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Abstract—We propose a new low complexity Approximate
Joint Diagonalization (AJD) algorithm, which incorporates non-
trivial block-diagonal weight matrices into a Weighted Least-
Squares (WLS) AJD criterion. Often in Blind Source Separation
(BSS), when the sources are nearly separated, the optimal weight
matrix for WLS-based AJD takes a (nearly) block-diagonal form.
Based on this observation, we show how the new algorithm can be
utilized in an iteratively-reweighted separation scheme, thereby
giving rise to fast implementation of asymptotically optimal BSS
algorithms in various scenarios. In particular, we consider three
specific (yet common) scenarios, involving stationary or block-
stationary Gaussian sources, for which the optimal weight matri-
ces can be readily estimated from the sample covariance matrices
(which are also the target-matrices for the AJD). Comparative
simulation results demonstrate the advantages in both speed and
accuracy, as well as compliance with the theoretically predicted
asymptotic optimality of the resulting BSS algorithms based on
the weighted AJD, both on large scale problems with matrices
of the size 100 x 100.

Index Terms— Approximate joint diagonalization, blind source
separation, autoregressive processes, nonstationary random pro-
cesses

I. INTRODUCTION

The problem of Approximate Joint Diagonalization (AJD)
of a set of matrices is frequently encountered in the context
of Blind Source Separation (BSS), and, more generally, in the
field of multivariate statistical signal processing, whenever it
is desired to fit a set of square, symmetric, real-valued?, d x d
matrices Rx[m], m = 0,..., M —1 by structured matrices of
the form

Rx[m] = AgRg[m]AL. (1)

Here Ro[m] = diag{r{" [m],r@[m],--- ,r¥[m]} denote
unknown diagonal matrices, and Ay denotes an unknown
matrix, often termed the mixing matrix, for easy reference,
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IThroughout this paper all matrices are assumed to be real-valued. Possible
extension to the complex-valued case will be mentioned in the Conclusions.

whereas its inverse Vo = Ag! is termed the demixing matrix.
These terms are associated with the common interpretation
of Ay and Vy in the context of BSS, where an observed
multivariate (d x 1) process x[n] is modeled as an unknown
linear mixture of some d unknown sources s[n], viz. x[n] =
Ags[n].

Typically in BSS, the diagonal matrices Rs[m] contain
some statistical or structural properties of the sources, e.g.:
correlation matrices at different lags; different cumulant-slice
matrices; covariance matrices within different time intervals;
time-frequency distributions at different time-frequency points,
and more. The “target matrices” R.[m] usually denote esti-
mates of similar matrices pertaining to the observed mixtures.
The diagonality of the matrices Rs[m], which is often (but
not always) attributed to the statistical independence of the
sources, serves as the key to identifiability of the mixing matrix
A, from the matrices Ry[m].

Some of the earlier AJD algorithms (e.g., by Cardoso
and Souloumiac [4]) assume that Ay (and V) are unitary.
While this may be a reasonable assumption whenever some
sphering (spatial whitening) pre-processing is applied, such a
combined operation was shown (e.g., [5]) to limit the resulting
performance. Nevertheless, this approach has become nearly
common-practice in many BSS applications, perhaps due to
its conceptual and computational simplicity. For example, in
biomedical applications, the second-order blind identification
(SOBI) algorithm [3] based on unitary AJD [4] has recently
gained popularity [24], [13], [21].

In recent years quite a few algorithms which relax the uni-
tarity assumption have been proposed. Among these, current
state-of-the-art algorithms which are considerably computa-
tionally efficient relative to others (especially in large-scale
problems with d > 2) seem to be: Pham’s Log-Likelihood
based AJD [17] (termed LLAJD in here), which is further
constrained by the requirement that Rx[m] must all be positive
definite; FFDIAG by Ziehe et al. [33]; QAJD by \Vollgraf and
Obermayer [30]; FAJD by Li and Zhang [16] and QRJ2D by
Afsari [1].

A common approach to AJD is to minimize some
off-diagonality criterion applied to the transformed set
VR, [m]VT, thereby obtaining an estimate V of the demixing
matrix as the minimizer of this criterion. Usually (depending
on the off-diagonality criterion), such an approach requires



to constrain V, so as to evade trivial minimization by down-
scaling towards V = 0. In [4], such a constraint is naturally
entailed in the unitarity assumption. When this assumption is
relaxed, some alternative, more artificial constraints are to be
considered. One such possible constraint, considered, e.g., in
[6], is for each row of the estimated demixing matrix V to have
unit Euclidean norm. Another possible constraint, proposed
in QAJD [30] (and also applied in here), is that VRx[O]VT
must have an all-ones main diagonal. This constraint usually
corresponds (in the BSS context) to some scaling constraint on
the estimated sources. In particular, when R [0] is the observa-
tions’ empirical covariance matrix, such a constraint is rather
plausible, since the implied scaling in such a case translates
into a standard unit-power constraint on the estimated sources.
Of course, for other types of Rx[O] such a constraint may be
rather arbitrary, and, in general, the results might depend on
the particular choice of R, [0]. Naturally, this constraint is only
applicable if Ry [0] is positive definite. Note that Ry [0] may or
may not be included in the set of “target matrices” {Rx[m]}
to be jointly diagonalized.

QAJD is based on constrained minimization of the criterion

M-1

= > |loff(VRu[m]VT)[3 @

m=0

Crs(V

where the operator “off” nullifies the diagonal elements of a
matrix and “|| - | " stands for the Frobenius norm.

In FAJD [16], degeneracy of V is evaded by adding a
penalty term (proportional to log|det V) to (2). A different
off-diagonality criterion, which also does not require explicit
constraints (since it is scale-invariant in V), is used in LLAJD
[17],

M-

Z

(the operator “ddiag” nullifies the off-diagonal elements of
a square matrix, ddiag(M) = M — off(M)). This criterion is
meaningful only for positive definite target-matrices { Rx[m]}.

Another suitable AJD criterion which is scale-invariant in
'V was proposed in [1], [2],

Z R[] -

In this paper we propose an AJD approach which is
based on a Weighted Least Squares (WLS) criterion, to be
presented in the sequel. However, our proposed algorithm
does not minimize this WLS criterion directly. Using Gauss
iterations (e.g., [22]) in a specially adapted, computationally
efficient form, we apply successive diagonalizing (“demixing”)
transformations to the target matrices. The process proceeds
until the transformed target matrices reach a form for which
the direct (“mixing”) minimizer of the WLS criterion is
the identity matrix (we elaborate on “direct” vs. “indirect”
minimization in the next Section).

In addition to its computational efficiency, our approach
offers the possibility to incorporate proper weighting in the
WLS criterion, which is useful in many BSS scenarios (see,

det ddiag(VRx[m]V7)

C
e det(VR[m]VT)

)

Cya(V V~lddiag(VR[m]VT)V~

Il

e.g., [31], [8], [25], [23]). Such weighting can improve (or
even optimize, asymptotically) the performance of AJD-based
BSS approaches by accounting for statistical properties of the
estimated target set.

