
Fast App Launching for Mobile Devices Using Predictive
User Context

Tingxin Yan1, David Chu2, Deepak Ganesan1, Aman Kansal2, Jie Liu2

1University of Massachusetts Amherst, 2Microsoft Research
{yan, ganesan}@cs.umass.edu, {davidchu, kansal, jie.liu}@microsoft.com

ABSTRACT

As mobile apps become more closely integrated into our
everyday lives, mobile app interactions ought to be rapid
and responsive. Unfortunately, even the basic primitive of
launching a mobile app is sorrowfully sluggish: 20 seconds
of delay is not uncommon even for very popular apps.
We have designed and built FALCON to remedy slow app

launch. FALCON uses contexts such as user location and tem-
poral access patterns to predict app launches before they
occur. FALCON then provides systems support for effective
app-specific prelaunching, which can dramatically reduce
perceived delay.
FALCON uses novel features derived through extensive data

analysis, and a novel cost-benefit learning algorithm that
has strong predictive performance and low runtime over-
head. Trace-based analysis shows that an average user saves
around 6 seconds per app startup time with daily energy cost
of no more than 2% battery life, and on average gets con-
tent that is only 3 minutes old at launch without needing
to wait for content to update. FALCON is implemented as an
OS modification to the Windows Phone OS.

Categories and Subject Descriptors

C.5.3 [Computer System Implementation]: Microcom-
puters—Portable devices; D.4.8 [Operating Systems]: Per-
formance—Modeling and prediction

Keywords

Mobile devices, Context, Location, Application prediction

1. INTRODUCTION
Mobile apps have blossomed in popularity and ubiquity.

With each generation, the multitude and diversity of apps
continues to grow. A recent tally revealed 380,000 iOS apps,
250,000 Android apps and 35,000 Windows Phone (WP)
apps. With so many apps out there, systems support that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00.

can improve our daily app interaction experience is poised
to be widely beneficial.

Early pioneers in mobile computing recognized that dur-
ing mobile interactions, human attention is a scarce resource [8,
13]. Our analysis of a long term user study [14] supports
this view: 50% of mobile phone engagements last less than
30 seconds, and 90% of engagements last less than 4 min-
utes. With such brief periods of interaction, it is all the
more important that interaction is rapid and responsive.

Unfortunately, interacting with apps can be surprisingly
sluggish. Applications can take dozens of seconds to launch,
negating any sense of agility. A particularly troubling class
of apps are games, some of which can take upwards of 20
seconds to fully launch past splash screens, and even more
time to reach a playable state. Our investigation shows that
even relatively simple apps such as weather reporters can
experience launch delays of 10 seconds or more.

Some applications, such as email clients, are optimized for
quick launch within seconds. However, these applications
mask actual latency by showing stale content while asyn-
chronously fetching new content over the network. While
appropriate for a restricted set of interactions, stale content
fails to engage the user in the same way that the latest fresh
content can. When considering the full launch time starting
from touch until the latest content is displayed, apps with
asynchronously loaded content can also exhibit severe load
times of up to a dozen seconds.

One possible approach to decrease launch time is to cache
apps in memory. This approach is implemented by iOS,
Android and WP, yet suffers from several drawbacks. First,
some apps, especially games, demand large amounts of mem-
ory, overwhelming memory real estate for other apps. There-
fore, näıve caching schemes can exhibit low benefit. Second,
caching does not address the issue that content may become
stale by the time the user interacts with the app.

Another possible approach that addresses stale content is
the use of push notifications. While push notifications can
ensure content freshness, the energy cost of push communi-
cation can be prohibitively high [12]. Not surprisingly then,
four out of the top five battery saving suggestions offered by
Apple concern disabling push notifications [1].

Ideally, we would like to take advantage of both avail-
able cache and proactive content updates without incur-
ring their drawbacks. It so happens that mobile devices are
equipped with an increasingly sophisticated array of sensors
such as IMUs, mics, cameras and geolocation units. Each
can provide insightful context for the OS [7]. For a par-
ticular user, Angry Birds usage may be much more likely

at home, whereas Email and Calendar usage may be much
more likely at work. Or, a user may habitually check Face-
book after receiving an SMS when at school.
We have built the FALCON1 system to predictively prelaunch

apps based on context signals and user access patterns. Prelaunch
entails both preloading apps in memory and app-specific
fresh content preparation.
At the foundation of FALCON is a data-driven analysis that

reveals surprising insights about how and when we use mo-
bile apps. We find an intrinsic bundling behavior in how
mobile apps are used — once a user starts using the phone,
say for a phone call or SMS, they tend to use several other
applications before turning away from the phone to another
task. Bundling behavior manifests not just at the timescale
of single user session with the phone, but across longer du-
rations of several weeks. We find that games are often used
in bursts where users tend to obsessively use a game for a
few weeks, and then ignore it entirely for several months.
Similarly, other contexts such as location and time-of-day
plays a central role in app usage, perhaps indicative of our
tendency toward structured behavior.
While such behavioral insights can be distilled into a set of

preload prediction rules, a key challenge is that users are not
alike in how these behaviors apply to them. Some users are
more likely to open several apps after a phone call whereas
others do so after opening the browser; some users have
strong tendencies at a core set of tightly defined locations
such as home and work whereas others exhibit more diver-
sity. To address this, FALCON personalizes the context trig-
gers to the individual to maximize prelaunch accuracy.
Applications also differ widely in terms of the benefits

from correct prelaunch versus the cost of incorrect prelaunch.
As an example comparing two popular games, Need for Speed
takes over 2× more energy than Plants vs. Zombies even
though both load equally slowly. FALCON uses a novel cost-
benefit adaptive prediction algorithm that accounts for both
the expected latency benefit of correct predictions and the
expected energy cost incurred for wrong predictions. The al-
gorithm adapts to budget constraints and jointly optimizes
the applications to prelaunch as well as the temporal and
location contexts under which such prelaunching is enabled.
Both features and learning algorithm are designed to achieve
very low runtime overhead.
We have implemented FALCON as an operating system mod-

ification to the Windows Phone 7.5 operating system and
show that it has minimal energy, memory and processing
overhead. In addition to preloading apps from local storage,
FALCON ensures content freshness by prefetching content be-
fore app launch. This is achieved with a WP event handler
that FALCON invokes whenever it predicts the app is about
to be launched. For example, a Twitter app can fetch new
tweets during this event. As a result, a user’s time to first
meaningful app interaction is no longer bound by network
latency.
Our major contributions are as follows.

• From extensive data analysis, we design spatial and
temporal features that are highly indicative of mobile
app access patterns.

• We design a cost-benefit learning algorithm whose pre-

1Fast App Launching with Context. The peregrine falcon
can swoop dive at more than 200 mph – making it the fastest
animal on earth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 5 10

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Duration (Minutes)

Figure 1: App usage durations for a representative
individual over a one year long trace.

dictions lead to launch latency reduction of nearly 6
seconds per app usage with the daily energy cost of no
more than 2% battery lifetime. Predictions also lead
to getting content that is only 3 minutes old at launch
without waiting for content to update at launch.

• We prototype FALCON on aWindows Phone, and demon-
strate that it has minimal runtime energy overhead of a
few µAh and a small memory footprint of under 2 MB.

Taken as a whole, FALCON effectively replaces a subset of
the policy decisions traditionally reserved for the memory
manager and scheduler. Context permits FALCON to make
much more informed app decisions which lead to substantial
launch time reductions at minimal overhead.

