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Abstract. 2D-Nuclear magnetic resonance (NMR) spectroscopy is a
powerful analytical method to elucidate the chemical structure of mole-
cules. In contrast to 1D-NMR spectra, 2D-NMR spectra correlate the
chemical shifts of 1H and 13C simultaneously. To curate or merge large
spectra libraries a robust (and fast) duplicate detection is needed. We
propose a definition of duplicates with the desired robustness properties
mandatory for 2D-NMR experiments. A major gain in runtime perfor-
mance wrt. previously proposed heuristics is achieved by mapping the
spectra to simple discrete objects. We propose several appropriate data
transformations for this task. In order to compensate for slight variations
of the mapped spectra, we use appropriate hashing functions according
to the locality sensitive hashing scheme, and identify duplicates by hash-
collisions.

1 Motivation

Nuclear magnetic resonance (NMR) spectra are important to analyze unknown
natural products. In contrast to standard one-dimensional NMR spectroscopy,
advanced two-dimensional NMR spectroscopy is able to capture the influences of
two different atom types at the same time, e.g. 1H (hydrogen) and 13C (carbon).

The result of a 2D-NMR measurement can be seen as an intensity function
measured over two independent variables3. Regions of the plane with high inten-
sity are called peaks, which contain the real information about the underlying
molecular structure. The usual visualizations of 2D-NMR spectra are contour
plots as shown in figure 1 (1H,13C-HSQC NMR spectrum). 4 Contour lines in
low intensity regions are clipped away, because they are produced by irreprodu-
cable fluctuations. An ideal peak would register as small dot. In the biochemical
literature, peaks are noted by their two-dimensional positions.

However, due to the limited resolution available (depending on the strength
of the magnetic field) multiple peaks may appear as a single merged object with
non-convex shape, and after thresholding two different peaks, which are close

3 The measurements are in parts per million (ppm).
4 HSQC: Heteronuclear Single Quantum Coherence



together, may be merged and so both are represented by a single point. This is
usually accepted. The pattern of peaks is very characteristic and specific for a
particular substance.
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Fig. 1. 2D-NMR (HSQC)
spectrum of Quercetrin, the
one-dimensional plots at
the axes are projections of
the original two-dimensional
intensity function including
the respective signal inten-
sities. Each peak captures
characteristic 13C,1 H- atomic
resonance interactions present
in the specific molecule.

As modern NMR devices allow the automatic analysis of many samples per
day, the number of a spectra in a database can be up to several thousands
per laboratory. Yet, manual work is needed to deduce the chemical structure
of a complex organic substance from the spectrum. Thus, most of the NMR
data is unpublished but contains a lot of experimental knowledge. Duplicate
detection is needed for a use case where two or more libraries are merged, and the
experimental knowledge for a pair of duplicates needs to be manually merged and
curated. The matching has to be robust against merged peaks and measurements
deviations between the two laboratories.

The problem is, given an automatically measured spectrum find all matching
spectra on the basis of their peaks with annotations. We cast the specific problem
in a more general setting: given a set of spectra find all pairs which are near-
duplicates.

Our approach is based on a similarity measure with the desired robustness
properties. In [15], we describe heuristics which guarantee no false negatives
and reduce the average run time. However, the runtime complexities of those
heuristics are still quadratic and the run times for very large data sets are still
unacceptable.

In this paper, we propose to map the spectra to simple discrete objects like
fixed length integer vectors or discrete sets, for which duplicates can be found
much easier. The mapping may cause false negatives, as duplicate spectra may be



mapped to discrete objects with slight variations. The effect is compensated by
searching similar discrete objects instead of identical ones. We use 1) manhattan
distance and 2) the Jaccard coefficient for this task. For both similarity measures
exist instances of the locality sensitive hashing scheme (LSH) [16], which uses a
proper set of hashing functions to identify duplicate spectra by hash-collisions.
The effectiveness of the proposed transformations are evaluated on real data
with respect to quality and run time.

