
Fast Anomaly Detection for Large Data Centers

Ang Li and Lin Gu

Hong Kong University of Science and Technology

Email: {laxab,lingu}@cse.ust.hk

Kuai Xu

Arizona State University

Email: kuai.xu@asu.edu

Abstract—Recent spates of cyber attacks towards cloud com-
puting services running in large data centers have made it
imperative to develop effective techniques to detect anomalous
behaviors in the “clouds”. In this paper, we propose to use the
distributions of IP address octets and centroid based measures to
characterize the inherent IP structure in high-volume data center
traffic, and subsequently design a simple yet effective algorithm
to detect abnormal traffic patterns caused by network attacks
such as worms, virus, and denial of service attacks. We evaluate
the effectiveness and efficiency of this algorithm with synthetic
traffic that combines real data center traffic collected from a
large Internet content provider with worm traces and denial of
service attacks. The experiment results show that our algorithm
consistently diagnoses the abnormal traffic from normal ones,
and does so in a short time with a low false alarm rate. We
believe that the proposed approach could be potentially deployed
in real-time data center environments to enhance the security and
high availability of cloud computing.

I. INTRODUCTION

Cloud computing reflects a trend of integrating data, users,

and logic on a vast scale, thus enabling a potentially global

optimization of computing resources. At the center of this

global view of computation are high-capacity data centers

serving as a high-availability backbone for application ser-

vices. The availability of abundantly provisioned data centers

and the development of elastic cloud infrastructures bring new

applications opportunities and business models, and may re-

shape the IT industry.

However, many challenges and obstacles remain for cloud

computing. The number one obstacle identified in the Berke-

ley’s view of cloud computing [4] lies in “availability of

services” due to service outages and distributed denial of

service (DDoS). The recent work by Ristenpart et al. [11]

introduces the vulnerabilities with shared virtual machines

(VM) from cloud computing providers and demonstrates the

feasibility of mounting cross-VM side-channel attacks to gain

information from the target VMs. Given the diversity and

magnitude of security threats from outside and inside the

cloud, it is crucial to develop sound technical measures to

protect data centers.

In this work, we are mainly interested in protecting data

centers from external threats, where the adversary is outside

the data centers and attacks the cloud infrastructure or service

through the Internet. Examples of outside attacks include

Internet worms [13], viruses, system penetrations [14], and

DDoS attacks [5]. Originating possibly from any obscure

location in an uncontrolled environment (the Internet) at an

unpredictable time, external threats are a major concern for

network operators of large data centers. The recent attacks

towards GMail and other cloud services illustrate the urgency

of addressing such threats [14].

Because external attacks materialize in the form of network

packets, one approach to protecting data centers is to closely

monitor the network traffic and detect anomalous behaviors

towards data centers. Anomaly detection based approaches

have been studied in the literature, and used for personal sys-

tems, corporate firewalls, and backbone networks. However,

existing solutions encounter serious issues in performance and

effectiveness in large data center environments. The reasons

are manyfold, including the scalability issues at the data center

scale, the dynamic and hybrid workload, the requirement of

extremely high sensitivity, the stringent time constraints, and

the unknown and evolving external environment. Hence, as

cloud computing and Internet-scale computation continue to

grow, how to monitor network traffic and detect anomalies for

large data centers become an urgent research topic.

Towards this end, this paper develops a simple and fast

approach to provide on-line traffic anomaly detection for large

data centers. Our work begins with the traffic characterizations

of Internet data centers using network flow traces collected

from several data centers in Yahoo!’s global network [1]. We

design a lightweight calculation to summarize the structural

characteristics of IPs into a value representing the centroid of

selecte octets in the 32-bit IP addresses.

Based on the centroid, which is very easy to compute

and makes continuously monitoring of traffic flow in very

large data center feasible, we further develop methods for

fast anomaly detection for large data centers. We validate our

approach using synthetic traffic that combines real data center

traffic collected on Yahoo!’s regional network exchanges and

packet traces from real-world worm epidemics as well as

denial of service attacks. Our experiment results demonstrate

that the algorithm indeed is able to differentiate abnormal

traffic patterns containing malicious traffic from normal ones

in a short time. Our work makes the following contributions.

• By analyzing real-world traffic traces, we show several

characteristics of the IP address distribution observed on

large data centers for cloud computing services.

• We reveal a stable concentration on selected octets of both

source and destination IP addresses, and derive centroid

based statistics to characterize data center traffic.