The rest of this paper is organized as follows. §2 pro-
vides quantitative background of the problem. §3 provides
an overview of the system. §4 discusses the launch predictor,
features and learner. §5 details implementation aspects. §6
evaluates FALCON. §7 discusses related work, and §8 offers a
discussion and conclusion.

2. BACKGROUND AND PROBLEM SCOPE
In this section, we take a closer look at the issue of app

launch latency. Our investigation is based on trace data col-
lected from the Rice LiveLab user study [14], and our own
internal study. In the Rice LiveLab’s study, thirty four vol-
unteers were given iPhones for a period of fourteen months
from 2010-2011. During this time, their device usage was
monitored. Our own internal double-blind study consisted
of three WP users monitored over one month. We focus on
the following elements which were recorded in both traces:
app usage, location, datetime. The LiveLab’s trace is much
more extensive; it will be the main focus of investigation
unless otherwise noted.

We first examine the thesis that mobile interactions are
inherently brief [8]. Figure 1 illustrates the CDF of app
usage durations across all users in the Rice trace. Indeed,
most interactions with the phone are short with 80% of the
apps being used for less than two minutes. This indicates
that short engagements are the norm and the proportional
effect of slow app startup can be expected to be even more
severe for mobile users.

Qualitative reports suggest that slow app launch is a sub-
stantial drag on user experience. As an example, a recent
iOS upgrade caused an outcry from iPhone owners that were

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

(
))
*"
+,
-".
/)
)*
"

01
2)
34
5
67
8"

97
62
:8
";
8"

.,
21
3"
:<
)"
=
)*
>)
"

?)
:-
18
"

@)
:A8
"B
,7
+"&
"

?)
2:
63
7)
8"

C2
>-
D"
E1
-*
8"

F
,2
,/
,7
D"

?G
-2
HI
DH
:G
-2
"

F
):
-,
HJ
,G
:G
I)
"

K-
G1
:"(
12
L6
"

M
,,
*7
)"
NG
5
/"

.6
77D
A8
".
67
,2
"

F
61
7"

F
6/
8"

O
)6
:<
)-
"

9)
,/
7)
"

!
"
#$
%&
'$
(
)
*+
&!
,-

.
&/
01
&

!"#$%&"'()*+%!*+,-$')*.-%/''# &+-012#$*))-3%/''#

Figure 2: Total launch times of popular apps on
Windows Phone. The first 14 are most popular apps
in the Marketplace, and the last four are first-party
apps that are preinstalled.

hit with slower speeds [3]. Popular blogs suggest that users
are willing to try involved system hacks to improve app
launch times by ten seconds [2].
To quantify the extent of the issue, we studied the top 20

popular apps in the WP marketplace. Launch time repre-
sents the elapsed time from when a user taps on an app’s
icon to the first time a user is able to interact with the ap-
plication. Figure 2 shows that launch times are fairly long,
with a median launch time of 11.2 seconds and an average
launch time of 16.7 seconds. Surprisingly, no app launched
in under 5 seconds. The trend for iPhone was similar.
The use of asynchronous launch operations is a popular

coping mechanism for slow launch times. Two typical classes
of asynchronous operations are fetching content from the
network while displaying stale content, and loading content
from local storage while showing a splash screen. For exam-
ple, when the native WP Email app is launched, it displays
old messages while asynchronously fetching new messages.
As a result, the launch time is 1.3-1.7 seconds. However,
when the time for asynchronous message fetch is also ac-
counted for, the elapsed time is 11 seconds, even on WiFi
with no new emails present. Our anecdotal evidence sug-
gests that checking for new email quickly is much more valu-
able than reviewing old email. Similarly, checking social
networking apps for the latests posts is much more valuable
than rereading old posts. For these network-bound apps,
fast completion of asynchronous launch operations is impor-
tant for much of the app’s utility. Similarly, games com-
monly employ splash screens while asynchronously loading
graphics and art objects into memory from local storage.
To count total launch time in these cases, we disable or
skip any splash screens. Therefore, in this work we focus
on Total Launch Time (TLT) which we define as the base
launch time plus completion of asynchronous launch oper-
ations. Figure 2 also shows the TLT of several first-party
apps: Email, People (a Facebook and Twitter news reader),
Maps and Weather. The TLT range is 5-11 seconds.
Slow launch times paired with brief usage durations are

a troubling combination. It suggests that users are expe-
riencing far too much overhead waiting for their apps to
launch rather than engaging their apps. Fortunately, as §4
will show, our data-driven exploration indicates that user

Figure 3: The FALCON Architecture.

behavior is highly habitual, and linkable to observable con-
text such as time and location.

3. SYSTEM OVERVIEW
FALCON offers an architecture in which to systematically

observe and utilize context and execute predictive app launch
actions. Figure 3 shows the FALCON system architecture.
The central component is the launch predictor. Its role is
to use context signals to predict app launches. The launch
predictor’s feature extractors convert raw data from con-
text sources into features for the decision engine and model
trainer. The decision engine performs inference to determine
which features to use and what applications to prelaunch.
The prediction is then passed on to the dispatcher, which
loads apps into memory and executes the prelaunch routine
of the selected app(s). The model trainer records observed
features in order to periodically train and update the de-
cision engine and feature extractors with new parametriza-
tions.2 Note that training occurs infrequently and is only
critical when access patterns change significantly, whereas
inference occurs frequently and is required whenever a launch
prediction is made. The process tracker handles communi-
cation with the kernel’s memory manager in order to ensure
that the decision engine’s view of the apps running on the
system is in sync with what is actually running.

Supporting the launch predictor, the context source man-
ager is a lifecycle manager and container for various context
sources. It also helps shepherd raw data from individual
context sources to the launch predictor.

A benefit of the FALCON architecture is its modularity. We
have been able to use several context sources (location, time,
ambient light level, accelerometer and gyroscope), and three
separate decision engines within the architecture. In the
following sections of this paper, we focus on the instantiation
of the FALCON architecture which we found most suitable for
launch prediction.

4. LAUNCH PREDICTOR DESIGN
The Launch Predictor is a machine learner with several

feature extractors and a decision engine. This section first
discusses the important features we identified, and then de-

2Unlike standard features, ours involve some training.

feature description
ft triggers
fdt dynamic triggers
fλ location cluster
fdt,λ dynamic triggers per location
fToD time of day
fβ burst behavior indicator

Table 1: Feature Summary

!"#$

%$%%"&'

()"**$)

Figure 4: During this 2 hour timeline, SMS (in red)
triggers other follower apps (in green). Arrows in-
dicate start of triggered sessions.

scribes a novel cost-benefit learner and decision engine well-
suited to launch prediction.

4.1 Personalized Features
Our primary objective for feature design is to identify a

set of features that give strong insight into the next app to
launch and that are very inexpensive to compute at infer-
ence time. As is typical of feature design, we take a data-
driven approach. This investigation is heavily guided by our
data exploration of the LiveLab and internal user studies.
For each feature, we present a motivating vignette uncov-
ered from the traces, followed by a formal definition of the
feature. Table 1 summarizes the features considered.