The remainder of the paper is organized as follows: after a discussion of
related work in the next section, we introduce a simple definition of similarity
and define fuzzy duplicates in section 3. Based on the exact method we discuss
the transformation of spectra into discrete space in section 4, followed by the
application of LSH to the problem. Our experiments are based on real data,
their setup and results are shown in section 6. With the summary in section 7
we conclude the paper.

2 Related Work

Duplicate detection can be seen as a special case of content-based similarity
search, where pairs of spectra are considered duplicates if their similarity exceeds
a certain cutoff value. While content-based similarity search is already in use
for 1D-NMR spectra [1, 2, 18, 19, 22], to the best of our knowledge, no effective
similarity search method is known for 2D-NMR-spectra. Besides technical details
(like how to choose the particular cutoff values for similarity) the problem of an
approach purely based on similarity is, that the similarities between all pairs of
spectra have to be computed. This leads to quadratic run time in the number
of spectra, which is prohibitive for large spectra databases. In case of duplicate
detection, more efficient algorithms exist.

Various aspects of detecting duplicates have received a lot of attention in
database and information retrieval research. The closest type of approaches is
near-duplicate detection of documents. The efficient detection of near-duplicate
documents has been studied by several authors [5,24]. In particular, near-duplicate
detection of web documents is a quite active research area [8,12,13]. The differ-
ence between near-duplicate documents and fuzzy duplicates of 2D-NMR spectra
is that documents are composed of discrete entities, namely words or index terms,
but 2D-NMR spectra consists of continuous 2D points. The crucial difference is
that the matching operation is transitive for words but not for 2D points. An
extension of near-duplicate documents are duplicates in XML documents [23],
where the set of terms is organized as tree.

Duplicates are often found by using a similarity measure. Such measures
can be manually defined, but in case of strings suitable similarity measures can
be learned automatically using a support vector machine [3], which improves
the detection accuracy. Another example of very difficult duplicates are those
found in the WHO drug safety database [21]. In this case, a classification prob-
lem was solved in order to find a measure for comparison of the records. As
those duplicates themselves are very difficult to detect, it seems unlikely to find



subquadratic algorithms for this problem class. Fortunately, fuzzy duplicates of
2D-NMR spectra have a more simple definition, which does not require advanced
learning techniques.

The detection of duplicate records in data streams [9] or click streams [20]
are new variants of the problem. Here, duplicates have simple definitions and the
records have fixed length. NMR spectra have not that simple nature, e.g. the
number of peaks may differ between spectra (due to the experimental setup even
for chemical duplicates). Also the streaming scenario does not appear naturally
for 2D-NMR spectra. However, the used technique, namely Bloom filters, are
very promising and we will investigate in future research, whether Bloom filters
can be applied in our scenario as well.

The detection of duplicates in images [17] is slightly related to our research,
as 2D-NMR spectra could be thought as images as well. However, the used
techniques in [17] ensure invariance wrt. scaling, shifting and rotation, which is
not meaningful in case of 2D-NMR spectra.

The detection of duplicates is slightly related to collision detection in com-
puter graphics [7]. The problem in this concern is to find 2D or 3D objects with
overlapping boundaries in real time. The algorithms make the assumption, that
only a few bounding boxes of the objects are overlapping. However, in our set-
ting almost all bounding boxes of the spectra overlap. So, collision detection is
not applicable to our problem.

Record linkage and especially the sorted neighborhood method [14] is also
related to our approach. Sorted neighborhood determines for every object, in
our case a 2D NMR spectrum, a key by which the objected are ordered. A slid-
ing window is moved over the sorted sequence and objects within a window are
checked for duplicates. The assumption behind the method is, that duplicates
have the keys, which are close in the sorted object sequence. Key selection is
crucial for the method. The sorted neighborhood method has been successfully
used for identifying duplicates in customer databases with data objects con-
sisting mainly of discrete attributes. Since those attributes ensure transitivity
of duplicates, the key generation consists of selecting subsets of the discrete at-
tributes. As 2D-NMR spectra do not have discrete attributes, the construction of
a key is much more difficult. So far no promising technique is known for numeric
attributes.

