection. Unlike usual bracketing algorithm, our generated eigenvalue estimates
are not guaranteed to stay inside the intervals. In addition, a converged eigenpair can

CHAPTER 5. NUMERICALLY STABLE METHODS 29

come from either Rayleigh Quotient Iteration or bisection and they require different
handling techniques when dividing intervals for the bracketing algorithm. The details
are discussed in chapter 5.4.

5.1 Background on QR decomposition

Although it is shown that the LDLT decomposition is stable in the tridiagonal case [18],
it still suffers from the same instability as LU decomposition in our banded case.
Hence, we propose a stable method using QR decomposition to solve the shifted linear
equation. QR decomposition is one of the fundamental problems in numerical linear
algebra. It factorizes a general m−by−n matrix A into two factors Q and R, where
Q is a column orthogonal matrix with QTQ = I and R is an upper triangular matrix.
The QR decomposition is most well-known as a solution method to linear least squares
problem. In the eigenproblem domain, it is also used in theQR algorithm for symmetric
eigenproblem [18, Chapter 5] and remains one of the top choices nowadays.

The QR decomposition was first proposed as the matrix form of the Gram-Schmidt
process to compute orthogonal basis of a matrix’s column space. A modified version
“Modified Gram-Schmidt” soon came out since the original version turned out to be
numerically unstable. Although Modified Gram-Schmidt process offers fairly good nu-
merical properties, it consists of operations that are not favorable for high performance,
i.e. the computation of each element of the triangular matrix R requires large vector
inner products and many synchronizations [33]. Blocking methods exist to help with
data reuse in which the matrix to be factored is first partitioned into smaller subma-
trices and then independently factored [33].However, such methods turned out to be
subject to loss of orthogonality in the Q factor [7].

Two other ways to compute the QR decomposition remain popular choices in most
of the implementations of current software packages. First one is the Givens Rotation
QR decomposition [24]. In Givens Rotation method, a sequence of orthogonal transfor-
mations is applied to the input matrix A that place zeros in the trapezoidal submatrix
below the main diagonal. Each orthogonal transformation, denoted by G(θ) is a plane
rotation called Givens Rotation. For example in the two-dimensional case, a unitary
matrix is chosen so that:

G(θ)

[
f
g

]
=

[
c s
−s c

] [
f
g

]
=

[
r
0

]
The Givens Rotation algorithm usually starts from the bottom two rows of matrix

A in the left-most two columns. These entries of A determine the first Givens Rotation
Gm,1(θ) that will place a zero in the left bottom corner of matrix A and be multiplied
to A(m − 1 : m, :). Then Gm,1(θ)

T may be multiplied to Q(:,m − 1 : m) in place to
accumulate the Q factor. Then the algorithm moves up one row to generate Gm−1,1(θ),
which will be applied to A(m−2 : m−1, :) and Q(:,m−2 : m−1). This proceeds until

CHAPTER 5. NUMERICALLY STABLE METHODS 30

the main diagonal so that the whole column is zeroed out below the diagonal. Then
the algorithm moves along the columns to zero out the rest of the lower triangular part
of matrix A. Due to its nature of introducing zeros one at a time, this algorithm is
more favorable in transforming input matrices that are almost upper triangular.

The other popular method to compute QR decomposition is based on Householder
transformations. This algorithm transforms the input matrix A to an upper triangu-
lar matrix R by applying a sequence of Householder reflections [25]. A Householder
reflection is an orthogonal transformation in the form of:

P = I − βhhT ,

where h is called a Householder vector. To alleviate cancellation effect in numerical
computation, h is usually chosen based on input vector x such that Px = ||x||e1 [18],
where P is the unitary transformation matrix and e1 is the first column of the identity
matrix. In the kth iteration, the vector xk = A(k : m, :) is selected as an input to
compute the Householder reflector Pk for this iteration, which will then be applied to
A(k : m, k + 1 : n). This will zero out all entries of the kth column of A below the
diagonal.

∗ × × ×
∗ × × ×
∗ × × ×
∗ × × ×

←

× × × ×
0 ∗ × ×
0 ∗ × ×
0 ∗ × ×

←

× × × ×
0 × × ×
0 0 ∗ ×
0 0 ∗ ×

←

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

The above equation is an illustration of Householder QR decomposition, where ∗

represents the vector used to generate Householder reflectors in each iteration. This
algorithm zeros out one column per iteration and stops until the input matrix is trans-
formed into an upper triangular one. The invariant A = (P T

1 P
T
2 . . . P

T
n)(P1P2 . . . PnA)

is maintained the the QR decomposition is given by:

Q = P T
1 P

T
2 . . . P

T
n

R = P1P2 . . . PnA

Another reason that this algorithm is a favorable choice for QR decomposition is that
the multiplication by Householder reflectors does not necessarily need to be done by
matrix multiplication, e.g.

PA = (I − βhhT)A = A− hwT ,

where w = βATv. The following gives a basic implementation of Householder QR:
The function House(x) returns the Householder vector h and the corresponding

coefficient β such that (I − βhhT)x = ||x||e1. Although the above algorithm is con-
ceptually simple in implementation, it is dominated by matrix-vector multiplications.

CHAPTER 5. NUMERICALLY STABLE METHODS 31

Algorithm 5.1.1 Householder based QR decomposition

procedure QR decomposition(A, m, n)
for i = 1:n do

[h, β] = House(A(i:m, i))
A(k : m, k : n) = A(k : m, k : n)− βvvTA(k : m, k : n)
Q(1 : m, k : m) = Q(1 : m, k : m)− βQ(1 : m, k : m)vvT

end for
end procedure

Such computations have very poor data re-usability and lead to high communication
costs. Blocking can be used to improve the performance of Householder QR where
instead of multiplying the Householder reflectors as rank-one updates of the identity
matrix, delay the application of several Householder reflections as matrix multiplica-
tions. Bischof and Van Loan [7] explains a way to delay the application of Householder
reflectors in blocks using matrix-matrix multiplications. i.e. use m − by − b matrices
W and Y to represent the first b Householder reflections :

Pwy = P1P2 . . . Pb

= I +WY T

And the application of Pwy to A can be done with PwyA = A + W (Y TA). This
update requires only O(mnb) flops, which is fewer than the flops required by mul-
tiplying Pwy and A directly. The above operations are both rich in matrix-matrix
multiplications and can be expected to achieve high performance in modern computer
architectures. The block size b can be chosen based on the memory capacity of the
target architecture. Algorithm 5.1.1 may be modified by partitioning the columns of A
into blocks of b columns, for each column block, b Householder reflectors are computed
and the corresponding W,Y are generated. Then, instead of applying Householder
reflections, the matrix form Pwy = I +WY T is applied to both Q and the trailing part
of A as mentioned above [7].

The choice of our stable decomposition method ends up being Householder QR for
the convenience of zeroing out a whole column per iteration. As indicated in the above
algorithm, the main computational costs for Householder QR come from updating the
trailing matrix, which accumulates to O(nm2) flops for a m × n matrix A. In the
next section, we will further discuss how to adapt Householder QR in our case so
that the overall flops done remains O(nr2) .Although this method is more expensive
than Algorithm 4.2.2 due to Householder transformations, it is mostly avoided if the
backward error ||b−Ax||||x|| of the solution given by LDLT is small enough.

CHAPTER 5. NUMERICALLY STABLE METHODS 32

5.2 QR variant of decomposition method

In this section we discuss the detailed formation of our QR decomposition method,
which is based on Householder QR, for solving the shifted linear system. For simplicity,
we merge the shift D − λ̂I as D in the following discussions of this chapter. Suppose
the system that needs to be solved is (D + UHUT)x = b, define an auxiliary variable
y = HUTx to transform the system:{

D + Uy = b
HUTx− y = 0

(5.1)

Putting it in matrix form: [
HUT −I
D U

]
∗
[
x
y

]
=

[
b
0

]
.