4.1.1 Triggers and Followers

A novel feature in FALCON is session triggers and followers.
Our data analysis reveals that once the user starts using
the phone – for example to answer a phone call or view an
SMS message – they have a tendency to open a sequence of
other applications within relatively short durations of each
other. We refer to such a sequence of application launches
as a session.
The data traces reveal that certain apps are more likely

than others to be the trigger apps that start sessions, whereas
other apps are more likely to be follower apps that are used
in the same session as the trigger apps. Figure 4 shows
a two hour extract of one user’s trace. During this time
SMS was the trigger for four separate sessions. Analysis of
aggregate user behavior revealed that SMS, Phone, Email,
Facebook, and Web Browser are among the most popular
triggers across all users. This is intuitive since trigger apps
are ones that grab the users’ attention (e.g. SMS and Phone)
or satisfy immediate information needs (e.g. Browser).
Let ft denote a trigger feature. Intuitively, the trigger

features identify the occurrence of a trigger app weighted
with the likelihood of a follower app. For random variable
follower app F , trigger app T , and candidate launch app α,
the trigger feature is calculated as follows.

ft = Pr(F = α | T ∈ τt) I(τt)

where τt is a set of triggers, for example {SMS,Phone},
and I(x) is an indicator function that is 1 if (any member
of) x is observed, and 0 otherwise. The term

Figure 5: App usage is correlated with location.

Pr(F = α | T ∈ τst) expresses the probability that the fol-
lower app is the candidate launch app α given that the trig-
ger app is one of SMS or Phone. Note that probabilities are
based on the data distribution observed during training.

Interestingly, we found that the best triggers were different
for different applications, even for a single individual. For
example, the best three triggers for Email are different from
those for AngryBirds. There is also significant variability
across users — a heavy user of games might have a game
as a trigger whereas others may not. These differences lead
us to propose dynamic triggers that are calculated on a per-
launch-candidate basis as the set of top-k triggers most likely
to lead to the launch candidate as a follower.

τ̂k = argmax
τk

Pr(F = α | T ∈ τk)

fdt,k = Pr(F = α | T ∈ τ̂k) I(τ̂k)

where τ̂k represents the k best triggers for α. §4.2 discusses
the procedure for choosing k to arrive at a fixed set of dy-
namic triggers per app fdt.

4.1.2 Location Clustering

Empirical observations suggest that location is correlated
with app usage. Figure 5 illustrates the effect of location on
app usage for a brief two week time window for a represen-
tative user from our internal user study. For this user, there
is a surprisingly strong tendency for game usage at home,
Browser and Calendar usage at work, and Twitter usage at
a frequently visited shopping center.3

The location feature fλ is computed by assigning the user’s
current location to the nearest neighbor cluster.

fλ = argmin
c∈Clusters

DIST(λ, lc)

where λ is the current location and lc is the central location
of cluster c. Clusters are computed from the user’s historical
data during the training phase. The literature offers many
geospatial clustering algorithms [11], and after experiment-
ing with several, we chose k-means clustering which incurs
low computation cost while performing comparably to the
others.

We can use location in conjunction with triggers as a joint
feature fdt,λ. For each location, we compute the best set of

3The labels Home, Office and Shop are educated guesses
according to the recorded geocoordinates.

Figure 6: This particular user launched the app An-
gry Birds frequently from mid-Jan to mid-Feb only.
Both yearly and monthly timelines are shown.

dynamic triggers as follows.

τ̂λ,k = argmax
τλ,k

Pr(F = α | T ∈ τλ,k, L = λ)

fdt,λ,k = Pr(F = α | T ∈ τ̂λ,k, L = λ) I(τ̂λ,k) I(λ)

This feature captures dynamic trigger variation across loca-
tions.

4.1.3 Temporal Bursts

We also find that a user’s app usage changes significantly
over longer time scales. Figure 6 illustrates an app, Angry
Birds, becoming popular during a month-long period, then
ceasing to be used at all afterward. Perhaps not surprisingly,
this behavior turns out to be very common for games and
entertainment apps. However, our data analysis reveals that
such burst usage behavior is dependent on the type of ap-
plication, for example, games have shorter but more intense
bursts in comparison with other applications. Therefore, a
key challenge is to determine the frequency and duration of
these bursts for each application in an efficient manner.
To address this issue, we develop a novel burst predictor.

The burst predictor uses multiple sliding windows, each of
a different resolution, to detect and react to sudden upticks
in app usage. Each app has its own burst predictor to track
its bursty behavior.
As a basis for our burst predictor, we use a wavelet-based

burst detection algorithm [15] as a subprocedure. Given a
stream of data, the detector’s goal is to find all windows
of any length during which the aggregate statistic of the
window exceeds a threshold. In our instantiation, this cor-
responds to detecting any sequence of days during which an
app is launched more than a threshold per day on average.
We currently set the threshold to one.
The wavelet detector uses a unique modified wavelet data

structure in order to bound the computational complexity
of detection by O(n) where n is the number of days, whereas
the brute force solution is O(n2). The output is an indicator
for each window wi,j where i indicates the offset from the
start of the stream and j indicates the length of the window.
Let bi,j be a burst indicator which corresponds to a sliding
window starting from day i of length j days. bi,j is true if the
corresponding sliding window is a burst, and false otherwise.
Provided the burst detector, our burst predictor must de-

cide whether the next time step is part of a burst or not.
To make the decision, our predictor measures the predictive
power of each burst window size j in being able to success-
fully predict whether the app is used in the day following the
window. Let wj represent the predictive power of window
size j.

wj =
1

n− j

n
∑

i

[bi,jbi+j,1 + (1− bi,j)(1− bi+j,1)]

Figure 7: Time of day is correlated with app usage.

By analyzing historical data, we can now determine the
best window size as the one with the highest score, and use it
to detect a burst. This window size can be used to compute
fb, which is set to 1 if we are currently within a burst window
and 0 otherwise.

ĵ = argmax
j

(wj)

fβ = bn−ĵ,ĵ

Time of Day Feature: Besides multi-day temporal bursts,
app usage likelihood changes throughout the day as well.
Figure 7 illustrates this for a typical user in our internal user
study. A simple Time of Day (ToD) feature fToD represents
the time of the day, segmented by hour. Our experiments
with finer and coarser granularities did not yield much dif-
ference.

4.1.4 Additional Context Signals

We also built context sources mapping to accelerometer,
gyroscope and ambient light level sensors. These proved
sufficiently straightforward to incorporate into the FALCON

architecture. However, we do not yet have sufficient user
trace data to analyze their effectiveness at predicting app
launches.

4.1.5 Multi-feature Decision Engine

The different features that we have described can be used
as the core inputs of a decision engine that makes application
prelaunch decisions. Once training phase has provided the
trigger features location clusters, and burst predictions, the
decision engine can decide whether or not to launch an ap-
plication α when a trigger T is met. The decision procedure
takes three steps.

1. fβ is checked to see whether a burst of α is underway.

2. fλ is checked to see whether the current location sug-
gests use of α.

3. fdt,λ is checked to see whether a trigger for α started
the current session.

The three steps are executed in a sequential order. The
launch decision for α can be summarized as follows.

decision(α) =

{

true if fβ fλ fdt,λ > 0
false else

Our description of the decision engine, however, has a ma-
jor omission — it does not take into account the actual cost
and benefit of a correct preload versus an incorrect preload.
In the following section, we describe how we can incorporate
these cost-benefit considerations into our decision engine.

4.2 Cost-Benefit Learner
The Cost-Benefit Learner (CBL) combines the output of

the decision engine for each application together with knowl-
edge of the cost-benefit tradeoffs of launching the application
to decide whether to preload an application. We first pro-
vide an intuition for how the CBL operates before launching
into the specifics of its mechanics and the details of the cost-
benefit trade-off.