3 Definition of Similarity and Fuzzy Duplicates

A 2D-NMR spectrum of an organic compound captures characteristics of the
chemical structure like rings and chains. As the shape of the measured peaks
varies between experiments (even with the same substance!), we use centroid
peak positions for the representation of the spectra. So, we define a spectrum as
a set of two-dimensional points:

Definition 1. A 2D-NMR spectrum A is defined as a set of points {x1, . . . , xn} ⊂
R2. The | · | function denotes the size of the spectrum |A| = n.



The number of peaks per spectrum is typically between 4 and 60. Our definition
of duplicates is based on the idea that peaks can be matched. As spectra are
measured experimentally, peak positions can differ even between technical repli-
cates5. For that reason, peaks cannot be matched by their exact positions, but
rather some slight deviations have to be allowed. A simple but effective approach
is to match peaks only within a small spatial neighborhood, The neighborhood
is defined by the ranges α and β:

Definition 2. A peak x from spectrum A matches a peak y from spectrum
B, iff |x.c − y.c| < α and |x.h − y.h| < β, where .c and .h denote the NMR
measurements for carbon and hydrogen respectively.

Based on the notion of matching peaks, we are ready to define a set-oriented
similarity measure, from which in turn we derive the definition of duplicates as
a special case. Note, that a single peak of a spectrum can match several peaks
from another spectrum. Given two spectra A and B, the subset of peaks from
A which find matching partners in B is denoted as matches(A,B) = {x : x ∈
A,∃y ∈ B : x matches y}. The function matches is not symmetric, but helps to
define a symmetric similarity measure

Definition 3. Let be A and B two spectra and A′ = matches(A,B) and B′ =
matches(B, A), so similarity is defined as

sim(A,B) =
|A′|+ |B′|
|A|+ |B|

The measure is close to one if most peaks of both spectra are matching peaks.
Otherwise, the similarity drops towards zero.

An important special case of similarity search is the detection of duplicates
to increase the data quality of a collection of 2D-NMR-spectra. In addition to
the measurement inaccuracies, in case a substance is measured twice with a
high and low resolution, it may happen that neighboring peaks are merged to
a single one. A restriction to one-to-one relationships between matching peaks
can not handle such cases. This means that a single peak from spectrum A can
be matching partner for two close peaks from spectrum B.

We propose a definition of fuzzy duplicates based on the similarity measure
which can deal with the problems mentioned, namely deviances in peak mea-
surements as well as splitted/merged peaks.

Definition 4. A pair of 2D-NMR-spectra A and B are fuzzy duplicates, iff
sim(A,B) = 1.

By that definition it is only required that every peak of a spectrum finds at least
one matching peak in the other spectrum. The parameters α and β can be set
with the application knowledge of typical variances of single peak measurements.
For our application, we chose α = 3 ppm (13C coordinate) and β = 0.3 ppm (1H
coordinate) if not stated otherwise.
5 A technical replicate is the same substance/molecule under the same experimental

conditions subjected to the measurement device at least twice.



3.1 Why is the problem difficult?

The duplicate definition is not transitive, that means if A is duplicate of B and
B is duplicate of C that not necessarily A is duplicate of C. An example for this
fact is sketched in figure 2. The reason is the nature of continuous measurements
of the peak coordinates. The lack of transitivity has the consequence that a set

c
b

a Fig. 2. The peak a from spectrum A
matches peak b from spectrum B and b
matches c from spectrum C. However a and
c are not matching.

of duplicate spectra (where all spectra are pairwise duplicates) cannot be repre-
sented by a single spectrum. Such a representative would ease the detection of
duplicates, since all duplicates of the representative are also pairwise duplicates.
Because fuzzy duplicates of 2D-NMR spectra do not have this property, all pairs
of the set have to be checked in order to calculate a set of duplicates. Thus, the
complexity of an algorithm which finds all duplicates in a set of spectra has a
quadratic worst case runtime O(n)2 in the number of spectra n. Therefore, we
have to resort to heuristics which reduce the experimental runtime on typical
data sets.