Let

Â =

[
HUT −I
D U

]
, x̂ =

[
x
y

]
, b̂ =

[
b
0

]
, Ŵ =

[
−I
U

]
The new system becomes Âx̂ = b̂, with a slightly larger matrix Â ∈ R(n+r)×(n+r).
Since H is an r × r matrix, there are r non-zero entries below the diagonal of the
first n columns of Â. Householder vectors of length r + 1 can be used to zero-out
the off-diagonal entries. i.e. in the ith iteration, a Householder vector zeros out Â(i :
i+ r, i) because the first i−1 rows are already modified in the previous iterations. The
transformation has the following shapes:

Figure 5.1: Shapes for QR transformation

Let the Â(i), Ŵ (i) be the matrices obtained by applying Householder transformations
to Â, Ŵ after i− 1 iterations respectively. Then another Householder vector h is used
to zero-out the off-diagonals of Â(i)(i : i+ r, i), and applied to the trailing matrix:

Â(i)(i : i+ r, i : n+ r) = [Â(i)(i : i+ r, i : n) Ŵ (i)(i : i+ r, :)]

CHAPTER 5. NUMERICALLY STABLE METHODS 33

Since the right part Ŵ (i)(i : i + r, :) is a small (r + 1) × r block, the main cost of
Householder transformation is on the left part Â(i)(i : i + r, i : n) of the trailing
matrix.The following proposition shows that only a small part of the Householder
transformation matrix needs to be kept:

Proposition 5.1 Let Vi be the Householder matrix I − τhhT in the ith iteration and
V (i) = ViVi−1 . . . V1 be the accumulation of i such matrices. Then V (i) has the following
two properties:

1. In the ith iteration, V (i−1)(i+ r : n+ r, i+ r : n+ r) = I;

2. In the ith iteration, only V (i−1)(i : i + r − 1, 1 : r) is multiplied to Â(i) for the
next Householder vector.

Proof 5.1 The first property is true because the ith Householder vector hi = [ĥi 0]T

has n− r − i trailing zeros. So Vi(i : end, i : end) has the shape:[
hih

T
i 0

0 In−i+1

]
and V (i) = Vi ∗ V (i−1) will also have property 1 by induction.

For the second property, we have:

Â(i)(i : i+ r, i) = V (i−1)Â(i : i+ r, i).

Rewriting into block matrix form:

Â(i)(i : i+ r, i) = V (i−1)(i : i+ r, 1 : r + i) ∗

HUT (:, i)

0
...

D(i)

=

[
V (i−1)(i : i+ r − 1, 1 : i+ r − 1) 0

0 1

]
∗
[
HUT (:, i)
D(i)

]
(by property 1)

=

[
V (i−1)(i : i+ r − 1, 1 : r) ∗HUT (:, i)

D(i)

]
Hence only V (i−1)(i : i+ r−1, 1 : r) and D(i) are used for next Householder vector.

This property means that only r+1 rows of the Householder matrix needs to be updated
every iteration, i.e V (i−1)(i : i+ r, 1 : r). Also, since only the first r columns of the V (i)

matrix is used, we use an (n+ r)× r matrix to store this information.

CHAPTER 5. NUMERICALLY STABLE METHODS 34

Let b̃ denote the vector b after n Householder transformations, then:

{
Â(n)(1 : n, 1 : n)x+ Ŵ (n)(1 : n, :)y = b̃(1 : n)

Ŵ (n)(n+ 1 : n+ r, :)y = b̃(n+ 1 : n+ r)
(5.2)

The second equation in 5.2 is solved by QR decomposition on W̃ (n + 1 : n + r, :),
with O(r3) flops. Then y is substituted into the first equation, leaving a triangular
system of size n× n:

Â(n)(1 : n, 1 : n)x = b̃(1 : n)− Ŵ (n)(1 : n, :)y.

Since this system has the same structure as the previous system obtained from
Algorithm 4.2.2 in that the upper triangular factor Â(n)(1 : n, 1 : n) can be formed by
V T ∗HU , it can be solved with the previously mentioned Algorithm 4.3.1.

Algorithm 5.2.1 QR algorithm for linear solving

Require: House is a function to generate householder vector
procedure DEIGSQR(D,U,H, λ̂, x, b)

V = [Ir 0]
W = [−Ir UT]
b̂ = [0 b]
HU = H ∗ UT

for i = 1, n do
h = House([V (:, i : i+ r − 1) ∗HU(:, i) D(i)− λ̂]T)
D̂(i) = h(1)
V̂ = I − 2hhT

W (i : i+ r, :) = V̂ ∗W (i : i+ r, :)
b̂(i : i+ r) = V̂ ∗ b̂(i : i+ r)
V (:, i : i+ r) = V (:, i : i+ r) ∗ V̂

end for
W (:, n+ 1 : r + n) = QR . Solve the last block equation

W (:, n+ 1 : n+ r)Ty = b̂(n+ 1 : n+ r)

y = R−T b̂(n+ 1 : n+ r)
y = Qy
x = b̂(1 : n)−W (:, 1 : n)T ∗ b̂(n+ 1 : n+ r) . Solve the first equation in (1)
DEIGTRS(V T , HU, x, ‘T’) . Triangular solve using previous subroutine

end procedure

In every iteration, the cost for Householder vector generation is O(r + 1) and the
cost for applying the transformation to the trailing part is O((r + 1) ∗ r). Updating

CHAPTER 5. NUMERICALLY STABLE METHODS 35

the Householder vector matrix takes O((r + 1) ∗ r) per iteration and updating the
right-hand-side of the equation only costs O(r + 1). Hence, the accumulated flops
needed by Householder transformations for Algorithm 5.2.1 is O(nr2). Transforming
the last r×r block into upper triangular matrix using QR decomposition adds a O(r3)
overhead to Algorithm 5.2.1 and the forward substitutions after the input A becomes
upper triangular takes O(nr) flops to complete, as mentioned in chapter 4.3. Thus, the
overall computational cost for Algorithm 5.2.1 becomes O(nr2). However, Algorithm
5.2.1 reads and writes a (r + 1) × r block to the matrix V in every iteration and
hence performs O(nr2) memory accesses. This causes the QR algorithm to have a
computational intensity of O(1) instead of O(r) compared to Algorithm 4.2.2, which
adds to the inefficiency of Algorithm 5.2.1.

5.3 Orthogonal deflation and eigenvalue clusters

In usual bracketing algorithm, eigenvalues are computed first and their corresponding
eigenvectors are computed later by inverse iteration. In such situations, we encounter
the problem of computing the rest of eigenvalues of A given one found eigenpair (λ1, u1).
A technique for achieving this is commonly known as a eigenvalue deflation. Typically,
a rank one modification is applied to the original matrix to displace the found eigenvalue
λ1, while keeping all other eigenvalues unchanged. Usually, the rank-one modification
is chosen that a special eigenvalue can be found in the next iteration. For example
when using Power Iteration [18], deflation can be used so that the next eigenvalue to
be found is the eigenvalue of the input matrix with second largest norm.

In the general case of deflation, known as Wielandt’s deflation [50], the deflated
matrix has the form:

Â = A− σu1vT ,

where v is an arbitrary vector such that vTu = 1, and σ is a shift of choice. The
following theorem shows that the eigenvalues of Â are the same as those of A except
that λ1 is changed to λ1 − σ.

Theorem 5.1 (Wielandt) [50] Let the eigenvalues of A be λ1, λ2, . . . , λn, then the
spectrum of Â is defined by λ1 − σ, λ2, . . . , λn.

The above rank-one modification preserves the eigenvector u by

Âu = Au− σu1vTu1 = Au1 − σu1 = (λ1 − σ)u1.

It is important to see what the other eigenvectors have become. Suppose ui is the
eigenvector of A corresponding to λi. Consider the vectors of form ûi = ui − γiu1, we
have:

CHAPTER 5. NUMERICALLY STABLE METHODS 36

Âûi = (A− σu1vT)(ui − γiu1)
= λiui − (γiλ1 + σvTui − σγi)u1.

It can be seen that if γ1 is set to 0, then û1 = u1 is an eigenvector of Â corresponding
to λ1 − σ. For i 6= 1, it is possible to pick γi such that ûi is an eigenvector of Â
corresponding to λi [50, Chapter 4]:

γi ≡
vTui

1− (λ1 − λi)/σ
.

