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Abstract. The Train Timetabling Problem (TTP) consists in finding
a train schedule on a railway network that satisfies some operational
constraints and maximizes some profit function which counts for the
efficiency of the infrastructure usage. In practical cases, however, the
maximization of the objective function is not enough and one calls for
a robust solution that is capable of absorbing as much as possible de-
lays/disturbances on the network. In this paper we propose and ana-
lyze computationally four different methods to improve the robustness
of a given TTP solution for the aperiodic (non cyclic) case. The ap-
proaches combine Linear Programming (LP) and ad-hoc Stochastic Pro-
gramming/Robust Optimization techniques. We compare computation-
ally the effectiveness and practical applicability of the four techniques
under investigation on real-world test cases from the Italian railway com-
pany (Trenitalia). The outcome is that two of the proposed techniques
are very fast and provide robust solutions of comparable quality with
respect to the standard (but very time consuming) Stochastic Program-
ming approach.

Keywords: Timetabling, Integer Programming, Robustness, Stochastic
Programming, Robust Optimization.

1 Introduction

The Train Timetabling Problem (TTP) consists in finding an effective train
schedule on a given railway network. The schedule needs to satisfy some op-
erational constraints given by capacities of the network and security measures.
Moreover, it is required to exploit efficiently the resources of the railway infras-
tructure.

In practice, however, the maximization of some objective function is not
enough: the solution is also required to be robust against delays/disturbances
along the network. Very often, the robustness of optimal solutions of the origi-
nal problem turns out to be not enough for their practical applicability, whereas
easy-to-compute robust solutions tend to be too conservative and thus unneces-
sarily inefficient. As a result, practitioners call for a fast yet accurate method to



find the most robust timetable whose efficiency is only slightly smaller than the
theoretical optimal one. This is typically obtained by adding “buffer times” to
the schedule according to certain simple rules (see §2.2 in [12]).

The purpose of the present paper is to propose and evaluate new methods
to improve the robustness of a given TTP solution. In particular, we address
the aperiodic (non cyclic) TTP version described in [3]. Our approach combines
Linear Programming (LP) with Stochastic Programming (SP) and Robust Op-
timization techniques.

We propose the following three-stage framework as a practical tool for im-
proving and testing robust solutions for the TTP:

stage 1) nominal problem solution: the TTP is modeled without taking
into account robustness, and solved (not necessarily to optimality) by a stan-
dard MIP solver or by using ad-hoc heuristics.

stage 2) robustness training: borrowing an expression typical of the Artifi-
cial Intelligence field, starting from the previous stage solution the model is
“trained to robustness”, typically by exploiting a restricted set of samples
(scenarios).

stage 3) robustness validation: the robustness of the final solution found
in stage 2 is evaluated by using a validation tool, thus allowing for a fair
comparison of different training methods.

In the present work we focus mainly on the second stage, robustness training.
We assume nominal solutions are given in input while, as far as the validation
stage is concerned, we use a simple LP validation model.

The paper is organized as follows. In Section 2 the TTP literature is quickly
reviewed. In Section 3 we present the TTP in detail and give a natural event-
based MIP formulation. Section 4 is a short introduction to the SP paradigm
and to the sampling techniques that are used in practice to implement it. In
Sections 5 and 6 we present the main building blocks of our solution framework.
Extensive computational results are given in Section 7, showing that two of the
new methods we propose are very fast and provide robust solutions of compara-
ble quality with respect to the standard (but very time consuming) Stochastic
Programming approach. Finally, some conclusions are drawn in Section 8.

An early version of the present work was presented at ATMOS 2007 [8].

2 Literature review

The TTP problem has two main variants: the periodic and aperiodic versions.
The periodic TTP’s goal is to design a timetable that is operated cyclically after
a (small) period of time; this is a typical requirement for passenger trains in order
to come up with an easy-to-remember timetable. The first authors who devel-
oped a model for generating periodic timetables were Serafini and Ukovic [23],
who introduced a mathematical model called Periodic Event Scheduling Prob-
lem (PESP). In PESP, a set of repetitive events is scheduled under periodic
time-window constraints. Consequently, the events are scheduled for one cycle



in such a way that the cycle can be repeated. Most models for periodic TTP are
based on PESP. A natural LP formulation of PESP is quite weak, due to kind of
big-M constraints (where M is the period). An alternative stronger formulation
is treated in Nachtigall [20] and Liebchen and Peeters [14, 21] among others, and
is based on cycle bases and separation of valid inequalities.

As to robustness, Kroon et al. [12] describe a stochastic optimization vari-
ant of PESP. Their model explicitly takes into account stochastic disturbances
of the railway processes, distinguishing between a planned timetable and sev-
eral realizations of the timetable under pre-determined stochastic disturbances.
The model can be used to allocate time supplements and buffer times to the
processes in the planned timetable in such a way that the average delay of the
realizations of the trains is minimized. In order to keep the computation times
within an acceptable bound, they start with an existing timetable and fix the
precedences among trains. They show that a substantial increase in robustness
can be achieved by taking into account stochastic disturbances in the design
of the timetable. For the case of one trip serving 10 stations, Liebchen and
Stiller [16] provide a theoretical explanation for the effects observed empirically
in Kroon et al. [12]. Very recently, a new notion of robustness, called recoverable
robustness, has been proposed in [13], which integrates the notion of robust-
ness and recoverability into a common framework. Applications to integrated
timetabling/delay management in railway systems are described and evaluated
in [13, 15, 5].