4 Spectra Transformation

The exact methods [15], which are guaranteed to have no false negatives, do not
scale to very large data sets, even when using peak selecting heuristics. Therefore,
we investigate methods which have significantly lower run time. The price for
the lower runtime is the possibility of false negatives, that means some duplicate
pairs could be missed. We will discuss later how to avoid false negatives.

The problem of finding fuzzy duplicates of 2D-NMR spectra is, that the du-
plicate relation lacks transitivity. The reason is the continuous nature of the
peak measurements. So, the idea is to map the peaks to some discrete objects.
Among the many possibilities to do that, we will explore two principal alter-
natives of those mappings. First, the peak coordinates are discretized and then
those integers are concatenated to a fixed length vector. Second, the peaks of a
spectrum are mapped to discrete objects so that a spectrum is represented by a
set of those objects.

The task of finding duplicate spectra is then reduced to finding duplicates
of integer vectors and duplicate sets of discrete objects respectively. Both of
the latter duplicate relations are transitive, so that a set of duplicates can be
specified by a single representative vector or set. In order to check whether a new
mapped spectrum belongs to a set of duplicates, it suffices to test the duplicate
relation with the representative of the set.



False negatives occur in this approach, when duplicate spectra are mapped
to different discrete objects. We propose mappings which map duplicate spectra
to discrete objects which are – if not identical – at least very similar.

4.1 Mapping to Integer Vectors

The first proposed mapping of 2D-NMR spectra maps transformed peaks to
coordinates of the discrete integer vectors. Such a mapping involves three issues,
namely (1) how to handle possible splits/merges of peaks, (2) how to order the
transformed peaks to a vector, and (3) how to chose the overall dimensionality
of the vectors.
Robustification: In order to handle the problem of peak splitting, some peak
x of a spectrum is selected and those peaks y are deleted from the same spec-
trum which are in the neighborhood of x. The neighborhood is given by N(x) =
{y : y 6= x, |x.c−y.c| ≤ α and |x.c−y.c| ≤ β}. The peaks are selected in decreas-
ing order of |N(x)|, so that the peak with the largest number of neighbors is
selected first. The iteration stops when each peak in the spectrum is a singleton,
i.e. the neighborhoods of the remaining peaks are empty. The remaining peaks
are called the representative peak set of a spectrum. After this step, a one to one
relation between between peaks of duplicate spectra can be assumed.
Peak Ordering: The coordinates of the representative peaks of a spectrum
are discretized by binning. The question remains how to order the discretized
peak coordinates to form a vector, so that the order is not affected by small
measurement errors. The most robust order is to sort 13C- and 1H-coordinates
independently and discretize afterwards. The vector consists of a block of 13C-
coordinates followed by a block of 1H-coordinates. However, this procedure would
entirely ignore the joint distribution of 13C- and 1H-measurements but resorting
to the marginal distributions only. So, quite different spectra could be mapped
to the same integer vector.

The other extreme is to sort the peaks by one coordinate – say 13C – only,
and form a vector of alternating discretized 13C- and 1H-coordinates. The in-
formation of the joint distribution of 13C- and 1H- coordinates is retained in
this mapping. In case of two peaks with close 13C-coordinates but different 1H-
coordinates, measurement errors in the 13C-coordinate of a duplicate spectrum
could result in swaped order of the two peaks, which in effect also swaps the
positions of the 1H-coordinates. In case of two spectra being duplicates their
integer vectors could be quite dissimilar, because of the difference in the swaped
1H-coordinates.