Our algorithm is given the acronym WEDGE - Weighted
Exhaustive Diagonalization with Gauss itErations. As we
shall show, in its unweighted (or uniformly-weighted) version
(termed U-WEDGE)?, our solution is closely related to both
FFDIAG and QAJD.

In order to enable comparison of the weighted version,
we also considered possible modification of QAJD to allow
weighting®. While the resulting Weighted QAJD (W-QAJD)
is significantly more computationally intensive than WEDGE,
we show that the small-errors perturbations of W-QAJD and
WEDGE are similar.

The paper is organized as follows: In the following section
we present our approach in its unweighted version first, for
simplicity of the exposition. We then consider the weighted
version in Section Ill and present our iterative algorithm in
Section IV. Intricate weight matrices suitable for WEDGE
are derived in Section V for three different BSS scenarios.
Computer simulations in Section VI demonstrate the validity
of our analysis and exhibit the computational properties and
accuracy performance of WEDGE.

Our weighted version of QAJD is proposed in Appendix A,
where we also deduce the small-errors similarity of W-QAJD
to WEDGE.

Il. DIAGONALIZATION WITH UNIFORM WEIGHTS

We consider the unweighted (or uniformly-weighted) U-
WEDGE first. As already implied in the Introduction, there
are (at least) two possible ways to express the desired joint-
diagonality property. One is a so-called “direct” form (used,
e.g., in [32], [29])

Ry[m] ~ AR;A” (5)
and the other is the “indirect” form (used, e.g., in [4], [30]),
VR [m]VT ~ Rym)] (6)

étioth form =0,1,..., M — 1). When the joint diagonality is
act, (5) and (6) are obviously equivalent, with V = A~L.
However, when the relation is approximate, and some measure
of the matrix fit is used for both (5) and (6), the matrix V
which optimizes the fit in (6) will not necessarily be the inverse
of the matrix A which optimizes the fit in (5) (except in some
particular cases).

Suppose that we fuse these two forms into one, using a
Least-Squares criterion for the matrix fit; Namely, for any two
matrices V and A define

M-—1
Cis(V,A) £ Y [VRL[m]V? — AD,, vAT |3, (7)
m=0

2In [28] the algorithms WEDGE and U-WEDGE were called WAJD and
UWAUJD, respectively.

3Similar modification of FFDIAG is meaningless, since FFDIAG does not
explicitly minimize any criterion in which the weighting can be incorporated.



where D,, v 2 ddiag(VR[m]VT). Now, for any “demix-
ing” matrix_V, one can find a “mixing” matrix é which
minimizes Cr,s(V, A) with respect to A. This A = A can be
considered the “residual mixing” matrix which remains after
the “demixing” matrix V is applied to the target matrices. In
other words, define

argmin, Crs(V, A)
M-1 .
argming > [[ VR, [m]V” —

m=0

o) 2

The (matrix) function ©(V) fits to any “demixing” matrix V
its “residual mixing” matrix A, which attains the best “direct”
LS fit of the transformed target matrices.

Suppose now, that the matrix V solves the equation
©(V) = L Roughly speaking, this implies that the set of
matrices {VRx[m]VT} cannot be jointly-diagonalized any
more, since its “residual mixing” matrix, or its “best direct-
form diagonalizer” (in the LS sense) is A = I, the identity
matrix*.

We show in Appendix B, that a necessary condition for
©(V) =1 s a simpler set of nonlinear “normal equations”,

m]VT - ddiag(VRx[m]VT)| =0 .

Z VR,
)

Note that some rows-scaling constraint for V is still required,
since if any matrix V solves the set (9), so does the matrix
DV where D is any diagonal matrix. This can be easily
observed by noting that for any diagonal matrix D, we have
¥ (DV) = D¥(V)D3. This rows-scaling invariance in V
is also evident from the basic equation (8), as well as from
the well-known inherent scale-ambiguity in BSS. We therefore
also employ a scaling convention, which is the one used in
QAID - ddlag(VRx[O]VT) = 1. For convenience in the
notations we shall assume that the matrix R, [0] is part of
the target -set, hence all summations indices over m begin at

= 0. When R,[0] is to be excluded from the set, the
summatlon should begin at m = 1.

It is interesting to note here, that the AJD solution provided
by the FFDIAG algorithm [33] can also be shown to satisfy
our condition (9)°. Up to date it has been unclear whether
or not FFDIAG actually minimizes any explicit criterion or
solves any explicit equation (expressed in terms of the target-
matrices). Our observation identifies such an equation, and,
moreover, asserts that any solution of (9) is also a station-
ary point of FFDIAG, and vice-versa. In this sense, results
produced by FFDIAG and U-WEDGE are equivalent.

Note further, that (9) is only a necessary condition for
a solution of (8), since it only implies that A = T is a
stationary point, but not necessarily a minimum, of the LS
criterion in (8). Thus, while any solution of FFDIAG solves

4Note that the minimized expression in (8) is insensitive to the signs of the
columns of A - we therefore employ a convention by which argmin always
selects the minimizer with non-negative diagonal elements.

5To observe this, note that if (and only if) (9) is satisfied, all of the Yi,j
terms on the bottom of p.783 in [33] (an unnumbered equation in there)
vanish, and the update process in FFDIAG is thereby halted.

(9) as well, it is not guaranteed to also solve (8), namely to
be a U-WEDGE solution. Observe, for example, that given
any set of target matrices, one can usually construct two
additional symmetric matrices, such that when these matrices
are appended to the set, V = I solves (9), see Appendix C for
more details. However, such an undesired solution is usually an
unstable stationary point: with any slight perturbation thereof,
U-WEDGE would rapidly drift to another solution of (8),
providing a reasonable diagonalization solution.

Also note that the other algorithms may also have similar
undesired solutions. For example the constrained criterion (2)
of QAJD appears to have local minima at matrices that are
close to false solutions of (9), see the discussion in [16].
Similarly, as shown in [2], the LLAJD criterion (3) may exhibit
false local minima or saddle points at matrices satisfying

M-—1 1
— Z VR [m]VT (dduag(VRx[m]VT)) =1. (10)

In Appendlx A we shall observe another interesting relation
to another AJD algorithm, namely QAJD. Unlike FFDIAG,
QAJD minimizes an explicit LS criterion (2), which can be
modified into a WLS criterion. To enable a more general com-
parison between WEDGE and a weighted version of QAJD,
we shall develop (in Appendix A) a weighted version of
QAJD, W-QAJD (which is considerably more computationally
intense than WEDGE). As a by-product, we shall be able to
observe similarity in the small-errors perturbations between
W-QAJD and WEDGE (which would obviously also hold for
the particular cases of unweighted QAJD and U-WEDGE).
Indeed, numerical simulations show, that the constrained
minimization of Crs(V) in (2) (i.e. outcome of QAJD) and the
similarly constrained (scaled) solution to @(V) = I (outcome
of WEDGE) are quite often very close to each other, especially
when the target matrices consist of small perturbations of a
set which is exactly jointly diagonalizable. However, this is
certainly not always the case in general, as evident in the
simulation results which will be presented in the sequel.