The aperiodic TTP is especially relevant on heavy-traffic, long-distance cor-
ridors, where the capacity of the infrastructure is limited due to greater traffic
densities, and competitive pressure among the train operators is expected to
increase in the near future. In the Caprara et al. [3] setting, a train operator
applies for allocating its trains on the infrastructure, and specify a profit for the
“ideal timetable” they are asking for. Then the infrastructure manager collects
all requests from train operators and computes a feasible timetable maximiz-
ing the overall profit, i.e., the difference between the profits of the scheduled
trains and a cost-penalty function, which takes into account the deviations of
the final timetables with respect to the ideal ones (possibly leaving some trains
unscheduled).

Different ILP models based on a graph representation of the problem were
presented in [3, 4]. In these papers the problem is modeled by means of a directed
acyclic multi-graph, in which nodes correspond to arrival and departure events
from the stations and arise at some discretized time instants, and arcs correspond
to train stops within a station or to train trips. A Lagrangian relaxation method
is used to derive bounds on the optimal solution value as well as to drive a
heuristic procedure.



3 The Nominal Model

In this section we describe the specific aperiodic TTP problem we consider, and
give a basic event-based formulation for the “nominal” version where robustness
is not taken into account.

Following [3], the aperiodic TTP can be described as follows: given a railway
network, described as a set of stations connected by tracks, and an ideal train
timetable, find an actual train schedule satisfying all the operational constraints
and having a minimum distance from the ideal timetable.

The entities involved in modelling the problem are the following:

railway network: a graph N = (S,L), where S is the set of stations and L is
the set of tracks connecting them.

trains: a train corresponds to a simple path on the railway network N . The set
of trains is denoted by T . For each train h ∈ T we have an ideal profit πh (the
profit of the train if scheduled exactly as in the ideal timetable), a stretch
penalty θh (the train stretch being defined as the difference between the
running times in the actual and ideal timetables) and a shift penalty σh (the
train shift being defined as the absolute difference between the departures
from the first station in the actual and ideal timetables).

events: arrivals and departures of the trains at the stations. The set of all the
events is denoted by E. With a small abuse of notation, we will denote by
thi both the i-th event of train h and its associated time. We also define
– A: set of all arrival events
– D: set of all departure events

whereas AS , DS and ES denote the restriction of the above sets to a partic-
ular station S. Each train h is associated with an ordered sequence of length
len(h) of departure/arrival events thi such that thi+1 ≥ thi , the first and last
event of train h being denoted by th1 and thlen(h), respectively. In addition,

let thi denote the ideal time for event thi .
(partial) schedule: a time assignment to all the events associated with a sub-

set of trains.
objective: maximize the overall profit of the scheduled trains, the profit of train

h being computed as

ρh = πh − σh shifth − θh stretchh

where
shifth = |th1 − t

h
1 |

and
stretchh = (thlen(h) − th1 )− (thlen(h) − t

h
1 )

denote the shift and stretch associated with train h, respectively. Trains with
negative profit are intended to remain unscheduled and do not contribute to
the overall profit.

Operational constraints include:



time windows: it is possible to shift an event from its ideal time only within
a given time window;

headway times: for safety reasons, a minimum time distance between two con-
secutive arrival/departure events from the same station is imposed;

track capacities: overtaking between trains is allowed only within stations (as-
sumed of infinite capacity).

As already mentioned, in the present paper we do not address the solution
of the nominal TTP problem explicitly, in that a nominal solution is assumed
to be provided in input. Nevertheless, we next outline the structure of a MIP
formulation for the nominal TTP problem, since a relaxed version of it is at the
basis of the LP models used in Sections 5 and 6.

Although in the nominal problem one is allowed to leave some trains un-
scheduled, to simplify our presentation we consider the situation where one is
required to schedule all the trains. A natural event-based model in the spirit of
the Periodic Event Scheduling Problem (PESP) formulation used in the periodic
(cyclic) case [23] can be sketched as follows:

z∗ = max
∑
h∈T

ρh

thi+1 − thi ≥ dhi,i+1 ∀h ∈ T, i = 1, . . . , len(h)− 1 (1)

|thi − tkj | ≥ ∆a ∀thi , tkj ∈ AS ,∀S ∈ S (2)

|thi − tkj | ≥ ∆d ∀thi , tkj ∈ DS ,∀S ∈ S (3)

thi+1 < tkj+1 ⇔ thi < tkj ∀thi , tkj ∈ DS ,∀S ∈ S (4)

ρh = πh − σh|th1 − t
h
1 | − θh((thlen(h) − th1 )− (thlen(h) − t

h
1 )) ∀h ∈ T (5)

l ≤ t ≤ u ∀t ∈ E (6)

Constraints (1) impose a minimum time difference di,i+1 between two con-
secutive events of the same train, thus imposing minimum trip duration (trains
are supposed to travel always at the maximum allowed speed for the track) and
minimum stop time at the stations.

Constraints (2)-(3) model the headway times between two consecutive arrival
or departure events in the same station (∆d and ∆a being the minimum depar-
ture and arrival headway, respectively). Since these constraints are nonlinear
and we do not know in advance the order in which events occur at the stations,
in our MIP model we introduce a set of binary variables xh,ki,j to be set to 1 iff
thi ≤ tkj along with a big-M coefficient M , so that conditions

|thi − tkj | ≥ ∆

can be translated to
thi − tkj ≥ ∆−Mxh,ki,j

tkj − thi ≥ ∆−Mxk,hj,i



xh,ki,j + xk,hj,i = 1

Given the linearization of constraints (2)-(3), it is easy to translate the track
capacity constraints (4) as

xh,ki,j = xh,ki+1,j+1

Constraints (5) define the profits of the trains, whereas constraints (6) model
the user-defined time windows of each event.