4.2.1 CBL Overview

To decide whether to prelaunch or not, CBL takes three
steps: First, it computes the precision and recall metrics for
an application from the decision engine (§4.1.5). Second, it
converts the precision and recall number to cost and benefit.
Third, it determines the best followers for each trigger by
maximizing benefit for a fixed cost budget.

Precision and Recall: The precision and recall for a
trigger and follower pair {T, F} at location cluster λ are
defined from observed user data as follows.

precision(T, F, λ) =
launches of F after T at λ

sessions with trigger T at λ

recall(T, F, λ) =
launches of F after T at λ

sessions with follower F at λ

Cost and Benefit: We measured the energy cost and
loading time of all apps apriori. We can use the measure-
ment results to determine the cost and benefit of prelaunch-
ing by combining the precision and recall results.
Precision describes the expected number of prelaunchs

that leads to an actual usage. Multiplying by energy cost
of a prelaunch, we can derive the energy cost of a prelaunch
that leads to an actual usage. Recall describes the probabil-
ity that a follower is preloaded. Multiplying by the launch
time of the follower, we can derive the loading time benefit
of a prelaunch across all launches. We will quantitatively
analyze the cost and benefit in the next section.

Trading-off cost and benefit: We assume that the CBL
is provided a daily energy budget. The energy budget is a
predefined percentage of the total battery capacity that the
CBL engine can use for its prelaunches within a day. (For
example, the CBL may only be able to use 1% of the battery
each day across all prelaunches.) Given this constraint, the
goal of the CBL is to pick, for a given user, the best set of
followers to prelaunch. Intuitively, we should prelaunch the
items that have least energy cost and highest loading time
benefit. The goal of our optimization framework is to choose
the best option given the energy budget.

4.2.2 CBL Optimization Framework

We first describe the optimization procedure which runs
during training. For ease of exposition, we cover the CBL’s
method for finding dynamic triggers on a per location- and
per app-basis. In our implementation, the technique is ex-
tended in the straightforward way to additionally include
time-of-day.

Let cα and bα represent the energy cost and latency reduc-
tion benefit respectively for a single prelaunch of α. Then
the expected cost c′ and benefit b′ of selecting to prelaunch
α for all encounters of t and λ is calculated as follows.

b
′

t,λ,α = bα × recall(t, α, λ)

c
′

t,λ,α = cα × (1− precision(t, α, λ))

Note that while the benefit b′ is scaled by the proportion of
triggers leading to the follower, the cost c′ is scaled by the
proportion of triggers not leading to the follower. This is
because mistaken predictions incur a cost cα whereas energy
for correct predictions can be accounted toward the user’s
actual launch.

We map our formulation to the 0-1 Knapsack problem to
model the cost and benefit trade-off. Consider all tuples
< t, λ, α > as candidates for the Knapsack. The predefined
energy budget corresponds to the max allowable Knapsack
weight, the expected reduced launch time b′t,λ,α corresponds
to the benefit of inclusion in the Knapsack, and the expected
energy cost c′t,λ,α corresponds to the weight in the Knapsack.
It is a 0-1 Knapsack since a tuple can be included or excluded
in its entirety.

The 0-1 Knapsack model for the cost-benefit trade-off is
formulated as follows.

maximize
∑

t,λ,α

b
′

t,λ,α I(< t, λ, α >)

subject to
∑

t,λ,α

c
′

t,λ,α I(< t, λ, α >) ≤ W

As before, the function I() is either zero or one, indicating
whether or not to include the tuple < t, λ, α >. W is the
energy budget.

One possibility to solve the Knapsack problem is with dy-
namic programming. However, a dynamic programming so-
lution requires pseudo-polynomial time. Instead, we use a
standard greedy approximation to solve the Knapsack prob-
lem. The greedy approximation sorts the tuples in decreas-
ing order of their benefit per unit of cost. It then proceeds
to pick the tuples according to the ranked order, starting
with the top-ranked one, until the energy budget is reached.
The output of the greedy approximation is K, a list of tuples
sorted by benefit per unit cost within the energy budget.

The final step of the optimization updates the dynamic
trigger feature fdt,λ to use the appropriate top-k triggers.
Recall from §4.1.1 that for a given α, the value of k is used by
τ̂λ,k for the feature fdt,λ,k. k is set according to the number
of appearances of α in K. The decision engine, which looks
at fdt,λ,k for the chosen k, performs inference in time linear
to the length of K.

Dynamic Energy Constraints
There are several ways to define an energy budget for the

Knapsack optimization framework. For example, one could
budget a fixed percentage of the battery per day, pick a per-
centage of the current battery level or have an finer-grained
budget at an hourly level. While our optimization can work
with different definitions of the energy budget, we use the
representative example of a budget that is chosen based on
the residual energy. The Knapsack model is adapted to the
dynamic energy constraint W ′ as follows.

W
′ = (W − U)θ

where U is the energy consumed so far by prelaunching,

and θ is a tuning parameter in the range (0, 1] that can be
chosen to discourage aggressive prelaunching when energy is
abundant. We currently set θ = 1. Note that meeting the
dynamic budget constraint does not require recomputation
of Knapsack. Instead, we maintain a pointer to the position
in K which represents the dynamic energy budget cutoff.

Eviction Policy: Most phone OSs use an LRU policy for
app eviction.4 While the CBL is primarily used for launch
prediction, the sorted tuple list K is also used to evict the
app least likely to be used. As part of launch prediction,
apps already resident in memory are assigned very low cost
scores. Nonetheless, such an app may still be evicted due to
its meager benefit b′ according to the current trigger t and
location λ. This conveniently integrates launch prediction
with eviction policies.

Server-based Training If the user app launch behavior changes
(e.g. a new location is visited or a new app is installed),
retraining is recommended. Even though the greedy Knap-
sack approximation is efficient, training involves scanning
through all the logged context data. Therefore, we offload
training to a server. We currently initiate retraining man-
ually. The log with data records since the last training are
sent to the server, and new parameters are sent back to the
phone.

Memory Constraints In the preceding discussion, we treated
all preloads equally in terms of memory cost. The FALCON

implementation and its associated evaluation also make this
simplifying assumption. In practice, apps vary in memory
usage. A logical extension of our Knapsack model can han-
dle multiple-constraints where both energy and memory are
treated as constraints.

5. IMPLEMENTATION
We have implemented FALCON as an OS modification to

Windows Phone (WP) 7.5. We first discuss the elements
of WP’s app model relevant to our implementation before
describing the implementation details.

5.1 Background on Windows Phone Apps
WP apps are similar to webapps in organization. Each

app is collection of pages with links pointing across pages.
An app is referenced by its unique ID (UID), and a page
within an app is referenced by its page name. Pages can
take arguments as parameters. The following is an example
of these elements: app://<app-id>/ShowContactInfo?id=8.
Each app has a default pageDefault that is loaded at startup.
Apps can also support multiple entry points by supporting
“deep links” to specific pages. For example, the standard
Address Book app supports pinning of contact cards to the
home screen via deep linking. Links are not functional cross-
app; WP enforces strict app isolation.
TheWP app lifecycle consists of four states: Not Launched,

Active, Deactivated and Tombstoned. Apps transition from
Not Launched to Active when tapped from the home screen,
and from Active to Deactivated whenthe user navigates away
to the home screen or another app. An app undergoing deac-
tivation has a 10 second grace period to perform cleanup ac-
tivity before receiving no further cycles. A deactivated app
is still resident in memory until it is evicted by the memory
manager which then changes its state to Tombstoned. For

4Without paging, apps are evicted in their entirety.