• We propose an IP-structural approach to fast anomaly

detection based on the changes of the centroid over time,

and design a lightweight anomaly detection algorithm that

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

can be used for very large data centers.

• We evaluate the effectiveness of our methodology using

real-world data sets collected from a large Internet con-

tent provider and a variety of trace-driven simulations.

The remainder of this paper is organized as follows. Sec-

tion II describes related work. Section III presents traffic

characteristics of large data centers and our approach of fast

anomaly detections. In Section IV, we evaluate our approach

via experiments. Section V concludes this paper and outlines

the future work.

II. RELATED WORK

As the infrastructure of cloud computing, the data centers

play an increasingly important role in today’s computation.

Meanwhile the security of data centers is still a challenging

area with many open problems [4]. While there exist a

number of novel solutions to developing scalable and energy-

efficient network architecture for data centers, very few recent

developments focus on network security for data centers and

how to protect them from cyber attacks. Our work is to develop

efficient and scalable algorithms to detect anomalous behavior

towards data centers.

Many techniques have been proposed to detect anomalies

in traffic volume. Snort [12] and Bro [10] are two widely

used signature-based intrusion detection systems that examine

preconfigured and predetermined attack patterns in network

traffic of end hosts to detect attack patterns. Much of the work

in anomaly detection has been restricted to specific types of

anomalies, e.g., portscans, worms, and DOS attack. However,

these systems are inefficient when detecting unknown attacks.

When a new worm spreads, data centers cannot afford to wait

several hours or days in a vulnerable state for a security fix.

For this reason, anomaly detection is advantageous in handling

new, unknown, and unanticipated attacks in the network flow.

Our work is one approach to anomaly detection, and has been

verified in Section IV under multiple types of attacks without

a priori knowledge on the adverse traffic patterns.

A number of existing techniques treat anomalies as devi-

ations in the overall traffic volume [8]. Such volume based

schemes are effective for large traffic changes, such as band-

width flooding attacks, but often have difficulty in detecting

anomalies when the spurious packets constitute only a small

fraction of the overall traffic volume.

Closer to our approach are anomaly detection systems using

IP address information. In [9], Lakhina et al. use entropy as

a summarization tool, and implement automatic classification

of anomalies via unsupervised learning. [6] represents multiple

pieces of measurements as different colors of an image, en-

abling uniform processing of multidimensional packet header

data. However, they only consider the number of packets for

different values of the header field of a packet, e.g., source

address, destination address, source port, destination port, etc.

Our method uses only the source and destination addresses,

but uses sorting and weighted average to extract IP-structural

information instead of simply using the packet counts. As

00:00 00:01 00:02 00:03 00:04
0

1

2

3

4

x 109

Time

S
o

u
rc

e
 I
P

 a
d

d
re

s
s

(a) Source IP distribution

00:00 00:01 00:02 00:03 00:04
0

1

2

3

4

x 109

Time

D
e

s
ti
n

a
ti
o

n
 I
P

 a
d

d
re

s
s

(b) Destination IP distribution

Fig. 1. Source and destination IP addresses observed on Hong Kong data
center over 4 minutes. IPs are represented as 32-bit numeric values.

shown in Section IV, our method is much more sensitive than

the earlier ones, and is resilient to normal traffic fluctuation.

III. ANALYSIS OF TRAFFIC FLOWS

In this section, we first analyze the characteristics of IP

addresses in packet traces obtained from several data centers,

which forms a solid basis for developing the centroid based al-

gorithm. We then present the details of our anomaly detection

algorithm and its implementation in realistic settings where

the “normal” traffic is not known.

A. IP-structural characteristics of data center traffic

We start the analysis by examining the distribution of IP

addresses in the sequence of packets observed on a data center.

Representing IPv4 addresses as numbers between 0 to 232−1,

Figure 1 illustrates the distribution of source and destination

IP addresses observed on the Hong Kong data center [1].

Obviously, the IP addresses concentrate in a few bands. Due to

the high packet rate, we only plot the IPs for 4 minutes, but the

same regularity in the distribution of IP addresses is generally

evident in all windows of different sizes, and, not surprisingly,

a natural result of block-based IP allocation. However, the

stableness of the concentration suggests a potential “invariant”

for data center traffic – the structure of the collection of

IP addresses on a data center is a relatively stable variable

resilient to temporal traffic fluctuations.