It is important to notice that, although we are interested in integer values
(minutes) for the events to be published in the final timetable, we do not force the
integrality on variables tj . This has the important consequence that, after fixing
the event precedence variables x, the model becomes a plain linear model. On
the other hand, the possible fractional value of the final time variables t need to
be handled somehow in a post-processing phase to be applied before publishing
the timetable. For arrival events, one can just round the corresponding fractional
times to the nearest integer since there is no problem of an arrival arises a little
earlier (or later) than published. An easy procedure for departure times is instead
to simply round down all the t-values even if this results into a slightly infeasible
published timetable, so as to guarantee that all events arise not earlier than their
published time value. In a sense, this policy amounts to using an “infinite” time
discretization during the optimization phase, the difference between the actual
and the published event times being perceived by the travelers as a small (less
than one minute) delay.

As far as the objective function is concerned, the nonlinear term

|th1 − t
h
1 |

giving the shift sh of train h can be easily linearized as

sh ≥ th1 − t
h
1

sh ≥ th1 − th1

4 The Stochastic Programming Paradigm

Having stated the problem as a MIP, a well known tool to find robust solutions is
the (two-stage) Stochastic Programming approach; see [2],[22] for an introduction
to the SP methodology. In SP, the set of constraints is decomposed in structural
constraints, which represent the deterministic part of the model, and control
constraints which have a stochastic nature and whose coefficients depend on the
particular scenario. Roughly speaking, the approach allows one to take decisions
in the first stage by ignoring the stochastic part of the model, but enforces
some costly recourse action when indeterminacy will eventually occur. Thus a
natural optimization objective for this two-stage strategy is to minimize the total
expected cost:

min
x∈X

cTx+ E[Q(x, ξ(ω))]



where x denotes the first-stage decision whose feasibility set is X, ω ∈ Ω denotes
a scenario that is unknown when the first-stage decision x has to be made, and
Q(x, ξ(ω)) represents the optimal value of the second-stage recourse problem
corresponding to first-stage decision x and parameters ξ(ω).

If Ω contains a finite number of scenarios {ω1, ω2, . . . , ω|Ω|} with associated
probabilities pk, k ∈ 1, 2, . . . , |Ω|, then the expectation can be evaluated as a
finite sum, and the two-stage model (with linear recourse) becomes a standard
linear model:

w∗ = min
x∈X

cTx+
|Ω|∑
k=1

pkq
T
k rk, rk ∈ Yk,∀k = 1 . . . |Ω| (7)

where rk are the recourse variables with linear costs qk, and Yk is a polyhedron
depending on the first-stage variables x.

As |Ω| is often very large, various sampling-based approaches have been pro-
posed to estimate the second-stage objective function. Interior sampling meth-
ods use samples during the algorithm execution to estimate, from time to time,
algorithmic parameters such as function values, gradients, optimality cuts. Exte-
rior sampling methods, instead, use the Sample Average Approximation (SAA)
algorithm to estimate the optimal objective. We have chosen exterior sampling,
since it has some advantages over interior sampling [24]: ease of numerical imple-
mentation, good theoretical convergence properties [25], well developed statisti-
cal inference (validation and error analysis, stopping rules). Furthermore, it is
easily amenable to variance reduction techniques, ideal for parallel computations.

4.1 The Sample Average Approximation Method

The SAA consists in approximating the mean of the random variable Q(x, ξ(ω))
with the sample mean of {Q(x, ξ(ω1)), Q(x, ξ(ω2)), . . . , Q(x, ξ(ωN ))} indepen-
dent and identically distributed (i.i.d.) samples from the distribution ofQ(x, ξ(ω)).
If Q(x, ξ(ω)) has finite mean and variance, the sample mean Q̄N (x, ξ(ωi)) =
1
N

∑N
i=1Q(x, ξ(ωi)) is an unbiased estimator of the actual mean:

E[Q̄N (x, ξ(ωi))] = E[Q(x, ξ(ω))]

and it satisfies the following central limit theorem:
√
N [Q̄N (x, ξ(ωi))− E[Q(x, ξ(ω))]]⇒ N (0, σ2) as N →∞

where⇒ denotes convergence in distribution, N (0, σ2) is a normal random vari-
able with zero mean and variance σ2 = var Q(x, ξ(ω)).

The SAA approximation of (7) reads:

w∗N = min
x∈X

cTx+
1
N

N∑
k=1

qTk rk, rk ∈ Yk,∀k = 1 . . . N (8)



Under mild assumptions it was proved that the optimal value of SAA problem (8)
converges with probability 1 to w∗ (the optimal value of stochastic problem) as
N tends to infinity (see [25]).

Also, it is possible to use SAA to estimate the optimality gap by deriving
lower and upper bounds on w∗. These bounds will be used to quantify the
confidence intervals of the optimal solution of the stochastic model (see Section 7,
Figure 9). Indeed, an upper bound on w∗ is

cT x̂+ E[Q(x̂, ξ(ω))] = cT x̂+ E[Q̄N (x̂, ξ(ωi))] (9)

where x̂ is a given feasible, yet suboptimal, first-stage decision vector. The ex-
pectation in the right hand side of (9), by its own, can be estimated as the mean
of N ′ � N (say) independent SSA Q̄jN (x̂, ξ(ωji )) , obtaining:

UB =
1
N ′

N ′∑
j=1

Q̄jN (x̂, ξ(ωji )) (10)

σ2
u = var Q̄N (x̂, ξ(ωi)) =

1
(N ′ − 1)N ′

N ′∑
j=1

(Q̄jN (x̂, ξ(ωji ))− ŪB) (11)

It is easy to show (see [17]) that a lower bound on w∗ is given by E[w∗N ]. Again,
we can compute this expectation by sampling:

LB =
1
N ′

N ′∑
j=1

w∗jN (12)

σ2
l = var w̄∗N =

1
(N ′ − 1)N ′

N ′∑
j=1

(w∗jN − LB) (13)