In theory, there are infinitely many possible ways to pick the vector v. For sym-
metric matrices, one of the most common choices is to take v = u1. This is referred
to as Hotelling’s deflation. It can also be shown that this choice results in an almost
optimal condition number for the second eigenvalue to be computed, i.e. for λ2 [50,
Chapter 4].

For our particular problem, we face the loss of orthogonality of eigenvectors corre-
sponding to an eigenvalue cluster. In this case, we obtain a computed eigenpair (λ̂, u)
from the bracketing algorithm and we aim to find the other eigenvectors corresponding
to the eigenvalue cluster at λ̂. At the same time, we require the computed eigenvectors
to be numerically orthogonal. We propose an “orthogonal deflation” method for this
problem due to the similarity in situation with that of the deflation problem mentioned
above. Since our goal is to ensure orthogonality,orthogonal transformations are used
instead of subtractions to transform A such that the eigenvalues remain unchanged
and the deflated matrix has eigenvectors orthogonal to u. Formally, we aim to deflate
A and generate D′, U ′, H ′ such that A′ = D′ + U ′H ′U ′T has the following properties:

1. D′ ∈ R(n−1)×(n−1);

2. A′ has all eigenpairs of D + UHUT except for (λ̂, u);

3. Eigenvectors of A′ corresponding to λ̂ are orthogonal to u.

Suppose q ⊥ u is an unknown eigenvector orthogonal to u. Consider the House-
holder transformation matrix V such that V u = (β, 0, 0, . . . , 0)T , since q ⊥ u and V
is orthogonal, V u ⊥ V q.So if β 6= 0, then V q(1) = 0(which will always be the case
because β = ||u|| > 0).In other words, V q = (0, q′)T for a length n− 1 vector q′.

Let A = QD̂QT where Q(:, 1) = u and D̂(1, 1) = λ̂, then

V Q =

[
β 0
0 Q′

]
, B = V AV T =

[
β 0
0 Q′

] [
d1 0
0 D′

] [
β 0
0 Q′T

]
=

[
βd1 0
0 Q′D′Q′T

]

CHAPTER 5. NUMERICALLY STABLE METHODS 37

Hence Q′ is the matrix whose columns are eigenvectors for B(2 : n, 2 : n). Let
V = I − 2hhT and h = (h1, h2)

T where h2 ∈ Rn−1, writing B in blocked form:

B =

[
1− h21 −2h1h

T
2

−2h1h2 I − 2h2h
T
2

] [
A11 AT21
A21 A22

] [
1− h21 −2h1h

T
2

−2h1h2 I − 2h2h
T
2

]
and:

B(2 : n, 2 : n) = A22 + τh2A
T
21 + τA21h

T
2 + ρh2h

T
2 (5.3)

with some unknown constants τ and ρ. In our choice of Householder reflections
with coefficient being 2, the constants are:

τ = −

√
2

1 + |u1|
, ρ = (A11 − λ)

2

1 + |u1|
.

Since A = D + UHUT , the blocks of A have the following structure:

A22 = D(2 : n) + U(2 : n, :)HUT (2 : n, :), A21 = U(2 : n, :)HUT (1, :)

Rewriting 5.3 with the above equation:

B(2 : n, 2 : n) = D(2 : n) + U(2 : n, :)HUT (2 : n, :)+

τh2U(2 : n, :)HUT (1, :) + τU(1, :)HUT (2 : n, :)hT2 + xh2h
T
2 ,

the trailing matrix B has the form D′ + U ′H ′U ′T :

B(2 : n, 2 : n) = D(2 : n) +
[
U(2 : n, :) h2

] [H τHUT (1, :)
τU(1, :)H u

] [
UT (2 : n, :)

hT2

]
This deflation technique is used to find eigenvectors in the following steps:

1. Start with a computed eigenpair (λ̂, u) and cluster size k;

2. Deflate the eigenpair (λ̂, u) and get D′, U ′, H ′. Then find an eigenvector of D′ +
U ′H ′U ′T corresponding to λ̂;

3. Repeat the above process k − 1 times;

4. Apply the householder (V) transformations from the last vector backwards to
the first.

CHAPTER 5. NUMERICALLY STABLE METHODS 38

Algorithm 5.3.1 Orthogonal deflation

Require: ||u|| = 1
function OrthogDeflate(D,U,H, λ̂, u) . Generate Householder vector h

alpha = 1.0 + abs(u(1))
norm = 1.0 - u(1)*u(1)
h = sgn(u(1))* u(2:n) . Normalize h
h = h / (norm + α ∗ α)

. Generate D′, U ′, H ′

tau = -SQRT(2.0/α)
hu = HUT (1, :)
γ = D(1) - λ̂ + DotProduct(U(1,:), hu)
hu = tau * hu, x = γ * 2.0/α

H0 =

[
H huT

hu u

]
, U0 =

[
U(2 : n, :) h

]
, D0 = D(2 : n)

return H0, U0, D0, h, α
end function

The following algorithms shows how the above orthogonal deflation can be applied
to compute eigenvectors corresponding to an eigenvalue cluster.

Algorithm 5.3.2 Algorithm dealing with eigenvalue clusters

Require: λ̂ is an eigenvalue approximation of A
procedure EigenMultiple(D,U,H, λ̂, k,Q)

Q = 0
x =RANDOM(n)
InverseIter(D,U,H, λ̂, x)
Q(:, 1) = x
H0, U0, D0 = H,U,D
for i = 1, k-1 do

H0, U0, D0, h, alpha = OrthogDeflate(D0, U0, H0, λ̂, x)
x =RANDOM(n-i+1)
House(i+ 1 : n, i) = h, House(i, i) =alpha
InverseIter(D0, U0, H0, λ̂, x)
Q(i : n :, i) = x

end for
for i = k-1, 1, -1 do

Q(i : n, i+ 1) = (I − 2House(i : n, i)House(i : n, i)T)Q(i : n, i+ 1)
end for

end procedure

In the above algorithm, InverseIter is the inverse iteration to find an eigenvector

CHAPTER 5. NUMERICALLY STABLE METHODS 39

given an approximated eigenvalue. The details of this method is presented in chapter
6.2. Since we use the same decomposition methods (Algorithm 4.2.2 and 5.2.1) to solve
the shifted linear system within inverse iteration and it usually converges very fast (ref
chapter 6.2), the complexity for one inverse iteration is O(nr2). Hence, the total cost in
the middle loop for all deflated eigenvectors is O(knr2). In the last step, we accumulate
the eigenvectors by applying all the Householder transformations to them. Since each
Householder transformation costs O(nr2) flops in this case, the overall complexity is
O(knr2) for this step.

The complexity of Algorithm 5.3.2 heavily depends on the cluster size k. As pre-
viously mentioned by Proposition 4.2, k <= 2r, which keeps the overall complexity in
range of O(nr2).

5.4 Handling convergence

In usual bracketing algorithm, only eigenvalues are desired and when an interval con-
taining an eigenvalue gets too narrow, convergence is declared and that interval is
removed from the Worklist. Eigenvector computations are dealt with by an separate
algorithm. However, in order to improve the overall efficiency of bracketing, we gen-
erate an a sequence of eigenpair estimates (µk, xk) using a combination of Rayleigh
Quotient Iteration and bisection. Thus we have two possible convergence situations:

• (µk, xk) converges by Rayleigh Quotient Iteration criteria mentioned in theorem
3.1. i.e.

||(A− µkI)xk||2 < τ,

where τ is a pre-defined threshold value.

• µk converges by Bisection criteria. i.e. the interval containing µk gets too narrow.

For the bracketing algorithm to work, an interval containing the computed eigen-
value µk needs to be removed from the Worklist. We analyze this removal step in the
following situations:

1. (µk, xk) converged by Rayleigh Quotient Iteration and the interval containing µk
contains only one eigenvalue;

2. (µk, xk) converged by Rayleigh Quotient Iteration but the interval containing µk
contains other eigenvalues;

3. µk is found in an interval whose length is smaller than 2τ .

CHAPTER 5. NUMERICALLY STABLE METHODS 40

For the first case, the interval containing µk is removed. In the third case, the
interval is removed and the size of the eigenvalue cluster is determined by the Count
of the two end points. If the cluster size is larger than one, the Orthogonal Deflation
method mentioned previously is used to compute eigenvectors for this cluster.