To inspect the IP addresses distribution more precisely, we

examine the octets in the 32-bit IP addresses. Suppose we

use the dotted quad notation A.B.C.D to denote an IP address,

and call the octets in the IP octet A, octet B, octet C, and

octet D, respectively. Following the strong concentration of

IP addresses, the values of octets A-D are not uniformly

distributed. For example, Figures 2(a)–2(f) show the number

of packets for each octet B value in the source and destinations

IP addresses in a 15-minute interval. It is interesting to

observe that a very small number of values dominate the

distribution of octet B. The statistics for other octets in the IP

addresses and other time intervals are similar. In conclusion,

the concentrated distribution of octets in the IP addresses is a

common characteristic of traffic flows in data centers.

In Figure 2, we present empirical results from the Hong

Kong, London and Dallas data centers to have a broad cover-

age. As the figures show, the characteristics of the distributions

on the three data centers are the same, and the difference

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

0 50 100 150 200 250
0

2

4

6

8

10

12
x 104

Octet B of source IP address(HK)

T
he

 n
um

be
r

of
 p

ac
ke

ts

(a) Source IP addresses, Hong Kong
data center

0 50 100 150 200 250
0

2

4

6

8

10

12

14
x 104

Octet B of destination IP address(HK)

T
he

 n
um

be
r

of
 p

ac
ke

ts

(b) Destination IP addresses, Hong
Kong data center

0 50 100 150 200 250
0

0.5

1

1.5

2
x 105

Octet B of source IP address(London)

T
he

 n
um

be
r

of
 p

ac
ke

ts

(c) Source IP addresses, London
data center

0 50 100 150 200 250
0

1

2

3

4

5
x 104

Octet B of destination IP address(London)

T
he

 n
um

be
r

of
 p

ac
ke

ts

(d) Destination IP addresses, Lon-
don data center

0 50 100 150 200 250
0

1

2

3

4
x 106

Octet B of source IP address(Dallas)

T
he

 n
um

be
r

of
 p

ac
ke

ts

(e) Source IP addresses, Dallas data
center

0 50 100 150 200 250
0

2

4

6

8

10
x 105

Octet B of destination IP address(Dallas)

T
he

 n
um

be
r
of

 p
ac

ke
ts

(f) Destination IP addresses, Dallas
data center

Fig. 2. Distribution of values of octet B in the IP addresses in packets
sampled from the Hong Kong, London, and Dallas data centers.

is only the specific values that dominates the distribution.

This generality across different data centers also applies to

other empirical results in this study. To avoid clutter, we will

consistently use the Hong Kong data center for presenting

results henceforth.

To summarize the structural characteristic, we compute

the centroid of the collection of IPs. Generally, the centroid

Cgeneral of a collection of K items {ri, i = 1, 2, ...,K} is

defined as follows:

Cgeneral =

∑K

i=1 mi · ri
∑K

i=1 mi

(1)

For each i in [0, 255], if we let ri = i and mi be the

number of packets whose octet B is i, we can calculate centroid

based on Eqn.(1). We call it the original centroid, denoting

it as Coriginal. As shown in Figure 3, Coriginal shows small

fluctuation, but it is not stable enough to capture the IP-

structural “invariant” in the traffic flow.

We calculate a more stable centroid by sorting the numbers

of packets. The sorting is equivalent to re-numbering the octet

B values so that the largest packet count is associated with

255, the second largest count is associated with 254, and so

on. After sorting, we calculate the centroid, and denote it as

Csort. As shown in Figure 3, the fluctuation of Csort is much

smaller – changes between consecutive data points are within

3. Yet we can obtain a more stable centroid, denoting as C,

based on Algorithm 1, which describes the calculation of C
from Nx. Different from the mathematical definition, we use

two configurable parameters, S and T, in this algorithm, so

00:00 05:00 10:00 15:00 20:00 01:00
80

100

120

140

160

180

200

220

240

Time

Ce
nte

r o
f m

as
s o

f s
ou

rce
 IP

 oc
tet

 B

C
original

C
sort

C

(a) For octet B of source IP address

00:00 05:00 10:00 15:00 20:00 01:00

80

100

120

140

160

180

200

220

240

Time

Ce
nt

ro
id

 o
f d

es
tin

at
ion

 IP
 o

ct
et

 B

C
original

C
sort

C

(b) For octet B of destination IP address

Fig. 3. Centroid of source and destination IP address for octet B

that system operators can adjust the impact dominating values

have on the overall centroid. As shown in Figure 3, C is very

stable, with differences between adjacent data points no more

than 1, which is resilient to the temporal fluctuations of normal

traffic. Hence, C can be used as a very effective metric to

approximate the IP-structural characteristics of network flows

when detecting anomalous traffic disturbances.