4.2 Sampling

Sampling of delays has been carried out using the following per-line model. A
line L is defined as a sequence of stations operated by trains during the 24 hours.
Each line section (the path between two consecutive stations i and j) can have
a certain probability P(i,j) to be affected by delay. Also, each time interval [l, k]
in the 24-hour time horizon can have a certain probability of delay, say P[l,k].
Then each single train h arrives at the last station with a cumulative random
delay δh. The actual delay incurred by train h operating on section (i, j) in time
interval [l, k] is computed using the following formula:

δh(i,j)([l, k]) = δhP[l,k]

P(i,j)∑
(i,j)∈L P(i,j)

(14)

where we normalize sections delay probabilities in order to distribute the cumu-
lative delay δTP[l,k] incurred by train T operating on line L through each line



section (i, j). Note that P(i,j) and P[l,k] could be deterministic numbers between
0 and 1, but typically they are treated as random variables.

When using random sampling, the outcome can be affected by a large vari-
ance, making it difficult to interpret. So we decided to use Latin Hypercube (LH)
variance reduction technique when sampling from each distribution of P(i,j),
P[l,k] and δh. Other techniques such as, e.g., Importance Sampling [6] can in
principle fit our simulation setting as well, but they are quite involved. On the
contrary, LH sampling is of general applicability and comes with a straightfor-
ward implementation. The standard approach to get a sample from a particular
probability distribution is to apply the inverse of the desired Cumulative Dis-
tribution Function (CDF) to a sample drawn from a uniform distribution. The
process is then repeated until the required number of samples N is collected.
Using LH sampling, instead, we first subdivide the [0, 1] interval in N equal
subintervals, and from each of them we draw a sample from a uniform distri-
bution spanning the subinterval. Then the obtained sample vector is inverted
through the CDF and randomly permuted. For more theoretical insights on LH
sampling, the interested reader is referred to [18].

LH sampling proved to be quite effective in our application. Figure 1 shows
the reduction in variance σ when sampling from an exponential distribution
with or without LH sampling. In our computational testing, we observed an
even larger variance reduction (one order of magnitude or more).
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Fig. 1. Reduction of variance σ with LH when approximating, through sampling, the
exponential probability distribution function (solid line).

5 Validation Model

An important component in our framework is robustness validation. Validation
is often carried out inside the model itself, as is the case when a SP approach is
used. However, we decided to implement an external simulation-based validation
module that is independent from the optimization model itself, so that it can



be of general applicability and allows one to compare solutions coming from
different methods. The module is required to simulate the reaction of the railway
system to the occurrence of delays, by introducing small adjustments to the
planned timetable received as an input parameter. Validation is a major topic
on its own. Indeed, the set of actions the railway system can make to react to
disruptions is quite large—see for example [9]—and the decision making process
is often complicated by strict real-time requirements and complex business rules.
Validation can be carried out by optimization methods, as proposed in [13,
15, 5]. However, the complexity of such models grows rapidly as soon as we
allow complex decisions to be made. Thus, simulation methods are often used to
measure empirically the robustness of a given timetable—see, for example, [1].

For the purpose of the present paper, we decided to implement a simple
LP-based validation tool based on the following simplified assumptions.

– Limited adjustability in response to delays with respect to the given timetable:
In this paper, timetabling robustness is not concerned with major disrup-
tions (which have to be handled by the real time control system and require
human intervention) but is a way to control delay propagation, i.e., a robust
timetable has to favor delay compensation without heavy human action. As
a consequence, at validation time no train cancellation is allowed, and event
precedences are fixed with respect to the planned timetable.

– Speed of validation: The validation tool should be able to analyze quickly
the behavior of the timetable under many different scenarios.

Given these guidelines, we designed a validation model which analyzes a
single delay scenario ω at a time. As all precedences are fixed according to the
input solution to be evaluated, constraints (1-3) all simplify to linear inequalities
of the form:

ti − tj ≥ di,j
where di,j can be a minimum trip time, a minimum rest or an headway time.
We will denote with P the set of ordered pairs (i, j) for which a constraint of
type (1) can be written. The problem of adjusting the given timetable t under
a certain delay scenario ω can thus be rephrased as the following simple linear
programming model with decision variables tω:

min
∑
j∈E

wj
(
tωj − tj

)
(15)

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P (16)
tωi ≥ ti ∀i ∈ E (17)

Constraints (16) correspond to the linear inequalities just explained, in which
the nominal right-hand-side value di,j is updated by adding the (possibly zero)
extra-time δωi,j from the current scenario ω. Weights wj appearing in objective
function (15) are related to the relative importance of the events, and typically
depend on the number of passengers affected.



Constraints (17) are non-anticipatory constraints stating the obvious condi-
tion that one is not allowed to anticipate any event with respect to its published
value in the timetable. Since these values are known, these constraints act as sim-
ple lower bounds on the decision variables. Instead, we impose no upper bounds
since we allow for an unlimited stretch of the timetable to recover from delays,
i.e., a feasible timetable is always achievable.

The objective function is to minimize the “cumulative delay” on the whole
network.

Given a feasible solution, the validation tool keeps testing it against a large
set of scenarios, one at a time, gathering statistical information on the value
of the objective function and yielding a concise figure (the average cumulative
delay) of the robustness of the timetable.

6 Finding Robust Solutions

In this section we present three different approaches to cope with robustness. We
introduced two simplifying hypotheses: (1) all input trains have to be scheduled;
(2) all event precedences are fixed according to a given input “nominal” solution.
These strong assumptions were made to obtain tractable (LP) models.