For the second case, a perturbation method is used to determine a range containing
the eigenvalue and creating a narrow interval. Suppose the interval containing µ from
the Worklist is [α, β), then With τ as the desired accuracy, pick two points µ+ τ and
µ− τ in [α, β) (for edge cases just pick the one that’s in the interval). Then split the
interval into [α, µ − τ) ∪ [µ − τ, µ + τ) ∪ [µ + τ, β) and remove the narrow interval
[µ− τ, µ+ τ). The cluster size of this eigenvalue is determined by the Count at µ− τ
and µ+ τ .

Algorithm 5.4.1 Handle Convergence

1: procedure HandleConvergence(intervalList, D, U, H, mu, x, info)
2: result = intervalList % find(mu)
3: if result == NULL then . mu not found
4: Bisection(intervalList, mu, x, D, U, H, .false., info)
5: else if result % n == 1 then
6: return mu, x
7: else
8: if result % length < τ then . Interval too samll
9: return mu, x
10: else
11: if mu - result % low < τ then
12: Perturb(D, U, H, mu, result, intervalList, ’U’, info2)
13: info = info2 - result % nlow
14: else if result % high - mu < τ then
15: Perturb(D, U, H, mu, result, intervalList, ’L’, info2)
16: info = result % nhigh - info2
17: else
18: Perturb(D, U, H, mu, result, intervalList, ’U’, info2)
19: Perturb(D, U, H, mu, result, intervalList, ’L’, info3)
20: info = info2 - info3
21: end if
22: end if
23: end if
24: end procedure

The PERTURB subroutine used above is a subroutine that perturbs µ to µ + τ
or µ − τ , computes the corresponding Count and inserts the rest of the interval back
to the list.

41

Chapter 6

Error analysis for eigensystem

The solutions to an eigenvalue problem usually needs careful examination from both
the accuracy and stability aspect. In addition, the errors on computed eigenvalues
and eigenvectors are determined using different sets of information. For symmetric
matrices, early work of Wilkinson [57] has shown that given a computed eigenpair
(λ̂, û), there exists a real eigenvalue λ of A such that:

|λ− λ̂| ≤ ||Aû− λ̂û||.

This is also used as the stopping criteria for Rayleigh Quotient Iteration in our
bracketing algorithm (ref 3.2). However, the above equation does not reveal any in-
formation about the error on computed eigenvector û. A similar result for computed
eigenvector exists but it requires information about the whole eigenspace. Suppose that
the computed eigenvalues are given by λ̂1, λ̂2, . . . , λ̂n and the corresponding computed
eigenvectors are û1, û2, . . . , ûn. Let:

d = min
i 6=j
|λ̂i − λ̂j| > 0,

while

α = max
i
||Aûi − λ̂iûi|| >

1

2
d.

Then it is known from Ortega’s work [40, pp:59-62] that there exists a normalized
eigenvector u corresponding to an eigenvalue λ(the eigenvalue approximated by λ̂1)
such that:

||u− û1|| ≤
α

d− α

√
1 +

α

d− α
For non-symmetric matrices, some methods using Gerschgorin’s theorem to esti-

mate λ̂1 and û1 exist from the work of Wilkinson [57] and Varah [55]. However, the
above results except for the first one with eigenvalue are generally not available for

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 42

problems in which only a subset of the eigenpairs are computed, since they all require
information from the whole computed eigensystem.

As previously mentioned in chapter 3.3, a small residual ||Aû− λ̂û|| is required for
both the accuracy of eigenpairs and the orthogonality of eigenvectors. In this chapter
we aim to introduce the bounds on residuals of computed eigenpairs and how they are
related to the orthogonality of computed eigenvectors.

Since eigenpairs are computed from two different sources by our bracketing algo-
rithm: Rayleigh Quotient Iteration and bisection with inverse iteration, our discussion
on the bounds of residuals is split into these two parts respectively. Chapter 6.1 includes
the analysis of error bounds on residuals for eigenpairs found by Rayleigh Quotient It-
eration. For inverse iteration, since it does not give direct implications on residual
like Rayleigh Quotient, we analyze it from the perspectives of convergence, stopping
criteria and finite precision arithmetic in section 6.2.1, 6.2.2 and 6.2.3. At last, we
use the results from the first few sections to establish the numerical orthogonality of
computed eigenvectors in section 6.3. Section 6.4 concludes the chapter by presenting
the backward error on the whole computed eigensystem.

6.1 Rayleigh Quotient Iteration

To pick an appropriate stopping threshold for Rayleigh Quotient Iteration, we need to
consider the size of the rounding errors when computing the residual ||(A− λ̂I)û||2 [17].
Suppose that ε is machine precision, and ||û||2 = 1. Then the size of the rounding errors
in the computation of the Rayleigh Quotient ρ(x) = xTAx/xTx is smaller than n||A||2ε.
Let e denote the error when computing the residual vector A− ρ(û)û, then:

||e||2 ≤ (n+ 1)ε||A||2.

It was observed that for symmetric matrices, convergence of Rayleigh Quotient
Iteration to a real eigenvector is ultimately very rapid. In 1958 and 1959, Ostrowski [1]
produced a sequence of papers in which various aspects of Rayleigh Quotient Iteration
were analyzed in great details. He is also credited for the first rigorous proof of the
cubic asymptotic convergence rate. Although his work applies only to starting vectors
in definite small neighborhood of real eigenvectors, Kahan [8] came out with a proof
that Rayleigh Quotient Iteration converges for almost all starting vectors. Due to the
cubic local convergence property of the Rayleigh Quotient Iteration, once the residual
size gets “considerably small”, e.g.

||(A− λ̂I)û||2 ≤ 100n||A||2ε (6.1)

then in the next iteration it is expected to reach round-off level. Therefore, in practice
our RQI is terminated one iteration after equation (6.1) is satisfied. The extra iteration
is aimed at ensuring that the residual norm reaches its round-off level.

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 43

Let τ denote the parameter 100n||A||2ε and || · || denote the 2-norm || · ||2 in sub-
sequent discussions.

Let {(µk, xk)} be a sequence generated by Rayleigh Quotient Iteration and rk =
||(A−µkI)xk||2 be the residual of the kth iteration, as mentioned by theorem 3.1, there
are two possibilities:

1. {(µk, xk)} converges to an eigenpair;

2. µk converges to the mid point of two eigenvalues and xk converges to a vector in
an invariant space of A.

For the first case, rk monotonically decreases and converges to zero. Our algorithm
stops one iteration after rk ≤ τ , making sure that the computed residual is small
enough. For the second case, our algorithm checks the improvement ||rk+1||/||rk|| and
uses bisection if the improvement is not big enough. Hence even if the sequence does
not converge to an eigenpair with Rayleigh Quotient Iteration, an eigenvalue is still
found by bisection.

6.2 Bisection and Inverse Iteration

Inverse iteration was first introduced by Wielandt in 1944 [31] as a method for com-
puting eigenfunctions of linear operators. It was later turned into a viable method
for computing eigenvectors of matrices by Jim Wilkinson. It is still currently a com-
mon choice of method to compute eigenvectors when approximations to one of more
eigenvalues are given. Inverse iteration is frequently used in structural mechanics, for
example, to compute extreme eigenvalues and corresponding eigenvectors.

When an eigenvalue λ̂ is found by bisection, inverse iteration is used to find the
corresponding eigenvectors by the following :

(A− λ̂I)zk = xk−1

xk = zk/||zk||

Again, rk = (A− λ̂I)xk is used to denote the residual after the kth iterate.
We would like to point out that our primary means for analyzing the convergence

properties of inverse iteration is backward error rather than forward error. The back-
ward error for an estimate xk is the residual norm ||rk||. A small residual norm ||rk||
indicates that (λ̂, xk) is close to an eigenpair of the matrix A. On the contrary, the
forward error measures the closeness of xk to an eigenvector. We concentrate on the
backward error because it is readily available from the inverse iteration itself [32]:

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 44

||rk|| = ||(A− λ̂I)xk|| = ||xk−1/zk|| = 1/||zk||.
In the case of symmetric matrices, a measure of forward error is the acute angle

θk between xk and a real eigenvalue of A. Unfortunately, a small backward error does
not translate directly to a small forward error. The relation and corresponding results
have already been presented in chapter 3.3.