B. Anomaly detection based on the centroid C

Based on the centroid C, we construct a solution to detecting

abnormal traffic patterns. Intuitively, significant anomalous

traffic disturbances, such as worm spread, or DDoS attacks,

disrupt the distribution of the IP addresses observed on a data

center, and make the centroid deviate from the normal value.

Hence, a significant change in C indicates a suspicious traffic

pattern that the data center operators need to investigate.

As a packet arrives at an entry point of a data center, the

router or a monitoring station at the entry point examines

the source and destination IP addresses in the packet, and

increment the packet counter corresponding to the value of

a particular octet of interest. We use a small array Nx of

256 entries to record the packet counts for specific octet

values, with x being A, B, C or D. The anomaly detection

algorithm periodically computes the centroid C from Nx, and

clears Nx to zero. The centroids thus calculated provide raw

measurements based on which the anomaly detection function

is implemented. The per-packet cost is an array indexing

operation and an integer increment, and no packet header,

payload, or other detailed information needs to be analyzed

or retained. With such low run-time overhead, this anomaly

detection method can scale to any large data centers.

To measure the significance of changes in the centroid, we

define

ratioi =
∆i

Φi

=
|Ci

Mix − Ci
Normal|

|Ci
Normal − Ci−1

Normal|
(2)

where Ci
Mix represents the centroid of traffic flows that

contains abnormal traffic at the time period i, and Ci
Normal

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

Algorithm 1 Algorithm for calculating C

1: Initialization: an array Nx[i], i = 0, 1, ...255, where Nx[i]
represents the number of packets whose IP address has an octet
x value equal to i.

2: Sort the array Nx[i] in ascending order, i.e., Nx[0] ≤ Nx[1] ≤
... ≤ Nx[255]

3: S = 0; T = 150; // Configurable parameters
4: m = 0; z = 0;
5: for each i ∈ [S, 255] do
6: if Nx[i] ≤ Nx[T] then
7: Wx[i] = Nx[i];
8: else
9: Wx[i] = Nx[T] + log(Nx[i] − Nx[T]);

10: end if
11: mi = Wx[i]; m = m + mi; z = z + i · mi

12: end for

13: C = z

m
; // Compute the center of mass C =

∑
255

i=S
i·mi∑

255

i=S
mi

;

represents the centroid of traffic flows without abnormal traffic

at the time period i. Similarly, Ci−1
Normal denotes the centroid

without abnormal traffic at the period i−1. The ratio compares

the current change of centroid with the normal change of

centroid. A large ratio indicates that the current change of

center of mass is likely driven by abnormal network events.

C. Improvements for realistic environments

The definition of ratio in Eqn.(2) assumes a prior knowl-

edge of what packets are normal or abnormal during the time

period i, which is not achievable in a real case when the normal

and abnormal packets are mixed together. Without a priori

knowledge on the properties of attacks, it is also very difficult,

in some cases impossible, to distinguish spurious packets from

normal ones. Therefore, a realistic question is “how to define

Φ and ∆ for computing the ratio?”. We solve this and other

realistic issues in the rest of this section.

1) Estimation of ∆ and Φ: We use exponentially weighted

moving average (EWMA) to estimate Ci
Normal with C′i

Normal

as follows:

C′i
Normal = (1 − α) · C′i−1

Normal + α · Ci
Mix

C′0
Normal = C0

Mix

∆′

i = |Ci
Mix − C′i

Normal| (3)

Similarly, Φi = Ci
Normal − Ci−1

Normal would measure the

movement of centroid of current traffic flows in a realis-

tic cloud environment. Our solution to this challenge is to

consider Wx[i] only if N ′

x[i] ≥ Nx[T] while calculating

the centroid for Φ. Note that, in Algorithm 1, the condition

N ′

x[i] ≥ Nx[T] determines the dominant traffic flows. As

a result, even though the current traffic flows may contain

anomalous traffic, when we only consider the arrays i ≥ T ,

the change of the centroid mainly reflects the insignificant

changes of the normal traffic flows.