I1l. INCORPORATING A WEIGHT MATRIX

The unweighted QAJD and U-WEDGE can be generalized
by introducing an arbitrary positive definite weight matrix W.
To this end, in the generalized QAJD, the LS criterion Cs(V)
in (2) would be replaced by a quadratic form of off-diagonal
elements of VR, [m]VT

Cwis(V) = [Fs(V)]TWTL(V),

where T5(V) is an Md(d — 1)/2-dimensional column vector
composed of all off-diagonal elements of VR [m]V7” below
the main diagonal of the matrices form =0,..., M — 1. For
convenience in some of the subsequent derivations, we prefer
to group the elements of ¥5(V) according to their locations in
the matrices (rather than according to their matrix-affiliation),
namely

(V) =

where

Tre(V)

(11)

T =T T T T
[r217r31v-- yTg1,T32, - - - rd27"'7rd,d—1] (12)

2 [(VRLOIV e, - .., (VRL[M =1]VT)]7 (13)



are M x 1 vectors (the arguments (V) are omitted for brevity
in (12)).

Similar weighting can be applied for turning U-WEDGE
into WEDGE, by replacing Ct.s of (7) with a weighted version
using a weight-matrix W,

~ A ~

Cwis(V,A) = [F:(V) - f(A)]"W[E(V) — £(A)], (14)
where f(A) is a suitable quadratic form of the off-diagonal
elements of A. More specifically,

A
f(A) = [fg;_’fg;_,‘. . 7fg—]’_,f32,.. .y
where

fre(A) 2 [(ADovA )i, .,
D,.v = ddiag(VRx[m]V?)

fork,¢=1,....,d,k>¢ and m=0,1,...,M — 1.
The equation ©®(V) = I is thereby simply replaced with
Ow(V) =1, where

Ow(V) = argminAGWLs (V,A)
= argming [fa(V) — F(A)]TWIF(V) - F(AI7)

Note that 5WL§(V,A) above is not the most general
weighted form of Crs(V, A), since, due to the special struc-
ture of T5(V) and f(A), it only accounts for off-diagonal
elements of the difference matrices in the quadratic form. This
dissimilarity merely entails deliberate, simplifying elimination
of redundant terms, which are usually meaningless in the con-
text of approximate joint diagonalization, and are given null-
weight in an optimally-weighted blind separation scenario.

Weighted AJD is desirable whenever it is possible to char-
acterize random variations of Re[m] & VRy[m]V7 around
their theoretical counterparts Rs[m] in terms of their first and
second moments. In such cases, an optimal weight matrix W
(in the sense of minimum mean square error in the estimation
of V) is defined (assuming small errors) as the inverse of
the covariance matrix of Ts. However, a common problem in
such cases is that since the statistics of the source signals are
unknown, estimating the covariance of rs directly from the
observed mixtures can be prohibitively complicated. However,
in a near-separation condition, when each source is (nearly)
individually available, the relevant statistical properties of each
source can be estimated from the data, possibly leading to
reliable estimates of the covariance of T5. Then, the implied
weight matrix can be used to attain improved separation,
which would in turn yield improved estimates of rs. The
process may be iterated a few times. Such an approach was
taken, for example, in the “Optimal Fourth-Order Identification
Algorithm” (OFORIA, [23]), where the target matrices were
the covariance matrix and cumulant slices; and more re-
cently in the fast implementation of “Weights-Adjusted SOBI”
(WASOBI) [25]), where the target matrices were correlations
at different time-lags. The estimation scheme is depicted in
Figure 1.

In this paper we shall not address the WLS criterion (11) in
its full generality, but only in a form by which the weight
matrix W is block diagonal, with M x M blocks Wy,

£, fiq44]"  (15)

(ADp_1 vAT) )"
(16)

—~ unweighted weight weighted ~
{R[m]} 1 A commpaLﬂlaxtiona AJD v
Fig. 1. A general separation scheme with iteratively estimated

weights.
k., =1,...,d, k > {, each corresponding to the respective

Tre (it is important to note that the notation W, does not

refer to the (k, £)-th block of W, but rather to a block along its
diagonal, corresponding to the covariance of ;). Due to the
special structure (12), (13) of T, such block-diagonal weight-
ing can be optimal whenever the vector-pairs Tre, Tpp are
uncorrelated for all (k,¢) # (k’,¢') (although each vector T,
may have, and usually has, correlated elements). Fortunately,
it so happens in a BSS context, that due to the independence
of the sources, such a block-decorrelation condition can often
be encountered when the sources are nearly separated, as we
shall show in the sequel.

The criterion (11) of the W-QAJD can then be expressed as

d
Cwtis (\7) = Z[?ke (\A/)]TWM?M (\Af)
k>e

Similarly, for WEDGE, @w (V) of (17) can be expressed as

(18)

d
Ow (V) =argming > [Fre(V) — fre (A)]T Wi,

k>¢
[Fre (V) — fre(A)] .

By requiring that A = I be a stationary point of the sum in
(19), it can be shown that a necessary condition for V to be a
solution of @w (V) =1, is to also be a solution of the system
of equations

(19)

[Foe (V)] WieErhe(V) = 0
For (V)] Wiire (V) = 0 (20)

k,0=1,...,d, k> £ (compare with (24) in the next section).

IV. FIXED-POINT ITERATION FOR WEDGE

We shall now propose an iterative algorithm for solving
Ow(V) = I As an initial estimate of V we begin with
VIO = (R,[0])~/2, 50 as to satisfy the scaling constraint.
Then, in each iteration 4, we seek an estimate of the “residual
mixing” matrix, A (the minimizer of the WLS criterion
in (19)) so as to fit the partially diagonalized matrices
R.[m] = £ Vii- R, [m](VE=1)T by matrix products of the
form AD.[m]AT, where D.[m] = ddiag(Rs[m]). Once
A is found, the estimated demixing matrix is updated as
Vil = A-1VIi-1], Next, although it is not strictly necessary,
we recommend subsequently to normalize Vil by suitable
scaling of its rows, like in QAJD, to fulfil the constraint

ddiag (V[ﬂﬁx[o](v[ﬂ)T) =1.

Any other reasonable way of normalization may work equally
well.