Figure 8: FALCON ambient display widget is shown at
the top of the home screen. Current predictions are
Monopoly, FindSomeone and Music+Video.

Tombstoned apps, the OS retains some minimal tombstones
of bookkeeping information, such as the last page of the app
the user was on. In very low memory conditions, even tomb-
stones may be dropped. To limit battery drain, background
apps are only permitted 15 seconds of CPU time every 30
minutes.

5.2 Implementation Description
FALCON is implemented in three parts. The first is an OS

service. The second is a new application event upcall. The
third is an ambient display widget.

The FALCON OS services is a privileged daemon written in
native code. As such, it has access to the registry, a per-
sistent structured datastore, and can call privileged library
and system calls. For example, starting a new process is
a privileged call. FALCON replaces a subset of the standard
policies of the system’s memory manager and scheduler with
its prelaunch decisions.

The service manages a thread for each context source.
Currently, three context sources are used corresponding to
the features described in §4.1. Context sources post up-
dates at different rates, depending upon the rate of change
of the underlying signal. In order to support variable update
rates, the main service shares a model data structure with
each source and the launch predictor. Each source indepen-
dently updates the model with observations for the context
for which it is responsible.

The launch predictor uses the model’s observations in its
inference process. The launch predictor is executed when-
ever one of several defined events occurs: (1) the phone re-
ceives an SMS or phone call, (2) the user unlocks the phone,
or (3) the user launches a trigger app. These events al-
ready activate the phone’s application processor from a low
to high energy state so it is inexpensive to piggyback the
launch predictor execution.

Upon generating an inference, the launch predictor passes
the candidate app(s) to the dispatcher, which vectors the
launch signal through the appropriate prelaunch event up-

call. For third party apps which are written in managed
C#, this process involves translating native calls to man-
aged code calls.
Apps implement the event handler as a custom page named

Prelaunch, e.g. app://<app-id>/Prelaunch. The dispatcher
jumps directly to the Prelaunch deep link. An app can im-
plement any custom prelaunch logic in its Prelaunch page.
For example, our modified Email app fetches new emails dur-
ing prelaunch, and our modified game loads the last level the
user played during prelaunch. In general, network content
fetch or local storage load operations are good candidates for
Prelaunch. For apps that do not implement the Prelaunch
link, the dispatcher opens its Default page instead. This is
sufficient for us to reduce launch time for many apps without
requiring app modification.
In WP, pages are meant to show a display to the user,

which is not appropriate for prelaunching. Once the dis-
patcher opens an app to either the Prelaunch or Default
page, it immediately deactivates it. With the existing WP
deactivation grace period, this gives the app an opportu-
nity to complete its app-specific prelaunch operation. For
prelaunch deactivation, the grace period is modified to 25
seconds, which is high enough to cover the total app launch
times of most apps. The deactivation event also gives apps
an opportunity to adjust for any side-effects (e.g. unregister-
ing server state) that the Default page may have initiated.
Conveniently, developers already implement the deactiva-
tion event as part of the regular app lifecycle management
protocol.
Lastly, FALCON includes an ambient display widget using

the WP live tiles mechanism. Live tiles are simply home
screen icons that can be updated programmatically. Fig-
ure 8 shows a screenshot of the FALCON widget. The launch
predictor updates the live tile to show the highest likelihood
candidate apps.

6. EVALUATION
In this section, we evaluate the performance of FALCON

through extensive data analysis as well as measurements of
our prototyped system implementation.

6.1 Dataset
The primary dataset in our analysis is the Rice LiveLab

user study [14]. In this study, thirty four volunteers were
given iPhone 3GSs for a period of up to fourteen months.
We use two traces from the LiveLab users study: the app
usage trace which records the start time and duration of
every app usage, and the location trace which records the
user’s location with an interval of five minutes when GPS
is available. By joining the app usage table and location
table, we have a trace of the time and location information
corresponding to each app usage. Note that since location
is obtained at a relatively coarse granularity compared to
app usage data, there are several instances where we do not
have data at precisely the times that an app was used. To
address this, we interpolate location points using a nearest
neighbor method. In total, the interpolated trace of time
and location information contains over 400 thousand sam-
ples across fourteen months. The majority of our evaluation
is conducted based on the LiveLab dataset, except for mi-
crobenchmarks which are measured on the Windows Phone
platform.

6.2 Microbenchmarks
Before measuring the performance of FALCON, we first bench-

mark three critical parameters for each app: a) the time
taken for launching an app, b) the amount of energy con-
sumed during app launch, and c) the memory consumed by
the app at launch time. Note that we focus on these pa-
rameters at launch time as opposed to how they vary during
app usage.

Our measurements are conducted on an LG Mazza phone
running Windows Phone 7.5. We measured the top twenty
most popular apps in the Windows Phone Marketplace, as
well as the first party apps that are preinstalled on the
phone, including People, Email, and Maps.

Figure 9(a) shows the CDF of app launch time with and
without prelaunching. The launch time includes both the
OS loading time and network fetch time. The network fetch
time is the average over a number of measurements under a
good WiFi connection, which is an optimistic estimate since
a cellular data connection is likely to be slower. Without
preloading, half of the apps require more than 10 seconds
to be fully launched, and around 10% of apps have a launch
time of more than 20 seconds. With preloading, the app
launch time can be reduced dramatically to close to zero.

Figure 9(b) shows the CDF of energy cost to launch an
app. The energy cost as measured with a Monsoon power
meter ranges from 500 to 2500 µAh, with a median energy
consumption of 750 µAh. For reference, a typical LiOn bat-
tery on a mobile phone has a capacity of 1500 mAh, therefore
the energy cost ranges from 0.03% to 0.17% of the battery
capacity for a single launch. Clearly, when app usage is high,
the total energy cost of launching applications can be a sig-
nificant fraction of the overall budget. A benefit of FALCON
is that we can cap the total amount of energy for preloading
to ensure that its effect on battery life is bounded.

Figure 9(c) shows the CDF of memory cost for launching
an app. The memory consumption varies from 10 MB to 90
MB, with a median memory consumption of 30MB. This is
a significant fraction of available memory on smartphones,
which typically have memory capacity between a few tens to
hundreds of MB. (Our latest WP phone has about 150MB
available for user apps.)

6.3 Benefits of Individual Features
At the core of FALCON are three features: session triggers

and followers, temporal bursts, and location clusters. We
now look at the benefits of using each of these features in
isolation.

6.3.1 Session Triggers and Followers

Our goal in this section is to understand trigger and fol-
lower behavior across different users and applications. Specif-
ically, we ask three questions: a) what applications are the
best triggers across different users, b) are there differences
between individuals in their trigger and follower behavior,
and c) for a single user, are there differences in triggers for
different follower apps?