We propose an intermediate approach, which combines the robustness of the
first with the discrimination power of the second. The representative peaks of
a spectrum are sorted by one coordinate, say 13C. Starting with the peak of
the largest 13C-coordinate, we use a jumping window of w consecutive peaks.
We sort the 13C- and 1H- coordinates independently for the w peaks inside a
window, and arrange them in blocks as in the first approach. The last window
might contain less than w peaks if #peaks mod w 6= 0. The important aspect
of this technique is, that peaks in the close neighborhood from another spectrum



Fig. 3. Mapping of peaks
from a spectrum to in-
teger vectors for w =
2. The blocks of the
peaks are indicated by
rectangles. The result-
ing integer vector of the
discretized spectrum is
shown in the table un-
derneath (last row). The
windows and C and H
blocks within a window
are shown in the sec-
ond and third row re-
spectively.

map to the same sorted blocks, regardless of their order in the 13C- axis. The
problem of the second extreme approach can only occur at the jump positions.
So, by choosing w we can search for a tradeoff between robustness and retained
information. The process is illustrated in figure 4.1.

Although some peaks of duplicate spectra might map to different integer
vectors due to the binning process, i.e. close peaks coordinates are mapped to
different bins, the difference is at most one bin per coordinate.
Overall dimensionality: The overall dimensionality D of the set of result-
ing spectra vectors S is determined by the spectrum having the largest set of
representative peaks D = max(#peaks(Si)). Since the spectra have different
numbers of representative peaks, we need to pad their integer vectors up to the
fixed dimensionality D. Padding the vectors with zeroes increases their overall
similarity, whereas padding by random values would decrease their overall sim-
ilarity. Therefore we pad a vector by repeating the vector itself until the the
length of the maximal vector is reached, thereby retaining the similarity of the
original vectors.

4.2 Mapping to Discrete Sets

We introduce a simple grid-based mapping to map a spectrum to a set of discrete
objects, on which we will build a more sophisticated method.

Simple Grids A simple grid-based method is to partition each of the both
axis of the two-dimensional peak space into intervals of same size. Thus, an
equidistant grid is induced in the two-dimensional peak space and a peak is
mapped to exactly one grid cell it belongs to. When a grid cell is identified by a



discrete integer vector consisting of the cells coordinates the mapping of a peak
x ∈ R2 is formalized as

g(x) = (gc(x.c), gh(x.h)) with gc(x.c) =
⌊

x.c

α

⌋
, gh(x.h) =

⌊
x.h

β

⌋

The quantities α and β are the extensions of a cell in the respective dimensions.
The grid is centered at the origin of the peak space.

Shifted Grids A problem of the simple grid-based method is that peaks which
are very close in the peak space may be mapped to different grid cells, because a
cell border is between them. So proximity of peaks does not guaranty that they
are mapped to the same discrete cell.

o1

o o

o2

3
4 Fig. 4. The four grids are marked as follows: base grid is

bold, (1, 0), (0, 1) are dashed and (1, 1) is normal.

Instead of mapping a peak to a single grid cell, we propose to map it to a
set of overlapping grid cells. This is achieved by several shifted grids of the same
granularity. In addition to the base grid some grids are shifted into the three
directions (1, 0)(0, 1)(1, 1). An illustration of the idea is sketched in figure 4. In
figure 4, one grid is shifted in each of the directions by half of the extent of a
cell. In general, there may be s− 1 grids shifted by fractions of 1/s, 2/s, . . . , s−1/s

of the extent of a cell in each direction respectively. For the mapping of the
peaks to words which consist of cells from the different grids, two additional
dimensions are needed to distinguish (a) the s−1 grids in each direction and (b)
the directions themselves. The third coordinate represents the fraction by which
a cell is shifted and the fourth one represents the directions by the following
coding: value 0 is (0,0), 1 is (1,0), 2 is (0,1) and 3 is (1,1). So each peak is
mapped to a finite set of four-dimensional integer vectors. A nice property of
the mapping is that there exists at least one grid cell for every pair of matching
peaks both peaks are mapped to.