6.2.1 Convergence

For the discussion of Inverse Iteration, suppose λ̂ is the computed eigenvalue, and x0
is the starting vector. Consider the following partition of the eigensystem

Λ =

[
Λ1

Λ2

]
, Q = (Q1, Q2),

where Λ1 contains all eigenvalues λi at the same, minimum distance to λ̂,

ε = ||Λ1 − λ̂I||,

while Λ2 contains the remaining eigenvalues that are further away from λ̂,

ε < minj|(Λ2)jj − µ| = 1/||(Λ2 − λ̂I)−1||.

This partition covers two common special cases: λ̂ approximates an eigenvalue λ of
multiplicity l ≥ 1, i.e. Λ1 = λI; and λ̂ approximates two distinct real eigenvalues at
the same minimal distance to its left and right, i.e. λ̂− λ1 = λ2 − λ̂. The columns of
Q1 span the invariant subspace associated with the eigenvalues in Λ1.

The following result shows that the residual norm decreases with the angle between
the starting vector and the desired eigenspace [32].

Theorem 6.1 Let inverse iteration be applied to a non-singular symmetric matrix
A− λ̂I and r1 = (A− λ̂I)x1 be the residual of the first iterate x1. And let 0 ≤ θ ≤ π/2
be the acute angle between the starting vector x0 and the eigenspace range(Q1).

If θ < π/2, then:
||r1|| ≤ ε/ cos θ.

Corollary 6.1 Under the assumption of Theorem 6.1,

ε ≤ ||r1|| ≤ ε/ cos θ.

Based on these results, Wilkinson proposed that for symmetric matrices, two iterations
are enough to produce a vector that’s as accurate as expected [58, Section III]. The
following result promises at least in exact arithmetic that for nearly eighty percent
of random starting vector, one iteration is enough to drive the residual down to its
minimum value:

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 45

Corollary 6.2 In addition to the assumptions in Theorem 6.1, if θ does not exceed
75◦:

||r1|| ≤ 4ε

Combining the above results, we can conclude that the number of inverse iterations
needed in our algorithm is limited to 2 or 3 in most cases. The convergence of inverse
iteration gets complicated when there exist eigenvalue clusters and it is one of our main
use cases. The following theorem discusses this situation:

Theorem 6.2 [32] Let inverse iteration be applied to a non-singular normal matrix
A − λ̂I. Given the above partition, if Λ1 = λI for some λ and QT

1 x0 6= 0, then the
norms of the residuals ||rk|| decrease strictly monotonically until some iterate belongs
to an eigenspace associated with λ1.

The above result implies that if the computed eigenvalue λ̂ is accurate enough,
i.e. it is close enough to one eigenvalue (possibly with multiplicity > 1), then Inverse
Iteration converges to the associated eigenspace. In Algorithm 3.4.1, since Inverse
Iteration is used if an eigenvalue is returned by bisection in an interval [α, β) that is
too narrow i.e. |β − α| < 2 ∗ τ , and the computed eigenvalue is λ̂ = (α + β)/2. The
eigenvalues λi closest to λ̂ must be in this interval and satisfy

|λi − λ̂| < (β − α)/2 < τ,

and other eigenvalues λj outside of the interval satisfy:

|λj − λ̂| > (β − α)/2 > |λi − λ̂|.

Since τ is the desired accuracy for eigenvalues, λ̂ is a close enough approximation
to the eigenvalues in the interval [α, β). So in this case, we take λ̂ as an approxi-
mate eigenvalue to a real eigenvalue with multiplicity l ≥ 1, or an eigenvalue cluster.
The corresponding eigenvectors are computed by combination of Inverse Iteration and
Orthogonal Deflation as mentioned in chapter 5.3 to guarantee the orthogonality of
eigenvectors within the eigenspace.

6.2.2 Residual and stopping criteria

From

rk = (A− λ̂I)xk =
1

||zk||
(A− λ̂I)zk =

1

||zk||
xk−1

and ||xk−1|| = 1, it follows:
||rk|| = 1/||zk||.

Therefore the residual is inversely proportional to the norm of the unnormalized iterate
and it is used as a criteria for terminating the iterations. Once the residual is small
enough, inverse iteration stops because then (λ̂, xk) is an eigenpair of a nearby matrix:

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 46

Theorem 6.3 Let A be a real square matrix and rk = (A − λ̂I)xk be the residual for
some λ̂ and vector xk with ||xk|| = 1.

Then there exists a matrix Ek with (A+Ek − λ̂I)xk = 0 and ||Ek|| ≤ ε if and only
if ||rk|| ≤ ε.

Proof 6.1 Suppose (A+ Ek − λ̂I)xk = 0 and ||Ek|| ≤ ε. Then

rk = (A− λ̂I)xk = −Ekxk

implies ||rk|| ≤ ||Ek|| ≤ ε. Now suppose ||rk|| ≤ ε. Then

(A− λ̂I)xk = rk = rkx
T
k xk,

implies
(A− rkxTk − λ̂I)xk = 0, and letEk = −rkxTk

Since Ek is a rank-one matrix,

||Ek|| = ||rk|| ≤ ε.

Thus, a small residual implies that λ̂ and xk are accurate in the backward error
sense. In 6.2.3 we show that finite precision has little effect to using ||zk|| as a criteria.
However, as mentioned in chapter 3.3 and 6.2, an eigenvector with a small backward
error is not always orthogonal to other eigenvectors as the orthogonality depends on
the gap between eigenvalues. We will revisit this problem and establish orthogonality
among eigenvectors in chapter 6.3.

6.2.3 Finite precision residual

It is shown in the previous section that in exact arithmetic, the iterate xk is an eigen-
vector of a matrix close to A if its unnormalized version zk has sufficiently large norm.
In fact, it is also true in finite precision arithmetic [32]. In practice, the meaning of
“sufficiently large” is determined by the size of the backward error Fk from the linear
system solution in the kth iteration.

In the following discussions, we use variables with hats to denote computed values
in finite precision arithmetic. , i.e. x̂k stands for the finite precision computed value of
xk, the kth iterate in inverse iteration. The residual of the computed iterate in finite
precision:

r̂k ≡ (A− λ̂I)x̂k = −Fkx̂k +
1

||ẑk||
x̂k−1

is bounded by
1

||ẑk||
− ||Fk|| ≤ ||r̂k|| ≤

1

||ẑk||
+ ||Fk||.

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 47

This means, if ẑk is sufficiently large then the size of the residual is about as small as
the backward error. For instance, if

||ẑk|| ≥
1

c||Fk||
for some c > 0, then the residual is at most a multiple of the backward error,

||r̂k|| ≤ (1 + c)||Fk||.

A lower bound on ||ẑk|| can therefore be used as a criterion for terminating the inverse
iteration. In our algorithm, we terminate the iteration when

||ẑk||2 ≥
1

τ
.

The last concern for Inverse Iteration is that the solution of a ill-conditioned linear
system (A − λ̂I)ẑk = x̂k−1 would be totally inaccurate when λ̂ is close to an exact
eigenvalue of A. In fact, it was shown by Wilkinson that a computed iterate with a
large norm lies in the “correct direction” and “is wrong only by a scalar factor” [26,
p342]. Here we illustrate this point by comparing the computed first iterate to the
exact first iterate(the same argument applies to any other iterate). The respective
exact and finite precision computations are:

(A− λ̂I)z1 = x0, (A− λ̂I + F1)ẑ1 = x0.

For the following theorem we make the standard assumption that A−λ̂I is non-singular
with respect to the backward error, i.e. ||(A − λ̂I)−1F1|| < 1. The following result
assures that the computed iterate is of comparable size to the exact iterate:

Theorem 6.4 Let A− λ̂I be non-singular and ||(A− λ̂I)−1F1|| < 1. Suppose

(A− λ̂I)z1 = x0, (A− λ̂I + F1)ẑ1 = x0.