In order to find A in each iteration, we apply Gauss’
iterative method (e.g., [22]), a generic tool for minimization
of a quadratic form which depends on a nonlinear function of
the parameters. More specifically, we apply

oU ! = Ul + [FTWF,| ' FTW[r,(V) — £(6V])]  (21)

where j is the internal (nested) Gauss-iteration index, 19 =
vec(Al), and F; = of(0 )/96]g_gu (assumed to have full
rank). Here £(0) is the same as f A) of (15) (although its
argument has changed from the matrix A to its vectorized
form 6). Exploiting the block-diagonality of W, (21) can be
rewritten as

d —1
Ul = e[ﬂ+{ZF WuF“]}

k>L

d
: {Z FI Wy, (?M (V) — fie(6F )) } (22)

k>£

where FLJ} is the derivative (matrix) of fy, with respect to 6,
whose elements can be easily shown to be given by

Ofe(6)
0Apg |g_gi

dkp denoting Kronecker’s delta, e, the g-th column of I, and
d is a vector composed of diagonal elements of R [m], m =
0,...,M —1, namely

= [diag(f{s[()])T, . 7diag(ﬁs[M - 1])T]T'

Assume now, that the initial condition (in the internal Gauss
|terat|ons) for 9 is selected as A% = I. The linear system for
6™ is nicely decoupled in this case, so that elements of A
can be obtained merely by solving the following d(d — 1)/2

= (Okp AL + 05 A Iy @ eT)d ,  (23)

systems of 2 x 2 for k,£=1,...,d, k > £:
-~ ~ ~ -1 ~ ~
4&1] _ [ L, Wity  Th Wit ] [ YA ]
AEI] Th Wit Th, WheThr T Wi
(24)

where we have used the relation (I, ®e)d = T,,. Computed
for all pairs (k, £), (24) realizes one update of A at complexity
O(M?2d?). In the case of uniform weights, the complexity
is only O(Md?). As for the diagonal elements AEA, the
respective columns of the derivative matrices FE€ , (at A0l = =1
are all-zeros, therefore these elements remain unchanged from
their initial values of 1.

Note that the equations in (20) are indeed obtained when
requiring zero updates for all elements of A in (24), namely
when the initial guess Al = T is the minimizer of the
quadratic form, so Ow (V) =1

To proceed, rather than re-employ (22) directly for j =
1,2, ... (which would no longer enjoy the decoupling induced
by AL — I), we simply use Al to update Vil as VIl =
(AMY=1Vli=11 n other words, we merely employ a single
Gauss iteration nested within each outer iteration. Note that
the computational efficiency of our approach dwells on our
ability to use the identity matrix I as an initial guess for the
Gauss step in each iteration - which decouples the solution of

a high-dimensional system into the solution of several small-
dimensional systems (24).

Convergence of the algorithm is nearly quadratic, as inher-
ited from the Gauss iterations. Simulations confirm very good
global convergence even in high dimensions, significantly
outperforming the competitors in terms of speed (in Matlab®),
with similar estimation accuracy (in the unweighted version).

Note further, that the proposed algorithm can be easily
modified for a tracking environment. Since one update of the
demixing matrix is computationally very cheap, such updates
can be interlaced with updates of the target matrices { Ru[m]}.

To conclude this section, we provide a “pseudo-code” for
WEDGE.

InputS'

. M “"target matrices":

Ry[m] € R4 = m;m=0,1,..., M —1;
e d(d—1)/2 "weight matrices":
Wy € RMXM kv =1,2,...d, k>
« VO - an initial guess for V
(may be set to VIO = (R,[0])"/2).
Cut put s:
« V - the estimted unmixing matrix.
Proceed for ¢=1,2,... until convergence:
1) Generate t he transforrred set
R,[m] = VIR, [m]( VisT
(for m_O 1,..M-1);

2) Formthe d(d+1)/2 vectors
Fre = [(Ral0Dre (Ra1)ie -+ (Ra[M
(for k,£=0,1,...d , k>10);

3) Set Al =1 and substitute all of its
of f-di agonal el ements with sol utions
of the d(d—1)/2 systems of 2x2
equations in (24) (for
kt=0,1,...d , k>10);

4) set VIl = (Alh=tvl-1

5) Re-normalize rows of VI

Upon convergence (i=icnq), set V= Vlinal,

T
= 1)k

V. WEIGHT MATRICES IN DIFFERENT BSS SCENARIOS

In this section we provide three different examples for
three different BSS scenarios, in which introduction of proper
weighting into the AJD process can attain asymptotically
optimal separation results. The weighting is introduced into
the AJD via the use of WEDGE in the iteratively reweighted
scheme outlined in Figure 1 above. All three scenarios assume
the noiseless, static, invertible mixing model x[n] = Ags[n]
(forn =1,2,...,N). The separation is based on second-order
statistics only, and the sources are all assumed to be Gaus-
sian - therefore closed-form expressions for the (estimated)
covariance of correlations estimates can be easily obtained and
exploited for (asymptotically) optimal weighting.

In subsection V-A we consider the separation of stationary
autoregressive (AR) sources. In subsection V-B we consider
separation of nonstationary sources, assumed to be block-
stationary and white within blocks. In fact, under asymptotic
conditions the resulting optimally-weighted algorithm can be



regarded in this case as a novel implementation of the Block
Gaussian Likelihood algorithm (BGL, by Pham, [19]), since
they are both asymptotically optimal. However, we also show
(in subsection V-C) how weighting can be exploited in the case
of block-stationary sources which are not white within blocks
- to which the BGL algorithm cannot be readily applied.

A. Stationary AR sources: WASOBI

In this subsection we derive weight matrices for WASOBI,
for separation of independent stationary sources, modeled as
AR random processes. The matrices are computed for the case
of Gaussian sources, for which the resulting separation would
be asymptotically optimal (approaching the corresponding
Cramér Rao bound (CRB) for best possible separation [10]).
Note that (at least) two other approaches, similarly exhibiting
asymptotic optimality for this problem, are known in the
literature: A Maximum Likelihood - based approach [7] by
Dégerine and Zaidi, and a Gaussian Mutual Information -
based approach [19] by Pham. However, so far only WASOBI
appears to be computationally applicable to large-scale prob-
lems [25]. Note further, that the optimal solution for the case
of known spectra of the sources was characterized by Pham
and Garat in [18]. We shall revisit this characterization in the
sequel.

We assume AR sources of known maximal order p,qz,
with distinct sets of AR coefficients. The observations’ cor-
relation matrices take the structure of (1) where Rg[r] =
diag{r1[7],r2[7],-- - ,ra[7]} are the sources’ correlation ma-
trices (diagonal due to the spatial independence of the
sources), such that r,[7] is the auto-correlation of sy[n] at
lag 7. It was shown in [9] that (asymptotically) the set of
M = ppae + 1 sSymmetric estimated correlation matrices

ﬁx[T] = % Z (x[n]xT[n + 7] +x[n + T]xT[n]) . (25)

atlags7=0,...,M —1 (assuming N + M — 1 samples are
available) form a sufficient statistic for estimating Ay.