5 Approximate Methods as Filter

The proposed mappings of the 2D-NMR data to discrete objects cannot guar-
antee, that duplicate spectra are mapped exactly to the same discrete objects.
However, the mappings are designed in a way, that the mapped duplicate spectra
are at least very similar discrete objects. In this section we focus on methods,
which approximate similarity measures for those discrete objects (i.e. integer
vectors and discrete sets).



5.1 Locality Sensitive Hashing

A general approximation scheme is locality sensitive hashing (LSH) [16], which
is a distribution on a family of hash functions F on a collection of objects, such
that for two objects x, y

Prh∈F [h(x) = h(y)] = sim(x, y)

The idea is to construct k hash functions h on the set of objects according to
the family F . The percentage of collisions among the k pairs of hash values for
two objects estimates the probability of a collision and gives an approximative
similarity score. In general, the outcome of a hash function can be thought of
as an integer. So, the LSH-scheme maps each object to a k-dimensional integer
vector.

In case, two objects x, y are very similar, their integer vectors agree on all k
coordinates with high probability. Let be s = sim(x, y), s ∈ [0, 1] the similarity
between x, y, then the probability is sk that hi(x) = hi(y) agree for all 1 ≤ i ≤
k. To amplify that probability, the sampling process is repeated L times [10].
So, after L repetitions the probability that their integer vectors agree on all k
coordinates at least once is

Pr[1 ≤ i ≤ k : hi(x) = hi(y) at least once] = 1− (1− sk)L

Thus, the duplicate detection consist of finding L times the duplicates among
integer vectors and union the results. Finding groups of equal integer vectors
can be done by sorting, which has lower run time complexity than the naive
algorithm.

There are locality sensitive hashing schemes known for the following similar-
ity functions, Manhattan distance between fixed length integer vectors [11], and
Jaccard coefficient for set similarity [4,6]. We briefly review the hashing schemes
for the similarity measures.

5.2 Manhattan Distance

Given a set of d-dimensional integer vectors with coordinates in the set {1, . . . , C},
the Manhattan distance between two vectors is x, y ∈ X, d1(x, y) =

∑d
i=1 |xi −

yi|. Let be x = (x1, . . . , xd) a vector from X and u(x) = UnaryC(x1) . . . UnaryC(xd)
a transformation of x into a bit string, where UnaryC(a) is the unary represen-
tation of a with C bits, i.e. a sequence of a ones followed by C−a zeros. For any
two vectors x, y ∈ X there is da(x, y) = dH(u(x), u(y)) with dH is the Hamming
distance, which gives the number of different bits between bit strings. An appro-
priate family of hash functions with the LSH property consists of hi(b), 1 ≤ i ≤
length(b), where hi(b) returns the ith bit from b.

Sampling uniformly from those hash functions and testing for collisions re-
duces to probabilistically counting the number of equal bits:

d1(x, y) = dH(u(x), u(y)) = dC(1− Pr[hi(u(x)) = hi(u(y))])



with random hi, 1 ≤ i ≤ dC.
For the implementation of this LSH scheme, k random indices i1, . . . ik are

picked. The transformation into the Hamming space, which can be quite large,
is in practice not necessary. In order to find the value of hi(u(x)) we have to
look to which coordinate of the integer vector the index i belongs and if (i − 1
mod C) + 1 is larger than the integer value of that coordinate. So the hash
function for index i is

hi(u(x)) =

{
1 if (i− 1 mod C) + 1 ≤ xb i

C c+1

0 else

5.3 Approximate Cosine Similarity

Cosine similarity is used in information retrieval to compare documents which
are represented by term frequency vectors. Given a subset A ⊂ U of a universe U
the term frequency vector tA has |U | components, each representing the number
of occurrences of a particular element in A. The cosine similarity of A,B is

simC(A,B) =
tA · tB

‖tA‖ · ‖tB‖
The hash functions are constructed by randomly mapping each element of U to
{−1, 1}. Lets represent such a mapping m : U → {−1, 1}|U | as a vector m, then
the hash function induced by m is

hm(A) =

{
1 if m · tA ≥ 0
0 if m · tA < 0

The LSH scheme is then

Pr[hm(A) = hm(B)] = 1− θ(ta, tb)
π/2

≈ simc(A,B)

with θ(ta, tb) is the angle between ta and tb. The probability is estimated by
sampling from the set of possible mappings m.