Figure 10(a) shows the top 5 session triggers across all
users. Not surprisingly, this list includes Email, Facebook
and Safari — all popular apps. What is surprising, however,
is that SMS and Phone calls are excellent triggers as well.
In other words, receiving an SMS or a phone call creates
an interruption into an individual’s routine, and once inter-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Loading Time (seconds)

NO-OP
Preloading

(a) CDF of launch time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Energy Consumption (uAh)

NO-OP

(b) CDF of energy consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 15 30 45 60 75 90

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Memory Consumption (MB)

NO-OP

(c) CDF of memory consumption

Figure 9: Microbenchmark of launch time, energy cost, and memory cost. Apps measured include the top
20 most popular ones in Windows Phone Marketplace, and preinstalled first party apps.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

S
M

S

E
m

ai
l

F
ac

eb
oo

k

P
ho

ne

S
af

ar
i

P
ro

ba
bi

lit
y

D
en

si
ty

(a) Top 5 triggers across all users.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

W
or

ds
W

F

S
M

S

E
m

ai
l

P
ho

ne

S
af

ar
i

P
ro

ba
bi

lit
y

D
en

si
ty

(b) Top 5 triggers for a specific user.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

S
M

S

P
ho

ne

C
ya

ni
A

H

P
re

fe
r

S
af

ar
i

P
ro

ba
bi

lit
y

D
en

si
ty

(c) Top 5 triggers for “Angry Birds”.

Figure 10: Different set of session triggers for (a) aggregation across multiple users, (b) a specific user, and
(c) a specific app across different users. Y-axis shows the probability that each app acts as a trigger. App
name abbreviations in the graphs are: “WordsWF”=“WordsWithFriendsFree,”“CyaniAH”=“CyanideAnd-
Happiness.”

rupted the users tend to use other applications before they
close the phone.
Figure 10(b) shows the top 5 triggers across all users are

not necessarily the best triggers for an individual. This
graph shows the best triggers for a user who is heavy user
of games — in this case, the best trigger is in fact the
WordsWithFriends game. This indicates that personaliza-
tion is needed for the user, and we cannot assume that trig-
gers are the same across everyone.
To understand if different apps have different triggers, we

look at the triggers for a specific application across all users.
We choose Angry Birds as our target app in this evaluation
since it is very popular across multiple users and its loading
time is representative for games. Figure 10(c) shows that
triggers for AngryBirds are also different from those across
all applications, suggesting that triggers should be chosen
differently for each application.
To conclude, this evaluation shows that triggers need to

be both user- and app-specific, and it makes the case for dy-
namic personalized triggers that we will evaluate in §6.4.2.

6.3.2 Temporal Bursts

We now turn to evaluate the performance of the temporal
feature, namely bursty app usage. Temporal bursts can be
an effective feature for improving prelaunch accuracy since
it indicates when an application is heavily used during a rel-
atively short window of time, such as a span of several days.
Our evaluation looks at which applications are likely to be

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 30 60 90 120 150 180

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Number of Days in Burst Window

All Apps
Games

First-party Apps

Figure 11: CDF of number of days that involve
bursty usage for each application. 80% of games
have less than 30 bursty days over 14 months usage.

used in a bursty manner and which are not. Intuitively, one
would expect that games are likely to be used in a bursty
manner whereas First-party apps such as Email or People
(WP Facebook client) should have a more steady usage pat-
tern. Therefore, we explore the burstiness for three cate-

gories of apps — All applications, Games, and First-party
apps.
Figure 11 shows the CDF of number of bursty days for

each app category. Each point in this graph corresponds
to a {user, app} pair. From this graph, we can conclude
that games have stronger bursty behavior than apps such
as Email and Facebook. Around 80% of games are used
within 30 days out of 14 months trace length, while only
20% of the first party apps are used within the same time
frame. This observation suggests that bursty behavior is a
discriminating feature that we can exploit to improve the
prelaunching performance, especially for games.

6.3.3 Location Clusters

After temporal burst feature, we now look at the perfor-
mance of location clusters. Similar with temporal features,
we look for applications that are heavily used within cer-
tain location clusters to improve prelaunch accuracy. We
evaluate the distribution of number of location clusters per
application (determined via k-means clustering). We use the
same categories as the previous section — All applications,
Games, and First-party apps. Our intuition is that games
tend to be used in fewer locations than other apps.
Figure 12 shows the CDF of number of clusters where

each app category is used. From this graph, we can see
that games have a higher locality than other apps — 90%
of game apps are used in less than 25 clusters, and more
than half of games are used in less than 10 clusters. Thus,
we conclude that location clustering is also a discriminating
feature, particularly for games.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 20 30 40 50

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Number of Clusters Where Apps Are Used

All Apps
Games

First-party Apps

Figure 12: CDF of number of location clusters per
app. Over 50% of games are used within less than
ten clusters.

6.4 Combining Features
We now look at the benefits of combining the features

of temporal burst and location clusters on prediction accu-
racy. Our evaluation consists of two steps. First, we look
at how adding temporal features and location clusters im-
proves accuracy when the set of triggers are fixed across all
users and apps. Second, we evaluate the benefits of making
the triggers dynamic, in which case triggers can be modified
within a cluster and burst window based on the individual
and target application for each user.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Number of Preloads

Location Only
Burst Only

Location+Burst

Figure 13: Benefit of location and temporal burst
features, measured in terms of number of preloads
per correct usage.

6.4.1 Benefits of location + temporal features

In this experiment, we look at the benefits of combining lo-
cation and temporal features. We fix trigger apps to include
the most common triggers across users, Phone, SMS, and
Safari. We then explore the benefit of using only location
clusters, only temporal bursts, and finally a combination of
the two for each follower app. For each setting, we look at
improvement in prelaunch accuracy, specifically, the number
of preloads per app usage for each user.

Figure 13 shows the CDF of number of preloads across all
users. Note that all curves have the same set of triggers. As
seen from the figure, location clustering by itself performs
poorly — the median number of preloads that lead to an
actual app usage is around 27. If we use only temporal
bursts, the median preload number is reduced to only six.
Combining the two features gives even better performance
— median number of preloads reduces to around five.

6.4.2 Benefits of dynamic triggers

While combining location and temporal features improves
preload accuracy, it still incurs the cost of several preloads
per app usage. We now look at how dynamic triggers im-
prove performance over static triggers. This experiment
evaluates improvement in precision and recall by personal-
izing triggers for each user based on both location and tem-
poral burst contexts. We focus on “Angry Birds”, a popular
game that provides a representative example of an applica-
tion that exhibits both location and spatial selectivity.

We compare the precision and recall of preloading under
three trigger settings: static triggers for all users and loca-
tion clusters, dynamic triggers for each user but the same for
all location clusters, and dynamic triggers for each user at
each location clusters. Figure 14(a) and Figure 14(b) shows
the precision and recall for two different users when the fol-
lower app is AngryBirds. For both users, dynamic triggers
for each location cluster achieves the best precision and re-
call, and clearly provides dramatic improvements over the
other two cases. In addition, the performance of dynamic
triggers for each location cluster is also stable for different
users, while the performance of the other two schemes varies
significantly for different users. This observation clearly in-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Dynamic trigger w/ cluster
Dynamic trigger w/o cluster

Static trigger

(a) User 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Dynamic trigger w/ cluster
Dynamic trigger w/o cluster

Static trigger

(b) User 2

Figure 14: Precision and recall of prelaunching a follower app for two individual users under static and
dynamic trigger settings. In this graph, “Angry Birds” is used as a representative follower app that exhibits
both temporal and spatial selectivity.

dicates that we should use dynamic personalization of trig-
gers at the location cluster level.

6.5 Evaluation of cost-benefit learner
Having comprehensively evaluated how features can en-

able better preloading, we turn to evaluate the performance
of Cost-Benefit Learner (CBL). Our cost-benefit analysis in-
cludes information about the cost of a preload in terms of
energy, and the benefits of the preload in terms of app load-
ing latency, or in the case of network prefetching, in terms
of the freshness of fetched data. We use the energy/latency
benchmarks from §6.2 in this evaluation. We assume for
simplicity that each app has equal memory consumption.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1s 30s 5m 30m 1d

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Freshness (minutes)

Email w/o Prefetching
Email w/ Pulling

Email w/ Prefetching

Figure 15: Benefit of prelaunching for app freshness.
Email is used as a representative application that
is both heavily used and has high network content
fetch time.