To estimate the elements of cov[r,], we shall assume
that the observations are (nearly) separated and are therefore
(nearly) statistically independent. Throughout this section we
shall use the simplified notations R[] and Ry,[7] instead of
(Rx[7]) ke and (Rx[7])xe, respectively. Under the Gaussianity
assumption we have [20]:

A}i_Ifloo N E{(}A?u[T] - RkZ[T])(ﬁpq [TI] — Ry, [TI])

= 5kp(5gq§kg[T/ — 7'] + (Skq(SngM[T/ + 7'] (26)
where dy, is the Kronecker delta and
&elr] = > Rux[m|Rulr —m] . (27)

m=—0Q

Note that under the near-separation assumption, Ryp[m] =
dkprk[m], so that cov[Tye,Tpe] = 0 unless k£ = p and ¢ = g,
which establishes the block-diagonality of cov[rx] and of the
associated (optimal) W.

It can be shown that £.[0],. .., &k [2M — 2] can be com-
puted as the correlation sequence of an AR process whose

coefficients are given by a convolution of the k-th and the ¢-
th AR coefficients. To see this, note that (27) can be rewritten
as

Erelr] = % 7{ Si(2)Se(2) 2™ Lz . (28)

where Sy (z) and S¢(z) are Z-transforms of r[r] and r,[7],
respectively. Next, note that for an AR process with coeffi-

cients ag, . .., ax,pm—1 We have
2
g
Sp(z) = ——— 2 29
G) = LAy =

where Ag(z) = Ef‘f;ol armz~™, and that the covariance
sequence of each AR source is the inverse Z-transform of
Sk (2), namely

1
il = 51 74 Si(2)27"1dz .

The aforementioned convolution relation follows from struc-
tural comparison of (27)-(30).

The computation of &[0],...,&e[2M — 2] can proceed
by finding AR coefficients of processes with covariance func-
tions r4[7] and r¢[7], and by computing their convolution to
form AR coefficients of an auxiliary AR process. Finally,
&ke[0], - - ., Ere[2M — 2] are found as the covariance function
of the auxiliary process. The last step can be done in O(M?)
operations, for example, by the inverse Schur and the inverse
Levinson algorithms [20]. Furthermore, notice that the (p, q)-
th element of cov[yy,] reads

(COV[Tre])pg = (Erelp — ] + &relp + @ —2]) (2 = 6e) , (31)

therefore cov[ry,] is a sum of Toeplitz and Hankel matrices,
so its inverse Wy, can be computed in O(M?) operations,
e.g., following the procedure in [12]. This procedure is used
in the Matlab® implementation of WASOBI [27].

When the sources’ correlations rj[7] (or their AR parame-
ters) are known, the resulting weight matrices are optimal (un-
der weak asymptotic conditions). When these optimal weight
matrices are plugged into the “normal equations” in (20), a
condition for the optimality of V is obtained. It is interesting to
examine whether this optimality condition coincides with the
optimality condition (for separation of stationary sources with
known spectra) derived by Pham and Garat in [18], which, in
our notations (for the problem at hand) can be expressed as

(30)

M
S GlT(VRLIVT ) =0 1<k#0<d. (32)
=M

Here ¢x[7] are the Fourier coefficients of the inverse of the
spectral density of the k—th source. The answer is, indeed,
positive, and we provide a proof of this equivalence in Ap-
pendix D.

As an interesting by-product, our proof shows that W g,r s,
the product of the optimum weight matrix and the vector
of true covariances of the ¢—th source, is independent of
£, and depends only on the spectrum of the k—th source.
Consequently, it is possible to design an algorithm which
is similar to WASOBI, but does not need to compute all
d(d—1)/2 weight matrices Wy,, but only d sequences ¢[7],



k = 1,...,d instead. However, the presentation of such an
algorithm exceeds the scope of this paper.

B. Block-stationary-white sources: BGL

The BGL algorithm [19] was proposed for BSS of block-
wise stationary (independently, identically distributed (i.i.d.)
in each block) Gaussian random processes. In this section we
propose an alternative approach, which is based on the iterative
process outlined in Figure 1, and is therefore asymptotically
optimal, just like BGL.

The block-stationarity assumption in [19] asserts that the
observation interval n = 1,2,..., N can be divided into M
nonoverlapping intervals, each of length NV,,,, in which each of
the sources is Gaussian and i.i.d., having zero mean and vari-
ance (Rs[m]);; > 0, where 7 denotes the source index and m
denotes the interval index. Our proposed separation approach
is based on the AJD of the set of the observations’ covariance
matrices from all intervals, Rx[m], m = 0,...,M — 1,
estimated using straightforward averaging within each interval.

It can be easily seen that if the sources are nearly separated,
we have Rx[m] =~ Rx[m] ~ Rs[m], and, since each source
is assumed to be i.i.d. in time,

var(Rie[m]) = (Ra[m]) ek (Rs[m])ee/Nom (33)

and ﬁu[m] and Ry [m'] are uncorrelated unless k& = &,
(=0 and m =m'.

Therefore, the optimal weight matrix W is not only block-
diagonal, but also diagonal in this case, and its k¢-th diagonal
block satisfies

Nm
(Wet) it mt1 (Rs[m])rr (Rs[m]) e

(34)
Like BGL, the iteratively re-weighted WEDGE algorithm, in
which the weight matrices are computed using the estimated
Ryx[m] in lieu of the true variances in (34), is asymptotically
optimal. In practice, under asymptotic conditions, the two
algorithms produce results which are practically identical.

C. Block-stationary-AR sources: Block-WASOBI

The data models introduced in the two previous subsections
can be combined into one, allowing for block-wise stationary
Gaussian sources modeled as different AR (rather than white)
processes in each interval (and independent between intervals).
The separation would be based on applying WEDGE to the
set of M, - M, lagged covariance matrices, where M, is the
number of blocks and My is the number of delays (time
lags), equal to the maximum assumed AR order plus one.
Derivation of the optimum weight matrices is straightforward
by combining the results of the previous two sections. Such a
combined model might be useful for separating sources which
can be modeled as block-wise stationary, being colored within
blocks - such as speech signals.

The advantages of the resulting algorithm are two-fold: Nat-
urally, it offers (asymptotically) optimal exploitation of both
the nonstationarity and the spectral diversity; But furthermore,
assume that one wishes to only use zero-lagged correlations
in each interval (My; = 1, as in BGL): When the sources

,m=0,1,..., M-1.

are not white within intervals, straightforward application of
BGL to these matrices would no longer be (asymptotically)
optimal, not even with respect to these matrices alone, since
the implied weighting of BGL is equivalent to the weighting
obtained under the whiteness assumption. With the proposed
algorithm, proper weighting can be obtained, outperforming
BGL in such cases.