5.4 Jaccard Coefficient

Given two subsets A, B ⊂ U of a universe U the Jaccard coefficient is

simJ(A, B) =
|A ∩B|
|A ∪B|

The hash functions for the LSH scheme are constructed by random orderings of
the universe U . Such a random ordering can by viewed as a random permutation
π of the elements of U , where π(·) delivers the position of an element according
to π. The hash function hπ(A) = min{π(x) : x ∈ A} returns the smallest position
of an element of A with respect to the ordering π. Then for two sets A,B :

Pr[hπ(A) = hπ(B)] = simJ(A, B)

The probability is estimated by sampling from the set of possible permutations.
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6 Results

In this section we evaluate the proposed definition of duplicates and conduct
experiments to investigate the tradeoff between costs for candidate filtering of
the approximative methods and candidate checking of the exact methods.

6.1 2D-NMR Database

The substances included in the database are mostly secondary metabolites of
plants and fungi. They cover a representative area of naturally occurring com-
pounds and originate either from experiments or from simulations6 based on the
known structure of the compound. The database includes 1524 spectra with 2 to
60 peaks each, for a total of about 20,000 peaks. The density in the peak space
for all peaks in the database is shown in figure 5.

6.2 Performance Results of the Approximate Methods

We implemented the approximate methods as single SQL statements7 using
the SQL 1999 standard. The used data are the 1524 original spectra, which
contain 118 fuzzy duplicates. The run times of the approximate methods are
below 20 seconds for all methods. That is a large speedup with respect to the
exact methods as well as the heuristics proposed in [15], since those methods
run several minutes on that data. The actual speedup depends on the size of
the used data set, since the methods of the two classes have different runtime
complexities (n2 versus n log n).

For the approximate methods, we investigate the number of false positives
and false negatives for different numbers k of sampled hash functions. First, the
parameter L = 5 is fixed. For small k more spectra are likely to be reported
as similar. The larger k, the more the reported integer vectors as well as the
discrete sets have to be identical. Since our mapping to discrete integer vectors
6 ACD/2D NMR predictor, version 7.08, http://www.acdlabs.com/
7 The code is available at http://users.informatik.uni-halle.de/∼hinnebur .



 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  200  400  600  800  1000  1200  1400

#F
P

, #
F

N

k, #Sampled Hash Functions

False Negatives
False Positives

Fig. 6. Number of false
positives and false nega-
tives FP,FN for Manhat-
tan with LSH (L = 5)
and diferent k for four re-
peated experiments.

0 10 20 30 40

0
20

0
40

0
60

0
80

0

Min Hashing

k

F
P

,F
N

False Negatives
False Positives

0 10 20 30 40

0
20

0
40

0
60

0
80

0

0 10 20 30 40

0
20

0
40

0
60

0
80

0

Min Hashing Shifted

k

F
P

,F
N

False Positives
False Negatives

0 10 20 30 40

0
20

0
40

0
60

0
80

0

False Positives
False Negatives

Fig. 7. Number of false positives and false negatives for Jaccard coefficient with Min-
hashing (L = 5), simple grids (left) and shifted grids (right).

and discrete sets respectively may cause false negatives, we want to allow a some
variability of the detected spectra.