Then

||ẑ1|| ≥
1

2
||z1||.

Proof 6.2 Since A− λ̂I is non-singular

(I + (A− λ̂I)−1F1)ẑ1 = (A− λ̂I)−1x0 = z1.

The assumption ||(A− λ̂I)−1F1|| < 1 implies that:

||z1|| ≤ (1 + ||(A− λ̂I)−1F1||)||ẑ1|| ≤ 2||ẑ1||.

Since ill-conditioning of the solution does not damage the accuracy of an iterate and
we can achieve small backward error Fk with methods discussed in previous sections,
i.e. Algorithm 4.2 and 5.2.1, it is safe to use the norm of computed iterate ||ẑk|| as
stopping criterion of Inverse Iteration.

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 48

6.3 Orthogonality of eigenvectors

So far we have discussed the backward error of our computed eigenpairs. Let ε de-
note the machine epsilon for a given precision. For Rayleigh Quotient Iteration, if it
converges to an eigenpair (λ̂, x), it is stopped when:

||(A− λ̂I)x||2 < 100n||A||ε.

For eigenvalues found by bisection, we use inverse iteration to find the corresponding
eigenvectors with stopping criterion

||ẑk|| ≥
1

n||A||ε
,

which guarantees a small backward error:

||rk|| ≤
1

||ẑk||
+ ||Fk|| = O(n||A||ε).

The last one of our concerns is the orthogonality of computed eigenvectors, which is
related to the backward error, or residuals of the computed eigenpairs. Formally, sup-
pose λ̂i 6= λ̂j are two computed eigenvalues with q̂i, q̂j being the computed eigenvectors,
then

ri = Aq̂i − λ̂iq̂i (6.2)

and

rj = Aq̂j − λ̂j q̂j (6.3)

Multiplying 6.2 and 6.3 by q̂Tj and q̂Ti respectively and taking the difference we have:

q̂Ti q̂j = (q̂Ti rj − q̂Tj ri)/(λ̂i − λ̂j)

Since the computed eigenvectors both have unit length, taking the norm on both sides
of the equation gives:

|q̂Ti q̂j| ≤ (||ri||2 + ||rj||2)/|λ̂i − λ̂j|.

Since we already have small residuals ri and rj, the orthogonality of computed
eigenvectors depend on the gap of eigenvalues. As discussed in section 3.3, tol (e.g
10−3) is used as a threshold value to determine if the absolute gap between eigenvalues
is big enough:

1. λ̂i and λ̂j are well separated, |λ̂i − λ̂j| > ||A|| ∗ tol;

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 49

2. |λ̂i−λ̂j| < ||A||∗tol but they are find in an interval of length smaller than 2||A||nε
as a cluster;

3. |λ̂i − λ̂j| < ||A|| ∗ tol and they are not found together in a cluster.

Here we use the parameter ||A|| ∗ tol because then if two eigenvalues are well-
separated, their eigenvectors will be automatically orthogonal:

|q̂Ti q̂j| ≤ (||ri||2 + ||rj||2)/|λ̂i − λ̂j| ≤ 2 ∗ tol ∗ ε

For the second case, our orthogonal deflation guarantees that the eigenvectors
within cluster are orthogonal:

|q̂Ti q̂j| = O(nε).

The last case is detected by keeping a sorted list of computed eigenvalues and check
the newly computed eigenvalue against its nearest neighbors. In this case however,
we use extended precision to recompute the corresponding eigenvector(s) by Inverse
Iteration and Orthogonal Deflation(ref 5.3) if necessary. This will compute the residual
to:

||ri|| = O(||A||nε2).

Therefore even if the eigenvalues are close with respect to ε, e.g |λ̂i − λ̂j| = Θ(||A||ε),
we can still get numerically orthogonal eigenvectors:

|q̂Ti q̂j| = O(nε).

In practice, we use double double arithmetic to mimic quadruple precision arith-
metic for efficiency purpose. Our algorithm uses Bailey’s double double arithmetic
library [28] and QBLAS packages [60] for some BLAS implementations. Although it
is expensive(about 20x slower) to perform extended precision arithmetic, it is rarely
needed.

6.4 Backward error

Let Λ̂ denote the matrix of computed real eigenvalues and V̂ denote the matrix of
computed real eigenvectors. In order to assess the accuracy of the computed eigenvalues
Λ̂ and eigenvectors V̂ in the backward sense, we would like to show that Λ̂ and V̂
represent an exact eigenvalue decomposition of some symmetric matrix. There are two
obvious backward errors Ê and E by A + Ê = V̂ Λ̂V̂ T and A + E = V̂ Λ̂V̂ −1. The
relation between the two backward errors are examined in [14] and we adopt the first
version here.

Let
εr ≡ ||AV̂ − V̂ Λ̂||, εo ≡ ||I − V̂ T V̂ || = ||I − V̂ V̂ T ||

CHAPTER 6. ERROR ANALYSIS FOR EIGENSYSTEM 50

denote the residual of eigenpairs and the deviation from orthogonality respectively and
define a backward error Ê by:

A+ Ê = V̂ Λ̂V̂ T .

Then Ê is small if both residual and deviation from orthogonality are small, i.e:

||Ê||2 = ||V̂ Λ̂V̂ T − A||2
= ||(V̂ Λ̂V̂ T − AV̂ V̂ T) + (AV̂ V̂ T − A)||2
= ||(V̂ Λ̂− AV̂)V̂ T + A(V̂ V̂ T − I)||2
≤ εr||V̂ T ||2 + εo||A||2

Previously we have examined the residual εr and deviation from orthogonality εo
and we have:

εr = O(nε||A||2), εo = O(nε).

Hence, the backward error Ê is also small:

||E2|| = O(nε||A||2).

51

Chapter 7

Numerical Experiments and
conclusions

In this section we present several experimental results to illustrate the performance of
our proposed eigensolver (Algorithm 3.4.1). Instead of comparing with other eigen-
solvers, our results focus on two aspects: Accuracy and Complexity.We would like
to illustrate by numerical experiments that the proposed algorithm (Algorithm 3.4.1)
has achieved the following goals:

1. Efficiency. We present run-time performance showing that the asymptotic com-
plexity of Algorithm 3.4.1 is O(n2r2) when r is kept as a constant;

2. Accuracy. We illustrate by residual norm that the computed eigensystem is
accurate relative to the norm of input matrix A;

3. Orthogonality. The computed eigenvectors are numerically orthogonal for matri-
ces with separated spectrum and those with eigenvalue clusters;

4. Computational efforts. In addition, we also include stats such as “Average num-
ber of RQI and inverse iteration for each eigenpair” and “total number of QR
decomposition” to illustrate that our iterative methods do converge quickly as
proposed and the less efficient backup method is used very rarely.

The quality of the computed eigensystem is measured by two parameters, γ and η
defined above. Let Λ̂, V̂ denote the computed eigenvalues and eigenvectors of A. Then
γ represents the size of the residual:

γ ≡ ||AV̂ − V̂ Λ̂||
n||A||2

.

The division by n||A||2 is aimed to determine the results relatively measured against
the “roundoff” error.

CHAPTER 7. NUMERICAL EXPERIMENTS AND CONCLUSIONS 52

The next parameter η measures the deviation from orthogonality:

η =
||I − V̂ T V̂ ||

n
.

Again the division by n is aimed to determine the relative deviation against the
“roundoff” error. The following table shows the metrics for matrices with increasing
sizes.