V1. SIMULATIONS

We first present a comparative simulation study of typical
convergence patterns and running speeds of U-WEDGE vs.
state-of-the-art competing generic AJD algorithms operating
on synthetic large-scale target-matrices. Then, we demonstrate
the performance of the weighted version (WEDGE) in the
three BSS scenarios considered in Section V, and compare to
competing algorithms in terms of accuracy and speed.

A. Generic AJD with uniform weights

1) Positive definite matrices: We generated M = 10
matrices of dimension dxd with d = 20, 100 as follows: Rs[0]
was always set to the identity matrix, whereas Rs[m] (for
m=1,..., M — 1) were generated as diagonal matrices with
all diagonal elements drawn independently from a Uniform
distribution between 1 and 2, #(1,2). Then Rx[m] were
generated as Ry[m] = AgRs[m]AT + o/2(N[m] + NT[m]),
where Ay is the mixing matrix, N[k] is a noise matrix with
i.i.d. elements drawn from a standard Normal distribution
N(0,1), and o is a free parameter. In this example, we chose
A, to be orthogonal, generated using the QR decomposition
(see, e.g., [11]) of a random matrix with i.i.d. A"(0, 1) elements
(taking the Q factor).

Fig. 2 presents typical convergence patterns of LLAJD [17],
FFDIAG [33], QAID [30], FAJD [16], QRJ2D [1] and our
proposed U-WEDGE. The convergence is shown in terms
of the unweighted criterion Crg of (2) over a single trial.
From our experience, there is no considerable variation in
these patterns between trials (when using the same matrix-
generation setup). We note the tendency of U-WEDGE to
increase Crs in the first iteration, before decreasing rapidly
in the succeeding iterations - note, however, that U-WEDGE
was not designed to minimize Crg (or any other specific
criterion), so this behavior is not a particular anomaly. We
note the significantly slower convergence (in terms of number
of iterations) of QAJD and FAJID, especially with the higher
matrix dimensions (d = 100).

We observe that in the large-scale case (d = 100), LLAJD
and QRJ2D converged after approx. 7 iterations, UWAJD after
15 and FFDIAG after 25 or 30. QAJD and FAJD needed
30 iterations or more. To complement this information, we
present in Table | the actual running-times (on a Pentium 4
PC, 3.4GHz with 1GB RAM, running in Matlab® 7.0.4 on
Windows® XP Professional) of the algorithms with the speci-
fied number of iterations. Here LLAJD stands for the original
(Pham’s) implementation of Pham’s algorithm, whereas LLA-
JDp stands for a more efficient implementation thereof (In
short, each iteration of LLAJD consists of a full sweep which
requires d(d — 1)/2 internal minimizations. In LLAJD, these
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Fig. 2. The LS criterion (2) vs. the iteration number for ¢ = 0.1,
d = 20 in diagram (a) and o = 0.02 and d = 100 in diagram (b).

internal minimizations are performed sequentially. In LLAJDp
they are partially parallelized, saving looping opeartions in
Matlab®).

Note that the theoretical asymptotic computational complex-
ities (per iteration) of the algorithms are quite similar, as it is
generally dominated by the complexity of the transformations
R.[m] = VRy[m]VT for m = 0,1,..., M — 1. However,
the actual computation times are very different, because the
different algorithms entail different programming structures in
terms of vector and matrix operations in Matlab®, possibly
reducing sequential looping and enabling parallel processing.

2) Indefinite matrices, nonorthogonal mixing: The previous
experiment was modified such that the distribution of the
diagonal elements of Rs[m] (for m = 1,...,M — 1) was
taken as U/(—1,1) (rather than U/(1,2)), giving rise to sign-
indefinite target-matrices. The mixing matrix A, was taken at
random with i.i.d. V'(0,1) elements and subsequently had its
columns normalized such that each row of Vo = Aj" had
unit Euclidean norm [15]. The results are shown in Fig. 3.
We note that the convergence of QAJD and FAJD is not as
(relatively) slow as in the previous example.

B. Weighted AJD in BSS

We now turn to present examples of applying the iteratively
reweighted scheme (Figure 1) to the three types of BSS
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Fig. 3. The LS criterion (2) vs. the iteration number for indefinite
target matrices, o = 0.1, d = 20 and o = 0.02 and d = 100, resp.

TABLE |
ASYMPTOTIC COMPUTATIONAL COMPLEXITIESOF AJD ALGORITHMS
AND COMPUTATION TIMES IN MATLAB® FORd = 100 AND M = 10,
POSITIVE DEFINITE MATRICES, ORTHOGONAL MIXING MATRIX.

Algorithm Complexity per iter. ~ No. of iter. used  Running time [s]
LLAID O(Md3) 7 11
LLAJDp O(Md3) 7 35
FFDIAG O(Md?3) 30 7.3
QAJD O(Md3) 30 56
FAJD O(Md3 + d*) 30 100
QRJ2D O(Md?) 7 12
U-WEDGE O(Md?) 15 0.40

problems presented in Section V.

1) WASOBI: We consider blind separation of d = 100 AR
sources with distinct spectra. Such an example can serve to
demonstrate suitability of the algorithm for separating high-
dimensional data sets such as high density EEG signals.

The target-matrices Ry[m] are sample covariance matrices
of the mixture at lags 7, for 7 = 0,...,10. The AR pro-
cesses had poles at pg’)eif"f’“/ﬁ, kE=1,...,5 where pfj) €
{0.6p,0.85p,0.95p} and p is a free parameter. Among the
35 = 243 possible distinct AR processes, which differ in the
modulus of at least one pair of complex conjugate poles, 100
processes were chosen for the test. The parameter p allows to
tune the spectral dynamic range of the sources. For small p,



the sources’ power spectra are flat, similar to each other and
therefore hard to separate. The spectra become more distinct
as 0.95p approaches 1. Sources of length N = 16000 were
mixed by random matrices (with a condition number < 5) in
100 independent trials.

The ISR’s of the algorithms FFDIAG and QAJD are not
shown, as they are undistinguishable by naked eye from the
results obtained by U-WEDGE. The average computation
times were about 1s for the initial separation by U-WEDGE.
Each application of WEDGE required about 3s and the entire
procedure required 27s of CPU time.

In Figure 4, diagrams (a)-(d), the inverted mean ISR and the
corresponding ISR bound computed from the corresponding
CRLB [10] are plotted versus N (the data length) for p = 1
and M = 10; vs. p for N = 16000; and vs. M (the
number of estimated correlation matrices), respectively. The
fourth diagram shows the performance in presence of additive
Gaussian noise, with the CRLB computed for the noiseless
case. Performance is also compared to that attained in the
pre-processing stage by U-WEDGE.