6.1 A Fat Stochastic Model

Our first attempt to solve the robust version of the TTP is to use a standard
scenario-based SP formulation. The model can be outlined as:

min
1
|Ω|

∑
j∈E,ω∈Ω

(
tωj − tj

)
∑
h∈T

ρh ≥ (1− α)z∗ (18)

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P,∀ω ∈ Ω (19)
tωi ≥ ti ∀i ∈ E,∀ω ∈ Ω (20)

ti − tj ≥ di,j ∀(i, j) ∈ P (21)
l ≤ t ≤ u (22)

The structure of the model is similar to that used in the validation tool,
but takes into account several scenarios at the same time. Moreover, the nom-
inal timetable values tj are now viewed as first-stage decision variables to be
optimized–their optimal value will define the final timetable to be published.
The model is composed by the original one and a copy of it with a modified
right hand side for each scenario. The original variables and the correspondent
second-stage copies in each scenario are linked through non-anticipatory con-
straints.



The objective is to minimize the cumulative delay over all events and sce-
narios. The original objective function

∑
ρh is taken into account through con-

straint (18), where α ≥ 0 is a tradeoff parameter and z∗ is the objective value
of the reference solution.

For realistic instances and number of scenarios this model becomes very time
consuming (if not impossible) to solve–hence we called it “fat”. On the other
hand, also in view of its similarity with the validation model, it plays the role
of a kind of “perfect model” in terms of achieved robustness, hence it has been
used for benchmark purposes.

6.2 A Slim Stochastic Model

Being the computing time required by the full stochastic model quite large, we
present an alternative model which is simpler yet meaningful for our problem.
In particular, we propose the following recourse-based formulation:

min
∑

(i,j)∈P,ω∈Ω

wi,js
ω
i,j (23)

∑
h∈T

ρh ≥ (1− α)z∗ (24)

ti − tj + sωi,j ≥ di,j + δωi,j ∀(i, j) ∈ P,∀ω ∈ Ω (25)
sωi,j ≥ 0 ∀(i, j) ∈ P,∀ω ∈ Ω (26)

ti − tj ≥ di,j ∀(i, j) ∈ P (27)
l ≤ t ≤ u (28)

In this model we have just one copy of the original variables, plus the recourse
variables sωi,j which account for the unabsorbed extra times δωi,j with respect to
the minimum train trip times. It is worth noting that the above “slim” model is
inherently smaller than the fat one. Moreover, one can drop all the constraints
of type (25) with δωi,j = 0, a situation that occurs very frequently in practice
since most extra-times in a given scenario are zero.

As to objective function, it involves a weighted sum of the recourse variables.
Finding meaningful values for weights wi,j turns out to be very important. In-
deed, we will show in Section 7 how to define these weights so as to produce
solutions whose robustness is comparable with that obtainable by solving the
(much more time consuming) fat model.

6.3 Light Robustness

A different way to produce robust solutions is to use the Light Robustness (LR)
approach proposed recently by Fischetti and Monaci [7]. This method is based
on the consideration that, roughly speaking, robustness is about putting enough



slack on the constraints of the problem. In its simpler version, the LR counterpart
of the LP model

min{cTx : Ax ≤ b, x ≥ 0}
reads

min f(γ) (29)
Ax− γ ≤ b− β (30)

cTx ≤ (1 + α)z? (31)
x ≥ 0 (32)

0 ≤ γ ≤ β (33)

where βi is a parameter giving the desired protection level (or slack) on constraint
i, and γi ≥ 0 is a decision variable giving the corresponding unsatisfied slack.
The objective is to minimize a given function f of the γ variables (typically, a
linear or quadratic expression). Moreover, (31) gives a bound (controlled by α)
on the efficiency loss due to the increased robustness of the solution, where z?

is the value of the input nominal solution.
In our TTP model, a typical constraint reads

ti − tj ≥ di,j

and its LR counterpart is simply

ti − tj + γi,j ≥ di,j +∆i,j γi,j ≥ 0

where ∆i,j is the required protection level parameter.

7 Computational Results

We carried out tests on four single-line medium-size TTP instances provided by
the Italian railway company, Trenitalia. Data refers to unidirectional traffic on
different corridors.

Instance #Stations #Sched. Trains

BZVR 27 127
BrBO 48 68
MUVR 48 48
PDBO 17 33

Table 1. Nominal solution characteristics

An almost-optimal heuristic solution for each of these instances was com-
puted by using the algorithm described in [3]. The algorithm is a Lagrangian



heuristic based on the computation of paths on a time-expanded network, whose
computing time was in the order of minutes on a Pentium IV, 2.4 GHz PC. The
corresponding solutions were used as the input nominal solutions to freeze the
event precedences and to select the trains to schedule. Solution characteristics
are given in Table 1.

We implemented our framework in C++ and carried out our tests on a AMD
Athlon64 X2 4200+ computer with 4GB of RAM. ILOG CPLEX 10.1 [10] was
used as MIP solver.

According to the sampling model described in Section 4.2, we generated an
extra time δh(ω) corresponding to each train h and to each scenario ω, drawing
them from an exponential distribution with mean µ = 5%. In lack of more
detailed data from the Italian railways operator about the actual distribution
of delays in line sections, we assume a proportional distribution of delays along
line segments. Accordingly, probabilities P(i,j) in (14) are proportional to the
length of train segments, barring a small additive white Gaussian noise (standard
deviation σ = 0.01, i.e., a random adjustment of 1-2%), and probabilities P[l,k]

are deterministically set to 1.
Given this setting, the first test we performed was aimed at comparing four

different training methods for each reference solution, with different values of the
tradeoff parameter α, namely 1%, 5%, 10% and 20%. We compared the following
alternative methods:

– fat : fat stochastic model (50 scenarios only)
– slim1 : slim stochastic model with uniform objective function–all weights

equal (400 scenarios)
– slim2 : slim stochastic model with enhanced objective function (400 scenar-

ios), where events arising earlier in each train sequence receive a larger weight
in the objective function. More specifically, if the i-th event of train h is fol-
lowed by k events, its weight in (23) is set to k + 1. The idea behind this
weighing policy is that unabsorbed disturbances sωi,j in a train sequence are
likely to propagate to the next ones, so the first ones in the line are the most
important to minimize.