Formally, we define

C∗i
Mix =

∑
255

i=T
Wx[i]·i

∑
255

i=T
Wx[i]

C∗i
Normal = (1 − α) · C∗i−1

Normal + α · C∗i
Mix

C∗0
Normal = C∗0

Mix

Φ′

i = |C∗i
Normal − C∗i−1

Normal| (4)

In conclusion, ratio in real cases is defined as follows. In

the case that Φ′

i = 0, we set Φ′

i = 0.0001 (the minimum

definition precision).

ratio′i =
∆′

i

Φ′

i

(5)

2) Choice of threshold: Our approach to detecting anoma-

lous situation uses a threshold and a parameter, η, to control

when an alert should be sent to system administrators about

a potentially hazardous network anomaly. We believe that

the threshold and η should be flexible and adaptive to the

environment and traffic characteristics of different data centers.

In our experiment, we employ the adaptive threshold defined

in Eqn.(6). and set η = 0.1 by default. In the next section, we

will show the advantages of the adaptive threshold over the

fixed ones. When ratio′i > (1 + η) · thresholdi, the anomaly

detection system dispatches an alert to the administrators, and

the administrators may take further actions to investigate and

fix the problem. The anomaly detection system ifself does not

dictate what remedy actions to take upon reception of alerts.

thresholdi = (1 − β) · thresholdi−1 + β · ratio′i

threshold0 = ratio′0 (6)

IV. EXPERIMENTS

We have conducted a series of experiments to study how

the anomaly detection algorithm performs under abnormal

network traffic that may threat data centers. To have a broader

coverage, three types of attacking traffic – UDP worms, TCP

worms, and DDoS attacks – are used in our experiments.

We generate synthetic traffic by mixing the normal data

center traffic (i.e., Yahoo! traffic traces [1]) with the worm or

DDoS traffic. The attack traffic traces are collected from real-

world worm cases or generated by the virus traffic generator.

To obtain abnormal “mixed” network traces, the attack traffic

is blended into the Yahoo! network trace with the latter

multiplied by 1000 to compensate the sampling attenuation.

The mixed trace is subsequently replayed to the anomaly

detection algorithm to evaluate its performance.

A. Evaluations with UDP worms

We evaluate our algorithm with the UDP worm traffic

using Witty worm traces collected by CAIDA through UCSD

Network Telescope [2]. Witty is a UDP worm that exploits

a buffer overflow vulnerability in several ISS products. Once

a host is infected with Witty worm, it starts to send 20,000

packets to randomly selected destination IPs from source port

4000 [13].

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

00:45 00:50
0

0.5

1

1.5

2

2.5

00:55 01:00 01:05 01:10 01:15
Time (min)

(1+η)·threshold (η = 0.1, β=0.75)

ratio’
normal

ratio’

x 10
5

Fig. 4. Differentiate abnormal flows with Witty trace. The circles indicate
successful detection of anomaly.

00:55
0

0.5

1

1.5

2

00:50 01:00 01:05 01:10

Time (min)

3
x 10

4

2.5

threshold = 0.5x 10
4

threshold = 1 x 10
4

ratio’

ratio’
normal

(1+η)·threshold (η = 0.1, β=0.75)

Fig. 5. Differentiate abnormal flows with Witty trace

We replay the traffic flows from Hong Kong data center

from 00:00, and start to simulate Witty worm behavior at

00:15. We choose octet B for calculating the center of mass,

and the anomaly detection runs every five minutes. As shown

in Figure 4, in a number of periods, such as 00:50, 01:00,

and 01:05, ratio′ is significantly larger than rationormal,

successfully indicating abnormal traffic patterns.

The detection latency (the time between the start of the

intrusion traffic and the generation of an alarm), is highly

related to the value of threshold. Figure 5 compares three

thresholds: the adaptive threshold (β = 0.85) and two other

fixed thresholds. Small threshold improves the sensitivity, but

increases the possibility of introducing false positives, e.g., it

causes false positive at 00:50 and 00:55 when threshold =
0.5 × 104. On the other hand, a larger threshold is likely to

reduce the sensitivity of detection. There is a trade-off between

sensitivity and precision.