Matrix
Type

Matrix size
n

Avg
number
of RQI
and
Inverse
Iter

Total
number
of QR

Residual γ Orthogonality
η

No Cluster 1000 5.19 6 1.57E − 17 2.4E − 16
No Cluster 2000 5.45 8 1.01E − 17 2.3E − 16
No Cluster 3000 5.48 12 2.54E − 17 2.2E − 16
No Cluster 4000 5.50 10 1.46E − 16 4.4E − 16
No Cluster 5000 5.56 15 0.91E − 16 6.2E − 14
No Cluster 6000 5.49 11 3.16E − 16 5.3E − 14
No Cluster 7000 5.53 18 1.18E − 17 2.1E − 14
No Cluster 8000 5.52 17 8.08E − 16 3.4E − 14
No Cluster 9000 5.60 20 1.01E − 17 2.2E − 14
No Cluster 10000 5.54 22 0.42E − 16 1.3E − 14
Clustered 1000 5.26 20 1.41E − 17 3.3E − 16
Clustered 2000 5.49 25 1.23E − 17 2.2E − 16
Clustered 4000 6.50 48 9.85E − 16 2.5E − 16
Clustered 8000 6.37 70 4.00E − 16 5.5E − 15

In the above table we display the test results of Algorithm 3.4.1 on two types of ma-
trices: synthetic matrices with well-separated spectrum, and matrices with random
clusters and cluster sizes. It can be seen from the table that Algorithm 3.4.1 takes
almost a consistent number of Rayleigh Quotient Iteration and inverse iterations for
each eigenpair. This is credited to the cubic local convergence property of Rayleigh
Quotient Iteration. After several eigenpairs have been found by RQI, it may converge
to an already found eigenpair, or converge outside of all the intervals. In those sit-
uations, bisection was invoked until an interval gets too narrow. The corresponding
eigenvectors are then computed by inverse iterations. For matrices with eigenvalue
clusters, the average number of RQI and inverse iterations go up due to the orthogonal
deflation algorithm (Algorithm 5.3.1) used to re-compute the eigenvectors correspond-
ing to eigenvalue clusters. In addition, eigenvalue clusters have also caused the LDLT

CHAPTER 7. NUMERICAL EXPERIMENTS AND CONCLUSIONS 53

decomposition algorithm(Algorithm 4.2) to become more unstable, which is reflected as
the increase in the number of QR decomposition for matrices with eigenvalue clusters.

210 211 212 213

n

0

500

1000

1500

2000

2500

3000

ru
n
ti
m
e
(s
)

Run time comparison

eigen_solve

DSYEV

Figure 7.1: Run time performance for un-
clustered matrices

210 211 212 213

n

0

20

40

60

80

100

120

140

160

180

ru
n
ti
m
e
(s
)

Run time comparison

eigen_solve

clustered

Figure 7.2: Clustered matrices v. s Un-
clustered matrices

The first plot above illustrates the run time performance of our algorithm against
the naive method, i.e. forming A = D + UHUT then use a usual eigensolver. This is
to show that our algorithm has O(n2) asymptotic complexity. The second plot shows
that the orthogonal deflation and extended precision used for eigenvalue clusters add
some overhead to the run time but still keep the algorithm quadratic.

7.1 Concluding Remarks

In this thesis, we have studied the eigenproblem of a special type of matrix, i.e. a di-
agonal matrix with symmetric low rank perturbation. We propose an efficient method
to compute accurate eigenvalues as well as numerically orthogonal eigenvectors. In
addition, we make use of a combination of techniques to solve the loss of orthogonality
issue faced by the eigenproblem and as a result, our algorithm (Algorithm 3.4.1) does
not require any sort of re-orthogonalization routines such as the Gram-Schmidt pro-
cess. Our proposed algorithm is based on bracketing algorithm, which finds eigenpairs
separately one at a time. This property exhibits potentials for parallel computing.
However, the unpredictability of Rayleigh Quotient Iteration prevents our algorithm
from delivering a subset of eigenpairs at a reduced cost.

Now we would like to point out some of the key guiding principals that drive the
development of our proposed algorithm. We think that they are not only limited to
this problem and can be applied to other numerical linear algebra procedures.

• Try to optimize for the main part of the computation. In our proposed
algorithm, Rayleigh Quotient Iteration accounts for almost all computational
costs. One primary requirement for it to be efficient is an efficient method to solve

CHAPTER 7. NUMERICAL EXPERIMENTS AND CONCLUSIONS 54

the shifted linear system. When developing the method, we were well aware that
efficient decomposition based methods do not always guarantee stability, but
the backward error of the solution is crucial to the accuracy of the computed
eigenpair (ref chapter 6.2.3). However, since the numerical stability issue arises
not so frequently, we adopt the approach to use a fast but unstable method as
our main decomposition method (algorithm 4.2) and back it up with a slower but
stable method(algorithm 5.2.1) to handle numerical issues. In this way, we are
able to achieve high efficiency in most of our computations and still guarantee
numerical stability.

• Find appropriate transformation of problems. When finding a stable
method for solving the shifted linear system, QR decomposition was an obvi-
ous choice. Although counter intuitive at first, it turned out that transformation
the linear system into a larger one actually enabled the use of Householder QR
decomposition. (see chapter 5.1). For the computation of eigenvectors corre-
sponding to eigenvalue clusters, we faced a very similar problem as the “de-
flation” method used in Power Iteration. We adopted the idea of “deflation”
but combined it with orthogonal transformation to preserve the eigenvalues and
guarantee orthogonality of eigenvectors.

As mentioned in chapter 2.2.2, our eigenproblemD+UHUT appears in the synthesis
step of the divide and conquer algorithm for symmetric band matrix. One important
future development of our proposed algorithm is to be incorporated as a solver for
the synthesis step and enable direct divide and conquer method on symmetric band
matrix.

Another direction is to explore parallel opportunities for the algorithm. This can
come both as a way to speed up the bracketing algorithm with threads and making it
viable to matrices of larger sizes.

55

References

[1] A.M.Ostrowski. “On the convergence of Rayleigh quotient iteration for the com-
putation of characteristic roots and vectors, I-VI”. In: Arch. Rational. Mech. Anal
1-4 (1958).

[2] E. Anderson et al. LAPACK Users’ Guide (Third Ed.) Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1999.

[3] Michael Anderson et al. “Communication-Avoiding QR Decomposition for GPUs”.
In: Proceedings of the 2011 IEEE International Parallel & Distributed Processing
Symposium. IPDPS ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 48–58.

[4] Peter Arbenz. “Divide and conquer algorithms for the band symmetric eigenvalue
problem”. In: Parallel Computing 8 (1992), pp. 1105–1128.

[5] Peter Arbenz and G.H.Golub. “On the spectral decomposition of Hermitian ma-
trices modified by indefinite low rank perturbations and its applications”. In:
SIAM, Journey Matrix Analysis and Applications 9 (1988), pp. 40–58.

[6] Grey Ballard, James Demmel, and Nicholas Knight. “Avoiding Communication
in Successive Band Reduction”. In: ACM Trans. Parallel Comput. 1.2 (2015),
11:1–11:37.

[7] C. H. Bischof and C. V. Loan. The WY Representation for Products of House-
holder Matrices. Cornell University, Ithaca, NY, USA, 1985.

[8] B.N.Partlett and W.Kahan. “On the convergence of a practical QR algorithm.
(with discussion)”. In: Information Processing 68 I (1969).

[9] Jan H. Brandts and Ricardo Reis da Silva. “Computable eigenvalue bounds for
rank-k perturbations”. In: Linear Algebra and its Applications 432.12 (2010),
pp. 3100–3116.

[10] Andreas Buja et al. “Data Visualization With Multidimensional Scaling”. In:
Journal of Computational and Graphical Statistics 17.2 (2008), pp. 444–472.

[11] James R. Bunch and Linda Kaufman. “Some Stable Methods for Calculating
Inertia and Solving Symmetric Linear Systems”. In: Mathematics of Computation
31 (1977), pp. 163–179.

REFERENCES 56

[12] James R. Bunch, Christopher P. Nielsen, and Danny C. Sorensen. “Rank-one
Modification of the Symmetric Eigenproblem”. In: Numerische Mathematik 31.1
(1978), pp. 31–48.

[13] Cheryl M. M. Carey et al. A New Approach for Solving Perturbed Symmetric
Eigenvalue Problems. Stanford, CA, USA, 1992.

[14] S. Chandrasekaran and I.C.F. Ipsen. “Backward Errors for Eigenvalue and Sin-
gular Value Decompositions”. In: Numerische Mathematik 68 (1994), pp. 215–
223.

[15] Cholesky Decomposition. Cholesky Decomposition — Wikipedia, The Free Ency-
clopedia. 2018. url: https://en.wikipedia.org/wiki/Cholesky_decomposition.