6.5.1 Performance of Prefetching

In this experiment, we look at the benefit for apps that
require fetching new content during the launch process. We
take the Email application as a representative app, which is

both heavily used and incurs significant delay for fetching
emails from servers.

First, we compare CBL (noted as Email w/ Prefetching)
against two baseline schemes: a) no prefetching (noted as
Email w/o Prefetching), and b) active pull with an inter-
val of 30 minutes(noted as Email Pulling). Our evaluation
metric is freshness of the app, which is defined as the time
that elapses between retrieval of content from the server and
when the app is opened by the user.

Figure 15 shows the freshness of rhe Email app using our
scheme (note that the x-axis is in log scale). Compared
with no prefetching, we improve freshness significantly by
reducing the median freshness from 30 minutes to around
3 minutes. Our scheme also outperforms the pulling-based
scheme, whose median freshness is about 10 minutes.

6.5.2 Performance of Preloading

In this experiment, we look at how app loading time can
be improved by our CBL learner. We compare our scheme
against LRU caching, which is the standard policy on most
smartphones including Windows Phone. In this experiment,
we select 24 popular apps (including games, social apps, and
First-party apps) as follower to cover the most common app
usage cases on WP platform. We assume that the memory
manager allows up to five apps, as is the case on the current
Windows Phone platform. We also assume that every app
has equal memory consumption.

While both CBL and LRU take advantages of bursty be-
havior of apps, there is a subtle but important difference in
the way FALCON vs. LRU work for bursty apps. It might
seem like LRU would work well when apps are bursty, but
the burstiness of apps (e.g. games) is at the timescale of
days, not minutes. In other words, a “bursty game” might
be used once or twice a day. LRU is designed to work well
when burstiness is at short timescales, where apps are so fre-
quently used that they are not evicted. CBL is able to take
advantage of burstiness at the timescale of days because we
are looking at longer term contextual and session behavior.

Our CBL outperforms LRU by up to 100% in terms of
loading time. Figure 16 shows the median loading time is
around 1 second and 2 seconds for CBL and LRU, respec-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 3 5 10 15

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Loading Time (seconds)

CBL w/ all apps
LRU w/ all apps
CBL w/ Games
LRU w/ Games

Figure 16: Benefit of loading time with prefetching.
CBL is compared against LRU, both when all ap-
plications are used, and when only games are used.
We look at games separately since these apps ex-
hibit both temporal burstiness and spatially corre-
lated usage patterns.

tively. Even when LRU already performs well in terms of
loading time, our scheme still improves the loading time by
half. For games, the median loading time is also reduced
from 9 seconds with LRU, to 6 second with CBL.

 0

 2

 4

 6

 8

 10

 12

 14

0.5 1 1.5 2 2.5

T
im

e
B

en
ef

it
pe

r
Lo

ad
 (

S
ec

on
ds

)

Energy Budget (as % of battery capacity)

Quartiles
Mean

Figure 17: Energy cost and launching time benefit of
using the combination of dynamic triggers, temporal
bursts, and location clustering for prelaunch.

6.5.3 Overall benefits

Figure 17 shows the aggregated cost and benefit of using
CBL. The x-axis of this graph represents the energy bud-
get provided to CBL, and is normalized to the percentage
of a fully charged phone battery(1500 mAh) as the daily
budget. The y-axis represents the benefit of loading time
which includes both app loading time and content fetching
time. Our estimate for content fetching time is conservative
since we used our micro-benchmark results under good WiFi
connections. Our target metric is the reduced loading time
per app usage. Figure 17 shows that with CBL, the average
loading time for an app is reduced to 5.5 seconds with the

Binary Size 129 KB
Memory (stable state) 1840 KB
Processor utilization (stable state) <1%
Processor utilization per prediction <3%
Energy cost per prediction < 3 µAh

Table 2: FALCON Overhead Profile

energy cost of less than 1% battery power, and less than 6
seconds with 2% battery power.

6.6 Bootstrapping FALCON
Having evaluated the overall performance of cost-benefit

learner of FALCON, we now ask how fast the cost-benefit
learner can learn from history of app usage to make accu-
rate prelaunch decisions. In this experiment, we tune the
training dataset size by progressively adding new app us-
age data to the set, and study the performance of CBL in
terms of precision and recall aggregated across all follower
candidates.

We split the 14-month long app usage trace as follows in
this experiment: we use the data from day one to day N

as training data, and we tune the number N such that the
training dataset size is set from 1% of total dataset size to
60%. We then use the 20% of data immediately following
the training dataset as the testing dataset. For each setting,
both location clustering and temporal burst windows are
re-calculated to reflect temporal dynamics in features. To
simplify the analysis, we do not consider energy constraint
in this experiment but only study precision and recall of up
to the top five follower candidates.

From Figure 18(a), we conclude that the topmost candi-
date from FALCON begins to reach over 50% prediction preci-
sion with around 35 days of training data. When the train-
ing dataset size grows to 84 days, or 2.8 months, prediction
precision is close to 70%. The precision climbs to over 80%
when the training dataset size is over 252 days, or 8 months.
Figure18(b) shows that the recall of FALCON ins improved as
the fraction of training set increases. If we prelaunch the top
5 follower candidates, over 70% of the targeted apps can be
successfully preloaded by FALCON when the training dataset
is 42 days long. The recall increases to over 80% when the
training dataset size is more than 252 days, or 8 months
long.

In conclusion, the performance of FALCON grows as the
training data size increases. Even with a relatively small
training dataset of two months, FALCON can make prelaunch
decisions with good accuracy, demonstrating that good per-
formance can be achieved with a few months of training.

6.7 System Overhead
The system overhead of our FALCON implementation is

very modest. Table 2 shows its resource consumption pro-
file. Memory usage during stable state is less than 2MB, and
does not increase measurably during prediction. Processor
utilization is low during stable state, and reaches up to 3%
during prediction. We also measured the energy overhead
of FALCON predictions with a Monsoon power meter, and we
observed that the extra cost FALCON incurs for each launch
prediction is only a few µAh.

Note that we have not accounted for the periodic geoloca-
tion sampling costs as a component of the overhead. This is

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

7 42 84 168 252

P
re

ci
si

on

Number of bootstrap days

Top-1 prelaunched
Top-3 prelaunched
Top-5 prelaunched

(a) Precision

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

7 42 84 168 252

R
ec

al
l

Number of bootstrap days

Top-1 prelaunched
Top-3 prelaunched
Top-5 prelaunched

(b) Recall

Figure 18: Precision and recall of bootstrapping.

for two reasons: a) we don’t need GPS geo-location since we
only need cluster-level information, hence cell tower trian-
gulation will suffice, and b) we can be opportunistic about
obtaining GPS readings by leveraging cached geo-location
results generated from other app’s requests. In this manner,
geo-location information can be obtained with low cost.
Another component of our system is online feature ex-

traction. Our current implementation of location clustering
is relatively expensive to perform on a mobile phone, and
therefore needs to be done in the cloud. In contrast, the
burst detection can be done online with a slightly modified
version of the wavelet-based burst detection algorithm de-
scribed in §4. We implemented a light-weight online burst
window detection algorithm that adapts the sliding window
size based on historical data, and uses the window to detect
bursts. Our measurements indicate that our online burst de-
tection has a small performance loss compared to the wavelet
based scheme as presented in [15], with 4% less precision,
and 10% less recall.