To verify that our approach is resilient to temporal fluctua-

tions, we perform a series of experiments in several time peri-

ods of a day. We choose three representative time periods with

diverse traffic patterns, and use adaptive threshold (β = 0.85)

as a criteria, when ratio is larger than adaptive threshold, an

02:30 02:35 02:40 02:45 02:50
0

0.5

1

1.5

2
x 105

Time (min)

r
a
t
io

'

alarm

(a)

09:30 09:35 09:40 09:45 09:50
0

0.5

1

1.5

2

2.5

3

3.5
x 105

Time (min)

r
a
t
io

'

alarm

(b)

16:00 16:05 16:10 16:15 16:20
0

2

4

6

8
x 103

Time (min)

r
a
t
io

'

alarm

(c)

Fig. 6. Detecting attacks in various time periods during the day

alarm is generated. As shown in Figure 6, our algorithms can

effectively detect anomalies within 5 minutes for most of the

time periods. For the case of Figure 6(c), where Nnorm only

contributes to 2% of the total traffic, our algorithms can still

detect anomalies within 20 minutes.

B. Evaluations with TCP worms

Next, we evaluate our approach with synthetic traffic of

normal data center traffic and simulated TCP worms. To obtain

TCP worm trace, we use a known worm traffic generation

program on Georgia Tech Network Simulator (GTNetS) [3],

and generate worm traffic that reflects a combination of

CodeRedI and CodeRedII worms. We construct a topology

consisting of over 83,400 nodes in two /16 subnets.

With this experiment setting, we consider three cases to

evaluate the effectiveness of our anomaly detection method,

with each case emulating one real-world scenario: case 1:

worm packets in /16 subnets that contain the initial infection

node, corresponding to the real-world case that one node in

a data center has been infected; case 2: worm packets in /24

subnets that do not contain the initial infection node, while the

/16 subnets that contain this /24 subnets do. This case emulates

an infected node outside a data center, but the “distance” is

not far away (in the same /16 network); case 3: worm packets

in /16 subnets that do not contain the initial infection node.

This is the most difficult case, emulating the situation when

the infection is far away from the data center (in a different

/16 network).

Figure 7(a) shows the experimental results for case 1. Since

octets A and B are all the same in one /16 network, we choose

octet D to calculate centroid. In this experiment, we take only

1/8 of total packets, assuming that the packets communicating

within a same /16 subnet may not go through its main router,

and only 1/8 of them go across the main router and has

been recorded. The result shows that our approach can detect

intrusion in 5 minutes when the worm began to attack from

09:30. We can see that our approach is effective in this case.

In case 2, the packets are collected by the edge router for a

/24 subnet. Hence, we randomly choose a /24 subnet from the

/16 subnet. As the quantity of worm packets has decreased

significantly, the ratio′ becomes closer to rationormal in

average, so it becomes more difficult to detect intrusion.

However, our approach is still effective to detect intrusion. For

example in Figure 7(b), detection latency is only 15 minutes.

For case 2, the average Nworm

Nnormal+Nworm
is about 1.2%.

To simulate case 3, we treat nodes with the same octets

C and D within a same /16 subnet as a /16 subnet with IP

addresses as C.D.x.y. In fact, this case is more challenging

than the real-world scenarios we are simulating, since we

treat every /16 subnet as one single node, which decreases

the number of infection packets. Since this case examines

the anomaly detection when infected sources are relatively

far away, it is less time-constrained to detect the intrusion.

When the infection proliferates to the same /24 subnet or

/16 network, the intrusion would be effectively detected.

Nevertheless, slight improvement in our algorithm by adding:

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

9:30 9:30 9:40 9:45 9:50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time (min)

(1+η)·threshold (η = 0.1, β=0.85)

ratio'

ratio'
normal

(a) case 1

9:30 9:35 9:40 9:45 9:50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (min)

ratio'

ratio'
normal

x 104

(1+η)·threshold (η = 0.1, β=0.78)

(b) case 2

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

9:35 9:40 9:45 9:50

Time (min)

ratio'

ratio'
normal

x 104

9:30

(c) case 3

0

5

10

15

20

25

30

35

40

45

50

9:40 9:45 9:50

Time (min)

(1+η)·threshold (η = 0.1, β=0.95)

ratio'
ratio'

normal

9:30 9:35

(d) case 3 after improvement of algo-
rithm

Fig. 7. Detecting TCP attacks

9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
0

1

2

3

4

5

Time that DDoS attack startsTh
e

nu
m

be
r o

f 1
m

in-
int

er
va

ls

fail
alarm

Fig. 8. Latency at different time when detecting DDoS attack

if N ′

x[i] >= N ′

x[T], Wx[i]′ = log(Wx[i]) in step 9 (Algorithm

1) will further reduce the impact of dominant buckets on

centroid. Hence, this extra step enables improved algorithm

to detect even case 3 when the average Nworm

Nnormal+Nworm
is

about 0.078%, as shown in Figure 7(d).