– LR: Light Robustness model with objective function as in slim2 (using the
slim1 objective function produces significantly worse results). Protection
level parameters are set to ∆ = −µ ln 1

2 , where µ is the mean of the expo-
nential distribution. This is the protection level required to absorb a delay
drawn from such a distribution with probability 1

2 . For example, setting a
buffer of 1 minute we can absorb half of the times an exponentially dis-
tributed disturbance of mean 1.44 minutes.

As to the validation model, weights wj appearing in objective function (15)
are assumed to be equal to 1, i.e., all events are considered equally important.

The results are shown in Table 2, while graphical representations are given
in Figures 2 and 3.

According to the figures, slim2 always yields a very tight approximation of
fat, while slim1 is often poorer. As to LR, it usually produces good results that
are only slightly worse than slim2, mainly in the most-realistic cases where the



tradeoff parameter α is small. As to computing times (reported in Table 2), the
fat model is one order of magnitude slower than slim1 and slim2, although it
uses only 50 scenarios instead of 400. LR is much faster than any other method—
more than two orders of magnitude w.r.t the fat stochastic models. Therefore,
LR qualifies as the method of choice for addressing large-scale real cases, as it
guarantees good levels of robustness and requires very short computing times.
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Fig. 2. Comparison of different training models applied to the best reference solu-
tion for each instance. On the x-axis there is the efficiency loss (α) while the y-axis
reproduces the confidence intervals of the validation figure (run with 500 scenarios).



1% 5% 10% 20%
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 10

4 Line MUVR

Efficiency loss

C
um

ul
at

iv
e 

de
la

y 
(m

in
)

 

 
fat
slim 1
slim 2
LR

1% 5% 10% 20%
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4 Line BZVR

Efficiency loss

C
um

ul
at

iv
e 

de
la

y 
(m

in
)

 

 
fat
slim 1
slim 2
LR

Fig. 3. Comparison of different training models applied to the best reference solu-
tion for each instance. On the x-axis there is the efficiency loss (α) while the y-axis
reproduces the confidence intervals of the validation figure (run with 500 scenarios).
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We also tried a variation of the slim2 (and LR) objective function. The
variation is motivated by observations in [12] about the optimal distribution of
buffers on a single corridor. There, it was observed that buffers that are placed
too early risk to be left unused, because the probability to face any delay at
this early position is too small. As a consequence, it might be worthwhile to
lower the weights wi,j arising in the early sections of the line. Figure 4 plots
different parametric variants of the slim2 objective function. All of the them
obey a common formula, namely:

(1− e−λi)(len(h)− i)

parametrized in λ (λ = ∞ gives the original slim2 weighing scheme). Table 3
reports the percentage improvements with respect to case λ =∞ for slim2 and
LR, respectively. It turns out that the new objective function typically produces
slightly worse results for LR, while slim2 takes advantage of it for large values
of λ. In any case, the improvement is not substantial (up to 3-4%).

0 len(h)
i

w
ei

gh
t

λ =∞

λ = 30

λ = 15

λ = 6

λ = 3

Fig. 4. Alternative weighing functions for slim2 and LR, giving weight wij as a function
of position i in the line.

One might also wonder what is the effect of the input nominal solution to the
subsequent robustness improving phase. To answer this question, we performed
the following experiment. We took the scheduled trains in the heuristic nominal
solutions of [3] used in the previous experiments, and we constructed the MIP
model described in Section 3, where the choice of precedences is left open. Then
we collected a series of heuristic nominal solutions of increasing efficiency for that



Slim2

λ BZVR BrBO MUVR PDBO

α = 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

3 -1.9 2.6 1.7 3.5 0 -2.5 -2.3 -0.1 -1.2 -0.8 -1.2 -5.3 -2.3 0.2 -0.1 -1.7
6 -0.7 2.6 1.6 3 0.4 -1.3 0.6 2.8 -0.8 -0.9 0.2 -1.5 -1.8 0.2 1 3.6
15 0 3.7 1.7 4.9 1.1 1.2 3.4 3.8 -0.6 -0.3 0 1 -0.3 0.7 1.8 1.4
30 0.4 3.6 0.1 3.5 0.8 1.8 2.2 3.7 0 0.2 0.3 0.7 0.3 -0.2 1.1 1.8

LR

λ BZVR BrBO MUVR PDBO

α = 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

3 -0.3 -0.2 1.1 -2.2 -0.1 0.2 -0.5 -0.5 0.1 -0.4 1.2 0.2 -0.7 -0.7 -2.2 0.2
6 -0.2 -0.8 2 -2 0.1 0.6 0.5 -0.7 0.4 0.2 -0.1 1.3 -1.5 -0.3 0.2 -1.7
15 -0.3 -0.5 1.7 -1.1 0.1 0.3 0.4 -0.5 -0.2 0.7 1.3 0.6 -1.3 0 -0.7 1.3
30 0.1 -0.1 1.2 -0.7 0.3 0.2 0 -0.7 -0.4 0.4 0.9 -0.8 -0.4 -0.8 -0.4 -0.9

Table 3. Percentage robustness improvement with respect to λ = ∞ for the differ-
ent weighing functions plotted in Figure 4; a negative value corresponds to a worse
robustness.