A relevant performance measure is the number of false positives for very small
false negatives. At this point, the reported similar spectra can be subsequently
checked with the naive exact method to exclude the false positives. In that
respect, the approximate method acts as a strong filter while only few true
duplicates are missed. The results for Manhattan distance with LSH are shown
in figure 6. Here the number of false positives is about 390 without any false
negative. For Jaccard coefficient with Minhashing we tested the mapping to
simple grids and shifted grids. The number of false positives are about 900 and
500 respectively, as shown in figure 7.

As Jaccard coefficient with Minhashing gives more false negatives than the
Manhattan distance, additionally, we experimented with different values for L.
The results are shown in table 1. The table shows (especially in the two blocks
at the bottom) that increasing L produces more false positives while the number
of false negatives is reduced at the same time.

All reported measurements are averages of five runs. The main point is that
merely several hundreds of spectra must be explicitly checked as putative dupli-
cates compared to two millions (1524 · (1524 − 1)/2) for the naive method. For



Table 1. Number of false positives and false negatives for Jaccard coefficient with
Minhashing for different setting for L and k.

k L Minhashing Minhashing+Shift
FN FP FN FP

2 1 42 9352 46 2918
3 1 59 252 55 558
4 1 67 170 57 168
5 1 69 57 66 47

2 5 19 15167 11 13828
3 5 32 2626 31 1540
4 5 39 514 36 547
5 5 46 199 47 183

5 10 35 444 31 285
5 15 26 654 17 481
5 20 25 836 16 584
5 50 20 1445 12 1119

comparison, the best exact heuristic reported in [15] still needs to check about
30,000 duplicate pairs with the naive method. So, approximate methods are a
huge performance gain.

In conclusion, the mapping to integer vector in combination with Manhattan
distance and LSH turned out to be the best method, delivering the least number
of false positives and no false negatives. The mapping to shifted grids is better
than the mapping to simple grids, but the number of false positives is higher.
However, the minhashing method has a slight runtime advantage, since less hash
functions need to be sampled. This might be useful in case of very large data
sets.

6.3 Detected Duplicates

There were no duplicates intentionally included in the database. With a setting
of α = 3ppm and β = 0.3ppm, which are reasonable tolerances, 118 of 2,322,576
(naive method) possible pairs are reported as fuzzy duplicates.

The found duplicate pairs revealed the following types of classes of duplicates
occurring in practice: (i) accidental entry of the same spectra/substance with dif-
ferent names, (ii) spectra prediction software ignoring stereochemical quaternary
carbon configurations, (iii) some pairs consist of an experimental and a simu-
lated spectrum (see figure 8) of the same substance (which speaks for both our
duplicate definition and the simulation software), (iv) same chemical compound
in different measurement conditions (measurement frequency, solvent).

Due to the deletion of peaks in the preprocessing step, different substitutional
patterns are also candidates for near duplicates because a discrimination between
a peak splitting event or an additional substituent peak is not possible.
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Fig. 8. Two spectra as an example for a detected duplicate in our database: Peaks as
simple points from an experimental and predicted spectrum of β –Jonol. Note, that
each peak in A has matching peak in B according to α = 3.0ppm and β = 0.3ppm.

7 Conclusion

We proposed a simple and robust definition for fuzzy duplicates of 2D-NMR
spectra on the basis of co-matching peaks. Considering peak splitting as well
as inherent measurement errors are crucial to respect for in NMR- Data. We
described ideas and heuristics to embed 2D- spectra data into vector spaces and
discrete objects, to suitably interface NMR- data to data mining algorithms.
A scale up to large data volumes is achieved by applying approximate and fast
algorithms as preliminary filters prior to the computation of the exact duplicates,
avoiding the quadratic nature of searching for duplicates in sets of spectra.

We found that our mapping to integer vectors in combination with LSH and
Manhattan distance is more suitable for the task than mappings to discrete set
in combination with Jaccard coefficient and minhashing. A conservative choice
of the parameters guarantees no false negatives. The developed methods are the
foundation to start and manage a large collection of NMR spectra, which is part
of an ongoing metabolomics project at the IPB in Halle (Saale).
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