C. Evaluations with DDoS traffic

The attack traces we used are captured at Los Nettos, a

moderate size ISP located in Los Angeles [7]. DDoS attacks

have generated large quantities of infection packets in short

time, and it is hence relatively easy to detect. Thus, the focus

of experiments with DDoS traffic is to study how fast our

approach can detect DDoS attack. If our approach cannot

detect in five time intervals, we treat it as a failure to detect

intrusion. Figure 8 shows that our approach is valid to detect

DDoS attack within 5 minutes during most of time in the day.

In summary, the experiments results demonstrate that our

algorithm is generally effective to detect a variety of attacks

in a short time resilient to temporal fluctuations.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a simple yet effective anomaly detec-

tion algorithm based on an IP-structural approach for large

data centers. Using the centroid analysis on the octets of

IP addresses in data center traffic, we find that the octets

in both source and destination IP addresses exhibit a strong

concentrating distribution. More importantly, such concentra-

tions are very stable during normal traffic patterns, but deviate

noticeably under abnormal patterns caused by anomalous

events such as worm outbreaks or denial of service attacks.

Inspired by this interesting and unique traffic characteristic in

data center traffic, we devise an effective algorithm to detect

anomalous situations based on the change or movement on

the centroid of some octets in IP addresses. We evaluate this

algorithm with synthetic traffic that combines normal data

center traffic and intrusion traffic. Our experiment results show

that the approach can detect the intrusions under test even

when worm traffic flows account for as low as 0.078% of the

total traffic volume.

VI. ACKNOWLEDGEMENT

We would like to thank Yahoo! Research for providing us

Webscope data and support. Also, the work is supported in part

by an Arizona State University New College SRCA grant, and

HKUST grants DAG08/09.EG11 and REC09/10.EG06.

REFERENCES

[1] Yahoo! Research and Academic Relations. G4: Yahoo! network flows
data 1.0. http://research.yahoo.com/Academic Relations.

[2] The CAIDA Dataset on the Witty Worm-March 19-24,
2004, Colleen Shannon, David Moore, and kc claffy.
http://www.caida.org/data/passive/witty worm dataset.xml.

[3] GTNetS http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/.
[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwin-

ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above
the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, Feb 2009.

[5] CNet News. DDoS attack hobbles major sites, including Amazon. http:

//news.cnet.com/8301-30684 3-10421577-265.html, Dec. 2009.
[6] R. Fontugne, T. Hirotsu, and K. Fukuda. An image processing approach

to traffic anomaly detection. In Proc. of the 4th Asian Conf. on Internet

Engineering (AINTEC’08), pages 17–26, 2008.
[7] A. Hussain, J. Heidemann, and C. Papadopoulos. A framework for

classifying denial of service attacks. In Proc. of the 2003 Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications (SIGCOMM’03), pages 99–110, 2003.
[8] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide

traffic anomalies. In Proc. of the 2004 Conf. on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications

(SIGCOMM’04), pages 219–230, 2004.
[9] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic

feature distributions. In Proc. of the 2005 conference on Applications,

technologies, architectures, and protocols for computer communications

(SIGCOMM’05), pages 217–228, 2005.
[10] V. Paxson. Bro: a system for detecting network intruders in real-time.

In Proc. of the 7th Conf. on USENIX Security Symposium (SSYM’98),
pages 3–3, 1998.

[11] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you,
get off of my cloud! Exploring information leakage in third-party
compute clouds. In Proc. of the 16

th ACM Conf. on Computer and

Communication Security (CCS’09), Nov. 2009.
[12] M. Roesch. Snort - lightweight intrusion detection for networks. In Proc.

of the 13th USENIX conference on System administration (LISA’99),
pages 229–238, 1999.

[13] C. Shannon and D. Moore. The spread of the witty worm. IEEE Security

and Privacy, 2(4):46–50, 2004.
[14] Wall Street Journal. Google introduces new security measures after

cyber-attack. http://online.wsj.com/article/BT-CO-20100112-716798.

html, Jan. 2009.

978-1-4244-5638-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2010 proceedings.