model. This was obtained by running the MIP solver with a 5-minute time limit
and by storing all the incumbent solutions produced during the run. Moreover,
we ran the solver with a 1-hour time limit so as to produce an almost optimal
solution of value, say, zref . (For all instances, the optimality gap after 1 hour
was less than 4%.) Then, we compared the robustness achieved by our fat model
when starting from these solutions, by allowing for a relative efficiency loss α
with respect to zref . The left-hand side part of Table 4 gives the outcome of the
experiment, for two instances (BrBO and MUVR). Columns correspond to the
10 best solutions obtained within the 5-minute time limit, sorted from left to
right by increasing efficiency. E.g., for instance BrBO, the 10 solutions have a loss
of efficiency ranging from 5.5% to 0.4% with respect to zref . Rows correspond
to the different thresholds α used (1%, 5%, 10%, and 20%). The table entries
then give the percentage increase in robustness (as measured by the validation
tool) with respect to robustness measured when starting from the almost optimal
solution of value zref . E.g., for BrBO, if we allow for a 10% efficiency loss with
respect to zref and start from a nominal solution which is already 4.5% worse,
we lose 13.9% in terms of robustness achievable through the fat training method.
Missing entries correspond to infeasible cases.

As expected, starting from a worse nominal solution reduces the degree of
freedom in the subsequent training phase, leading to a robustness loss. This
negative effect could in principle be counterbalanced by the different precedence
structure of the solution, in the sense that a less-efficient solution could involve
precedence patterns leading to improved robustness. However, our experiments



seem to indicate that the precedence structure of the solutions plays only a
secondary role. This support the viability of our approach, where only the most-
efficient nominal solution available is “trained” for robustness.

To better quantify the effect of fixing all precedences when improving robust-
ness of the nominal solution, we performed a second experiment consisting of
solving the MIP version of the LR model where all precedences are left unfixed.
Note that this is only viable for LR, since the other models are too large to
be attacked by a general-purpose MIP solver. As in our previous experiments,
we considered a loss of efficiency α ranging from 1 to 20% with respect to the
almost-optimal solution value zref . The solution of value zref was also used to
provide a first incumbent to the MIP solver. In these runs the MIP solver per-
formed quite well, in that the optimality gap after 1 hour of computing time was
less than 1% for all instances. (Note however that the model does not take into
account the possibility of leaving some trains unscheduled.)

The results of our second experiment are reported in the right-hand side
part of Table 4. For PDBO and BZVR, the MIP model did not find any better
solution than the incumbent, so these cases are not reported in the table. The
last column of Table 4 reports the percentage robustness improvement of the
MIP LR model described above, over the linear LR model described in Sec-
tion 6.3. E.g., for case BrBO with a threshold α of 10% with respect to zref , the
MIP version of LR is able to improve by only 4.3% over the simple linear LR.
Furthermore, the second-last column of Table 4 reports, for comparison sake,
the percentage difference between the solution robustness obtained by the MIP
LR and the robustness obtained by using fat on the same almost optimal solu-
tion zref . Results show that the new scheme produces only marginal robustness
improvements with respect to the simple linear LR. This confirm that, for the
cases in our testbed, the precedence structure of the solutions is not really im-
portant, efficiency being the key figure in determining the maximum achievable
robustness. However, this may be no longer the case for more complex network
topologies.

A simple yet often used in practice policy to enforce robustness in a timetable
is to allocate a buffer that is just proportional to the train duration. Figure 5
gives the results of this simple policy on a sample instance, where we first com-
pute the maximum total amount of buffer we can allocate for a given efficiency
loss, and then distribute it proportionally along the line. According to the fig-
ure, the proportional buffer allocation policy and slim1 behave quite similarly.
This is not surprising, since model slim1 actually favors a proportional buffer
allocation—this is confirmed in the other instances as well (not shown in the
figure). On the other hand, much better results are obtained by applying more
clever optimization methods, showing the practical relevance of the optimization
approaches.

While the validation output gives a reliable measure of how robust a solu-
tion is against delays, other figures exist that summarize somehow the “static”
structure of a solution. These figures are useful to get insights into the structure
of the solutions obtained with different training methods. In particular, we used



BrBO

Fat LR-MIP

α vs Fat vs LR

eff(%)= -5.5 -4.5 -3.9 -2.7 -2.2 -1.7 -1.3 -1.2 -0.8 -0.4 0.0 0.0 0.0

1% – – – – – – – – -4.1 -2.7 0.0 -0.4 -0.1
5% – -20.3 -18.2 -8.1 -7.4 -4.4 -2.8 -3.1 -1.6 -2.2 0.0 1.7 4.1
10% -23.9 -13.9 -15.2 -5.2 -5.6 -2.9 -1.9 -2.8 -1.4 -2.6 0.0 -1.0 4.3
20% -22.2 -11.9 -14.9 -4.6 -4.5 -3.1 -2.1 -2.8 -2.4 -3.0 0.0 -11.8 2.7

MUVR

Fat LR-MIP

α vs Fat vs LR

eff(%)= -27.4 -14.9 -9.9 -9.2 -7.6 -6.8 -2.7 -1.6 -1.6 -1.3 0.0 0.0 0.0

1% – – – – – – – – – – 0.0 -0.6 0.0
5% – – – – – – -3.7 -1.7 -1.2 -1.7 0.0 -1.2 -0.1
10% – – -19.2 -16.5 -12.6 -10.1 -1.6 -0.8 -0.3 0.2 0.0 -1.4 1.1
20% – -25.5 -13.1 -12.7 -9.1 -8.6 -2.1 -0.9 0.1 -0.8 0.0 -4.3 1.4

Table 4. Effects of nominal input solution on robustness.