We note the asymptotic efficiency of WASOBI, as well as
its robustness with respect to overestimating the order of the
AR processes (by using more correlation matrices), contrasted
by the adverse impact on U-WEDGE. Comparison to SOBI in
such a large-scale (d = 100) example would take prohibitively
long running time (for 100 trials), and the results are expected
to be similar to those of U-WEDGE (since they are both use
uniformly-weighted AJD).

2) BGL: We now address the scenario of block-stationary
sources, white within each block. The target-matrices are
therefore sample covariance matrices (at zero lag), taken from
M, = 40 data segments of length 100 samples each. In each
segment the d = 20 sources were generated as spectrally-
white Gaussian processes, with variances drawn at random
(independently in each segment), from a 2/(0, 1) distribution.
The mixing matrix was the same orthogonal random matrix
Ay as in the first experiment.

Our iteratively reweighted scheme of Figure 1 was applied
(using WEDGE) with the weights prescribed in Subsection
V-B above. We used 20 iterations of the unweighted (U-
WEDGE) phase, followed by three outer (reweighting) it-
erations, each consisting of at most five inner (WEDGE)
iterations. We name the resulting algorithm BG-WEDGE.

The maximum likelihood (ML) estimator of the mix-
ing/demixing matrices in this case is realized by Pham’s
LLAJD algorithm, and thus the most meaningful diagonal-
ization criterion in this case is the log-likelihood criterion (3).

Figure 5 shows typical learning curves for LLAJD (im-
plemented using the efficient parallelized version, LLAJDp),
QRJ2D, U-WEDGE and BG-WEDGE. As expected, we can
see that BG-WEDGE achieves approximately the same perfor-
mance as LLAJD, since both are asymptotically optimal (each
with its own reasoning). The other algorithms, U-WEDGE
and QRJ2D are only suboptimal. This is also apparent from
the inverted average ISR’s obtained by the four techniques in
100 independent trials. They were nearly the same, equal to
38.15 dB for LLAJD and BG-WEDGE and equal to 33.94 dB
for both U-WEDGE and QRJ2D. In other words, separation

(MEAN ISR)" [68]

(MEAN ISR ™ [d8]

DATA LENGTH

(b)

16 - = = U-WEDGE
- =.-CRLB

~ <

10 20 30 a0 50 60 70

(VEAN INSR)"™ [d8]

Fig. 4. Inverted mean ISR of 100 AR sources separated by WASOBI
and U-WEDGE versus (a) parameter p, (b) the data length N, (c) the
number of estimated correlation matrices M, and (d) the input SNR
(added noise). The CRB in (d) pertains to the noiseless scenario.

performance of BG-WEDGE and LLAJD in terms of ISR was
in average 4 dB better than that of the other two techniques.

Running times, excluding the computation of the covariance
matrices (which is common to all algorithms), were 5.62s,
3.03s, 0.21s, and 0.29s for LLAJDp, QRJ2D, U-WEDGE and
BG-WEDGE, respectively. Thus, the asymptotic optimality of
BG-WEDGE in this example in Matlab® is attained at a very
low computational cost compared to LLAJD/LLAJIDp.

3) Block WASOBI: We now address the framework of

block-stationary sources which are not spectrally-white within
blocks (but are modeled as unknown AR processes). We
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compare the block-WASOBI algorithm (iteratively reweighted
with weights prescribed in Subsection V-C) to that of WASOBI
and BGL, which ignore the spectral shape of the sources
within blocks. Rather than use synthetic sources, we chose
to use real natural speech signals in this example, since such
signals roughly fit the block-stationary model, but are certainly
not white within blocks.

We used speech utterances of d = 15 different speakers
(male and female), sampled at 8000Hz. In each trial, each
source was taken as N = 6000 samples of speech by the
respective speakers, starting at random times. The sources
were mixed using a random orthogonal matrix and blindly
separated by the three methods. We applied some coarse
optimization of the tuning variables of the algorithms. For
WASOBI, we selected the AR order 12, for BGL and Block
WASOBI we selected partitioning to 20 intervals of equal
length. For Block WASOBI, the best separation was obtained
for AR order equal to one in each interval. The resultant
average Signal-to-Interference Ratios after the demixing were
26.3 dB for WASOBI, 20.7 dB for BGL, and 30.5 dB for the
Block WASOBI.

The experiment was then repeated using a non-orthogonal
mixing matrix, generated as the sum of the Identity matrix and
a random matrix with i.i.d. elements drawn from a A (0,1)
distribution. In this way, speech energy of all speakers is not
equally present in the mixtures. The resultant average SIR was
thereby reduced to 21.2 dB, 14.9 dB and 23.6 dB for WASOBI,
BGL, and Block WASOBI, respectively.

These results clearly demonstrate the advantage of Block-
WASOBI in separation of speech signals.

VIlI. CONCLUSIONS

We introduced a novel AJD algorithm, given the acronym
WEDGE, with two clear advantages over competing AJD
algorithms: significant computational efficiency, and the ability
to accommodate weight matrices, which can considerably
enhance (and even optimize) the separation performance in
BSS. We also pointed out the relation to FFDIAG [33] and
to QAJD [30], deriving a weighted version (W-QAJD) of the
latter.

The theoretical asymptotic complexity of WEDGE and U-
WEDGE is the same as that of most of its competitors,
O(Md?). In Matlab®, however, our implementation of U-
WEDGE was shown to run significantly faster than all of its
competitors. This is mainly due the convenient way in which
U-WEDGE lends itself to be coded in terms of vector and
matrix operations, avoiding looping iterations, which are rather
time-consuming in Matlab®.

For the computation of weight matrices we considered an
iteratively reweighted scheme, and prescribed the estimation
of asymptotically optimal weights in three scenarios involving
Gaussian sources: Stationary AR sources, Block-stationary
sources which are white within blocks, and Block-stationary
sources which are colored (AR processes) within blocks. These
three scenarios gave rise to the development of WASOBI,
BG-WEDGE and Block-WASOBI algorithms, respectively, all
utilizing WEDGE for the weighted AJD and U-WEDGE for
the initial, unweighted phase.

The resulting WASOBI algorithm is especially suited for
separation in large-scale problems such as EEG and MEG.
BG-WEDGE offers a computationally attractive alternative to
BGL in the Block-stationary-white scenario, and can also be
combined with WASOBI into Block-WASOBI, whose scope
extends also to block-wise-colored sources such as speech
signals.

The entire framework of AJD considered in this paper
consisted of real-valued, symmetric target-matrices. When the
target-matrices are complex-valued and Hermitian, and the
diagonal source matrices are real-valued, extension of our
algorithms for finding complex-valued mixing / demixing ma-
trices is straightforward, and merely involves substitution of all
“transpose” operations with “conjugate transpose” (thus, the
same Matlab® code can be readily applied in such cases). In
the fully-complex framework, in which the diagonal matrices
may also be complex-valued (and the target-matrices non-
Hermitian), adaptation of our algorithms is more involved, but
possible, also [27].