[16] J. J. Cuppen. “A Divide and Conquer Method for the Symmetric Tridiagonal
Eigenproblem”. In: Numerische Mathematik 36.2 (June 1980), pp. 177–195.

[17] Achiya Dax. “The Orthogonal Rayleigh Quotient Iteration (ORQI) method”. In:
Linear Algebra and its Applications 358.1 (2003), pp. 23–43.

[18] James W. Demmel. Applied Numerical Linear Algebra. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1997.

[19] James W Demmel, Dhillon Inderjit, and Huan Ren. “On the correctness of some
bisection-like parallel eigenvalue algorithms in floating point arithmetic.” In:
ETNA. Electronic Transactions on Numerical Analysis [electronic only] 3 (1995),
pp. 116–149.

[20] Inderjit Singh Dhillon. A New O(n2) Algorithm for the Symmetric Tridiagonal
Eigenvalue/Eigenvector Problem. EECS Department, University of California,
Berkeley, Oct. 1997.

[21] Jiu Ding and Aihui Zhou. “Eigenvalues of rank-one updated matrices with some
applications”. In: Applied Mathematics Letters 20 (2007), pp. 1223–1226.

[22] Wilfried N. Gansterer, Robert C. Ward, and Richard Muller. “An Extension
of the Divide-and-conquer Method for a Class of Symmetric Block-tridiagonal
Eigenproblems”. In: ACM Trans. Math. Softw. 28.1 (2002), pp. 45–58.

[23] Wilfried N. Gansterer et al. Computing Approximate Eigenpairs of Symmetric
Block Tridiagonal Matrices. 2003.

[24] Wallace Givens. “The Characteristic Value-Vector Problem”. In: Journal of the
ACM 4.3 (1957), pp. 298–307.

[25] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.) Balti-
more, MD, USA: Johns Hopkins University Press, 1996.

[26] G.Peters and J.Wilkinson. “Inverse iteration, ill-conditioned equations and New-
ton’s method”. In: SIAM Review 21 (1979), pp. 339–360.

REFERENCES 57

[27] Azzam Haidar, Hatem Ltaief, and Jack Dongarra. “Toward a High Performance
Tile Divide and Conquer Algorithm for the Dense Symmetric Eigenvalue Prob-
lem”. In: SIAM Journal on Scientific Computing 34 (Feb. 2012), pp. 249–274.

[28] Yozo Hida, Sherry Li, and David Bailey. Library for Double-Double and Quad-
Double Arithmetic. Jan. 2008.

[29] Nicholas J. Higham and Desmond J. Higham. “Large Growth Factors in Gaussian
Elimination with pivoting”. In: SIAM Journal on Matrix Analysis and Applica-
tions 10.2 (Sept. 1989), pp. 155–164.

[30] Alston S. Householder. “Unitary Triangularization of a Nonsymmetric Matrix”.
In: Journal of the ACM 5.4 (Oct. 1958), pp. 339–342.

[31] H.Wielandt. Beitrage zur mathematischen Behandlung komplexer Eigenwertprob-
leme, Teil V: Bestimmung hoherer Eigenwerte durch gebrochene Iteration. Bericht
B 44/J/37. 1944.

[32] Ilse C. F. Ipsen. “Computing an Eigenvector with Inverse Iteration”. In: SIAM
Review 39.2 (1997), pp. 254–291.

[33] Andrew Kerr, Dan Campbell, and Mark Richards. “QR Decomposition on GPUs”.
In: Proceedings of 2Nd Workshop on General Purpose Processing on Graphics
Processing Units. GPGPU-2. Washington, D.C., USA: ACM, 2009, pp. 71–78.

[34] Jim Lambers. Summer Session 2009-2010, section 4 notes. 2009.

[35] P. Luszczek, H. Ltaief, and J. Dongarra. “Two-Stage Tridiagonal Reduction for
Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures”.
In: 2011 IEEE International Parallel Distributed Processing Symposium. 2011,
pp. 944–955.

[36] Roy Mitz, Nir Sharon, and Yoel Shkolnisky. Symmetric rank one updating from
partial spectrum with an application to out-of-sample extension. 2017. eprint:
arXiv:1710.02774.

[37] Michael Moldaschl and Wilfried N. Gansterer. “Comparison of Eigensolvers for
Symmetric Band Matrices”. In: Sci. Comput. Program. 90.PA (2014), pp. 55–66.
issn: 0167-6423.

[38] N.J.Higham. “Stability of diagonal pivoting method with partial pivot”. In: SIAM
Journal on Matrix Analysis and Application 18 (1997), pp. 52–65.

[39] HyungSeon Oh and Zhe Hu. “Multiple-rank modification of symmetric eigenvalue
problem”. In: MethodsX 5 (2018), pp. 103–117.

[40] J.M Ortega. Numerical analysis, a second course. New York: Academic Press,
1972.

[41] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to the
Web. 1999-66. Stanford InfoLab, 1999.

REFERENCES 58

[42] B. N. Parlett. “Laguerre’s Method Applied to the Matrix Eigenvalue Problem”.
In: Mathematics of Computation 18 (1964), pp. 464–485.

[43] B. N. Parlett. “The Rayleigh Quotient Iteration and Some Generalizations for
Nonnormal Matrices”. In: Mathematics of Computation 28 (1974), pp. 679–693.

[44] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1998.

[45] Walter Gander Peter Arbenz and Gene H.Golub. “Restricted rank modification
of the symmetric eigenvalue problem: Theoretical considerations”. In: Linear Al-
gebra and its Applications (1988), pp. 75–95.

[46] G. Peters and J.H. Wilkinson. “Inverse iteration, ill-conditioned equations and
Newton’s method”. In: SIAM Review 21 (1979), pp. 339–360.

[47] Sam T. Roweis and Lawrence K. Saul. “Nonlinear dimensionality reduction by
locally linear embedding”. In: SCIENCE 290 (2000), pp. 2323–2326.

[48] R.P.Brent. Algorithms for minimization without derivatives. Prentice-Hall, 1973.

[49] Jeffery D. Rutter. A Serial Implementation of Cuppen’s Divide and Conquer
Algorithm for the Symmetric Eigenvalue Problem. EECS Department, University
of California, Berkeley, 1994.

[50] Yousef Saad. Numerical Methods for Large Eigenvalue Problems (2nd Ed.) Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2011.

[51] Inderjit S.Dhillon and Bersford N. Parlett. “Orthogonal Eigenvectors and Rela-
tive Gaps”. In: SIAM Journal on Matrix Analysis and Application 25.3 (2003),
pp. 858–899.

[52] Jonathon Shlens. A Tutorial on Principal Component Analysis. 2014. eprint:
arXiv:1404.1100.

[53] B. T. Smith et al. Matrix Eigensystem Routines - EISPACK Guide, volume 6 of
Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1976.

[54] R.C. Thompson. “The behavior of eigenvalues and singular values under pertur-
bations of restricted rank”. In: Linear Algebra and its Applications 13.1 (1976),
pp. 69–78.

[55] J. M. Varah. “Rigorous Machine Bounds for the Eigensystem of a General Com-
plex Matrix.” In: Mathematics of Computation 22.104 (1968), pp. 793–801.

[56] W.Hakan. Notes on Laguerre’s iteration. University of California Computer Sci-
ence Division preprint, 1992.

[57] J. H. Wilkinson. “Rigorous Error Bounds for Computer Eigensystems”. In: The
Computer Journal 4.3 (1961), pp. 230–241.

[58] James H. Wilkinson. Rounding Errors in Algebraic Processes. New York, NY,
USA: Dover Publications, Inc., 1994.

REFERENCES 59

[59] C.W.Ueberhuber W.N.Gansterer J.Schneid. “A low-complexity divide and con-
quer method for computing the eigenvalues and eigenvectors of symmetric band
matrices”. In: BIT. Numerical mathematics 41 (2001), pp. 967–976.

[60] S. Yamada et al. “Quadruple-precision BLAS using Bailey’s arithmetic with
FMA instruction: its performance and applications”. In: 2017 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW).
2017, pp. 1418–1425.

[61] Y.Saad. Deflation. 2000. url: http://www.netlib.org/utk/people/JackDongarra/
etemplates/node219.html.