0% 1% 5% 10% 20%

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4 Line MUVR

Efficiency loss

C
um

ul
at

iv
e 

de
la

y 
(m

in
)

 

 
fat
slim 2
LR
Uniform
slim 1

4.34%

2.20%

1.11%

0.23%

Fig. 5. Comparison of a simple “proportional” buffer allocation strategy against the
proposed methods. The percentages shown are the total amount of buffer it was possible
to allocate within a given tradeoff.



the weighted average distance (WAD) of the allocated buffer from the starting
point. The WAD of the single train h is calculated as

WADh =
1∑len(h)−1

i=1 si,i+1

len(h)−1∑
i=1

si,i+1(thi+1 + thi )/2
thlen(h) − th1

(34)

where si,i+1 is the amount of buffer allocated from ti to ti+1. The WAD is a
number between 0 and 1 which measures how the buffers are distributed along
the train trip. For example, a value of 0.5 means that the same amount of buffers
were allocated in the first half and in the second half of the trip; values smaller
or bigger than 0.5 relate to a shift in buffers distribution towards the begin or
the end of the trip, respectively. The WAD of an entire line is calculated as the
mean of all the WADs of the trains of the line. The reader is referred to [12] for
a more detailed discussion.

A comparison of the various WADs is reported in Table 2 and illustrated in
Figures 6 and 7. It can be seen that there is a significative correlation between
the degree of approximation of the various WADs with respect to “perfect WAD”
(WADfat) and the robustness of the solution–as computed by the validation tool
and reported in Figure 2 and 3. In Figures 6 and 7, slim1 WAD is almost always
50%, meaning a uniform allocation of buffers. On the other hand, the other
methods tend to allocate buffers earlier in the line, resulting in a lower value of
the WAD. Moreover, as the allowed efficiency loss increases (x axis), the WAD
increases as well, meaning that uniform allocation becomes a good choice. We
can also note that LR behaves better for small efficiency losses. Indeed, LR uses
a fixed buffer β to deal with disturbances. When the problem is less constrained
in efficiency, these buffers can become too small, and the LP solver will start
to distribute the buffer excess, in a somehow unpredictable way, so as to meet
the increased degree of freedom, thus degrading the performance of the method.
E.g., this is the case of lines BZVR and PDBO. Moreover, BZVR and PDBO
are more congested than other two instances, which also explains the better
performance of the uniform allocation strategy.

Figure 8 reports how the buffers are distributed along the line. The figure is
obtained by normalizing each line by the length of the corridor, and averaging
the buffers allocated in each normalized line section. The averages are then
normalized by the total amount of allocated buffer, so that the area of each
chart approximately sums up to 1. E.g., slim1 allocates buffers almost uniformly
along the line—the particular structure of the timetable being responsible of local
fluctuations. It is clear that slim2 produces a very tight approximation of fat,
while slim1 does not. It is worth noting that LR uses a smoother allocation
of buffers, while slim1 yields a better approximation of their oscillations, but
misses the global allocation policy. In this respect, slim2 performs quite well
instead. This is due to the fact that LR does not exploit directly the scenario
information, thus it has to cope with very little information. Again, note that the
poorest method (slim1 ) produces an almost uniform distribution of the buffers,
whereas the best ones tend to allocate them earlier. This confirms the findings
reported in [12].



Finally, given the intrinsic approximation of the stochastic methods due to
the evaluation of the expectation, we have computed lower and upper bounds on
the optimal solutions of the stochastic models, as described in Section 4. A typical
plot obtained for the slim stochastic model is reported in Figure 9, showing very
narrow estimation gaps. Similar results are obtained with the other models,
except fat that behaves a little worse due the reduced number of scenarios.
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Fig. 6. Comparison of different training models from the WAD point of view (WAD is
given within its confidence intervals).
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Fig. 7. Comparison of different training models from the WAD point of view (WAD is
given within its confidence intervals).
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Fig. 8. Comparison of different training models from the allocated-buffer point of view.
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Fig. 9. Confidence intervals of upper and lower bounds of the optimal solution of
stochastic model slim2



8 Conclusions and future work

In this paper we have described a three-stage framework as a practical tool for
building and testing robust solutions for the Train Timetabling Problem. We
mainly focused on robustness improvement of a given nominal solution. Robust-
ness was then validated in terms of the total cumulative delay, computed by
solving an LP model.

We examined different robustness improving models. The best performing,
in terms of validated cumulative delay, is a “fat” stochastic reformulation of
the nominal TTP problem. However, the solution of this model turned out to
be very hard (if not impossible) for practical instances. A “slim” version per-
formed much better, provided that a clever objective function is used. The fastest
method, Light Robustness (LR), proved to be quite accurate when dealing with
a reasonable robustness–efficiency tradeoff, allowing for a fast solution of large
instances. On the whole, Light Robustness qualifies as a suitable tool for address-
ing large-scale real scenarios, and can even be embedded in the nominal solver
to find optimized train-precedence patterns leading to more robust timetables.

Future direction of research should address the important topics below.
In the present paper, we quantified (for the LR model) the gain in terms

of robustness resulting from relaxing the requirement that all precedences in
the nominal solution must be preserved. It would be interesting to extend this
analysis to the (much more difficult to solve) slim2 model.

We performed our computations on real-world unidirectional corridors oper-
ated by the Italian railways operator; it would be interesting to address more
complex network topologies.

Finally, in our study we used a simplified LP-based validation tool to estimate
the cumulative delay in a set of random scenarios. An interesting research topic
would be to measure the actual price required to recover a delayed timetable by
using the same strategies used in real-world delay management.
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13. C. Liebchen, M. Lübbecke, R. H. Möhring, and S. Stiller. Recoverable robustness.
Technical Report ARRIVAL-TR-0066, ARRIVAL-Project, 2007.

14. C. Liebchen and L. W. Peeters. On cyclic timetabling and cycles in graphs. Tech-
nical Report 761-2002, TU Berlin, Mathematical Institute, 2002.
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