7. RELATED WORK
Systems optimizations for faster application launching has

a long history on non-mobile computer systems. One area
that has received significant treatment is the arrangement
of code and data on disk for faster loading. Windows sorts
code and data blocks on disk to minimize disk head move-
ment during launch, and defragments files on disk for faster
launching. Intel TurboMemory supports pinning selected
applications’ blocks to high performance cache to speed launch
times. [9] investigates interleaving I/O fetch and code ex-
ecution to increase app launch times. These schemes are
complementary to our use of context for making prelaunch
decisions.
SuperFetch, a part of Windows OS, is an extension to the

memory manager that tries to predict future code and data
accesses and preload them. The scheme works by learning
the user’s favorite apps based on time of day and day of the
week, and loading these when there are free pages available.
Unlike FALCON, SuperFetch does not use predictive mobile
context such as location nor energy budgets in its loading
decisions. Whereas both FALCON and SuperFetch interface
with the memory manager to load apps, FALCON further re-

duces the total launch time by calling an app’s prelaunch
routine.

Recently, [7] proposed the use of user context informa-
tion from sensors to improve mobile operating system per-
formance, and suggested that OS-managed context could
benefit user privacy, energy, system performance. The au-
thors speculated that core system services – among others,
memory management and process scheduling – could be ben-
eficiaries of sensor context signals.

Browsers and other web systems have long known how
to employ content prefetching and caching to decrease page
load times [6]. A draft HTML specification includes prefetch
attributes as hints to the browser [4]. These prefetch mech-
anisms generally do not guide prefetch decision making, as
our launch predictor does, and are not cognizant of mobile
context nor energy concerns. Recently, [10] studied mobile
web usage data and built a predictive page loading mecha-
nism based on dividing pages into regularly visited sites and
spontaneously visited sites.

Several platform-specific tweaking programs allow mobile
users to configure app loading according to preset rules [5].
The shortcomings of these programs are that they stop short
of addressing total launch time, and manually maintaining
a rule-based system for the typical user is challenging.

8. DISCUSSION AND CONCLUSION
Mobile device usage is inherently brief, competing with

myriad other real demands on human attention. As such,
it is important that app interactions are rapid and respon-
sive. Despite the fact that mobile devices are becoming in-
creasingly resource rich, launch times are and will remain
a significant challenge. This is due to two reasons. First,
network-bound apps will continue to be limited by network
fetch latency, which is constrained by cellular technology.
Second, increasingly graphics- and media-rich apps targeting
up-market phones will perpetually leave previous-generation
and budget smartphones feeling sluggish to launch apps.

Our work addresses this important problem through the
design of FALCON, a system that uses location and temporal
contexts to predictively launch applications, thereby reduc-
ing perceived delay for users. We designed a set of features
to capture the essential characteristics of app access pat-

terns, and a launch predictor to adaptively balances latency
reduction benefit with energy launch costs. We have shown
that launch prediction using context can yield latency reduc-
tions of around 50% vs. LRU at a manageable 2% energy
cost, and present fresh content at launch within the last 3
minutes. The FALCON modification to the Windows Phone
OS consists of a context source manager, embedded launch
predictor and prelaunch event upcall dispatcher. These el-
ements are sufficiently low overhead to require only 2MB
memory and negligible energy and processing.
Although our results show dramatic benefits of FALCON,

there are several possible improvements and opportunities
that we have not explored. One area is eliminating reliance
on external servers or cloud services for model training in
FALCON, thereby mitigating the need for sharing personal
data with external service providers. An additional ben-
efit of reducing reliance on the cloud is faster adaptation
to underlying changes in app usage habits. Another open
question is how users’ expectations will change as the OS
predictively prelaunches apps on their behalf. Will the fact
that prelaunching can result in variable launch time hinder
usability of mobile applications or will users appreciate the
quicker interactions that are made possible by such tech-
niques? We will address these questions in future studies.

9. ACKNOWLEDGEMENTS
We extend our thanks to Lin Zhong, Ahmad Rahmati,

Clayton Shepard, and the Rice LiveLab team for making
available their extensive mobile user study dataset. We
would also like to thank Alec Wolman for helpful discus-
sions and draft feedback, Alexander Varshavsky for shep-
herding, and the anonymous reviewers for their comments.
This research was supported by NSF grants CNS-0546177
and CNS-0910900.

10. REFERENCES
[1] Apple - batteries - iphone.

http://www.apple.com/batteries/iphone.html.
[2] Daily tip: How to make your iphone camera launch

instantly [jailbreak].
http://www.tipb.com/2011/04/20/daily-tip-iphone-camera-
launch-instantly-jailbreak/.

[3] ios 5 slowing iphone 4 and 4s complaints.
http://www.phonesreview.co.uk/2011/10/25/ios-5-slowing-
iphone-4-and-4s-complaints/.

[4] Link prefetching.
https://developer.mozilla.org/en/link_prefetching_faq.

[5] Tasker. http://tasker.dinglisch.net/.

[6] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the
world wide web. IEEE Trans. Knowl. Data Eng., 1999.

[7] D. Chu, A. Kansal, J. Liu, and F. Zhao. Mobile apps: it’s
time to move up to condos. In Proceedings of the 13th
USENIX conference on Hot topics in operating systems,
HotOS’13, 2011.

[8] D. Garlan, D. P. Siewiorek, and P. Steenkiste. Project aura:
Toward distraction-free pervasive computing. IEEE
Pervasive Computing, 1:22–31, 2002.

[9] Y. Joo, J. Ryu, S. Park, and K. G. Shin. Fast: Quick
application launch on solid-state drives. In FAST, pages
259–272, 2011.

[10] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and
A. Ntoulas. Instant web browsing for mobile devices.

[11] H. J. Miller and J. Han. Geographic Data Mining and
Knowledge Discovery. Taylor & Francis, Inc., 2009.

[12] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Profiling resource usage for mobile
applications: a cross-layer approach. In MobiSys, pages
321–334, 2011.

[13] M. Satyanarayanan. Pervasive computing: Vision and
challenges. IEEE Personal Communications, 8:10–17, 2001.

[14] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and
P. Kortum. Livelab: measuring wireless networks and
smartphone users in the field. SIGMETRICS Perform.
Eval. Rev., 2011.

[15] Y. Zhu and D. Shasha. Efficient elastic burst detection in
data streams. In KDD ’03.

https://developer.mozilla.org/en/link_prefetching_faq

	Introduction
	Background and Problem Scope
	System Overview
	Launch Predictor Design
	Personalized Features
	Triggers and Followers
	Location Clustering
	Temporal Bursts
	Additional Context Signals
	Multi-feature Decision Engine

	Cost-Benefit Learner
	CBL Overview
	CBL Optimization Framework

	Implementation
	Background on Windows Phone Apps
	Implementation Description

	Evaluation
	Dataset
	Microbenchmarks
	Benefits of Individual Features
	Session Triggers and Followers
	Temporal Bursts
	Location Clusters

	Combining Features
	Benefits of location + temporal features
	Benefits of dynamic triggers

	Evaluation of cost-benefit learner
	Performance of Prefetching
	Performance of Preloading
	Overall benefits

	Bootstrapping FALCON
	System Overhead

	Related Work
	Discussion and Conclusion
	Acknowledgements
	References