Full Matlab® code of the algorithms is available online at
[27].

APPENDIX A - A PROPOSED WEIGHTED VERSION OF QAJD

In this appendix, an implementation of the weighted QAJD,
termed W-QAJD is presented. It is based on a slightly modified
Newton’s method. In the special case of uniform weights, the
algorithm is called uniformly weighted QAJD (UW-QAJD)
and serves as an alternative implementation of QAJD.® The
development of the W-QAJD algorithm would provide some
insight into the small-errors perturbations of the solution, for
comparison with the WEDGE solution.

Assume that the algorithm operates near the optimum solu-
tion, i.e. assume that the constrained minimum of the criterion
(18) is achieved for V being in a close neighborhood of the
identity matrix. Then, the criterion and the constraint may be
expressed in terms of V using Taylor series expansions at

8Unlike the original QAJD algorithm, UW-QAJD does not seem to exhibit
significant differences in convergence rates between cases of positive-definite
or sign-indefinite target matrices.



V =1 An approximate solution for V would then be found
by minimizing a quadratic criterion under a linear constraint.
The next step would be the same as in WEDGE: substitute
{R[m]} with {VR[m]VT}, and iterate several times until
convergence to a stationary point is reached.

More specifically, let T, (V) in (13) be expanded in terms
of its first-order Taylor expansion as

The(V) =129 + Gpev (35)
where ¥ = vec(V —1), 72, = [(R[0))ke, - - - » (R[M — 1])e] 7,
and Gy, is a suitable M x d? matrix, namely
0 (RO)k: 0 (R[O)e: O
Gie = : (36)
0 (RIM-1). 0 (R[M-1)) 0

where the two nonzero M x d blocks in Gy, are at positions
¢ and k, respectively, for £,k =1,...,d, £ < k.
The simplified criterion is

Cou(V) = ) (10 + Gre¥) Wi (8%, + Gie¥)  (37)
E>¢
The linearized constraint is given by diag((\Af —DR[0])) =0
or Cv = 0, where
(R[O])L; 0 - 0
0 (RIO))2,: -
c=| . o (38)
0 0 (R[0])a,:

In other words, any admissible ¥ must lie in an orthogonal
complement of the columnspace of C”'. Let a matrix H denote
a basis of this orthogonal complement. In Matlab® H can be
found, e.g., by qr decomposition of C”'. Then, any admissible
V can be written as v = Hw, where W is any (d®> —d) x 1
vector. The constrained minimizer of the criterion (37) can
then be found as the unconstrained minimum of Cspv (HW)
with respect to w. Straightforward computation yields the
optimum v = Hw as

—1
v = —-H lHT (Z GkTZWMGM) H]

k>¢

.HT (Z GZZWM?M>

k>L

(39)

Then, the d? x 1 vector ¥ is re-shaped into a d x d matrix,
to which the identity matrix would be added to yield the
estimated V. In practice, the convergence rate (in terms of the
typical number of required iterations) appears to be as fast as
that of the WEDGE. However, as we can see from (39), each
iteration requires the solution of a linear system of dimension
(d*>—2) x (d?—d), so that its overall computational complexity
is O(d®). Therefore, this implementation is not suitable for
large-dimensional matrices encountered in large-scale BSS.
The derivation of the W-QAJD allows, however, asymptotic
analysis of the algorithm under the assumption that the target
matrices differ from diagonal matrices by small perturbations,
and R[ ] ~ L Then, the d x d? matrix C is approximately
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a zeros-ones matrix, such that C - vec(X) consists only of
diagonal elements X for any d x d matrix X. Thus, an
orthogonal complement H of such CT approximately equals
to a 0-1 matrix such that H - vec(X) is a (d? — d) column
vector composed of all off-diagonal elements of X. It therefore
follows that perturbation in the constraint matrix R[ | only
influence the diagonal elements of V, but not its off- -diagonal
elements. Further, under these conditions it can be seen that
the off-diagonal elements of the optimum V can be found by
solving the 2 x 2 systems

[‘:/M ] _ [ T, Wit

-1
I‘kkWuI‘u :| |: I'MWMI'M :| (40)
Vir Th WiiTy :

rkkWurM I‘kkwkgru

Note that when V is close to identity, and A = V—', we
have Vi, ~ —Ay,. Comparison of (24) and (40) reveals that
WEDGE and W-QAJD have the same first-order perturbations
under the condition that the target matrices R[m] are nearly
diagonal.

APPENDIX B - RELATION BETWEEN @(V) =TI AND
T(V)=0

A sufficient condition for (V) =1 is

dCLs(V,A)

9 (41)

‘ - 0
for k,{ = 1,...,d, where 5LS(V,A) was defined in (7).
Let By, k¢ denote the (k, £)-th element of VR [m]VT. Then
straightforward calculus gives that the condition (41) is always
satisfied for k = ¢. For k # ¢ we have

dCrs(V,A) 3
0A o

- 2
0
- aTM Z (Bm7p7q - ZAPT‘Bm,T,TAqT>
m,p,q T

d
= _QZB’”aA

7p7q
M-1

= —4 Z By keBme,e -

m=0

A=I

(ApeBmt,0Aqe)

A=I
(42)

In matrix form, condition (41) is equivalent to ¥(V) = 0,
where ¥ (V) was defined in (9).

APPENDIX C

This appendix presents a method that allows for any set of
matrices Ry[m], m = 1,..., M — 1, to find two symmetric
matrices R [M] and R, [M + 1] such that the augmented set
of the matrices obeys the equation

M+1

>~ Ry[m] - ddiag(Rx[m])| =0 .

m=0
In this case, A = I may not necessarily be argmin of
Crs(I,A) defined in (7), but it is a stationary point, where
the gradient is zero.

(43)
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Put

M-1
- [Z R, [m] - ddiag(R (44)

m=0

x[m])] ‘

The condition (43) is then equivalent to off{Ry[M] -

ddiag(Rx[M]) + Rx[M + 1] -ddiag(Rx[M +1])} = off[S] or
[(Rx[M])u' (Rx[M+1])u-] [ (Rx[M])i

(Rx[M])j;  (Rx[M +1])j5] [(Rx[M + 1))
fori,j = 1,...,d,i # j. If the diagonals of Rx[M] and

R [M + 1] are chosen in advance so the 2 x 2 matrix in
(45) are regular for each i # j (for example, one can choose
(Rx[M])si =diand (Rx[M +1])y = d—i+1fori=1,...,4d),
the off-diagonal elements of Rx[M] and Rx[M + 1] can be
found by solving (45).

The condition means that the augmented set is a stationary
solution for U-WEDGE and FFDIAG: If the algorithms are
applied to such a set of matrices, they stop without doing
anything. The stationary solution might or might not be the
desired joint diagonalizer. In practice, however, convergence
of the algorithm to such a false solution was never observed.

APPENDIX D - EQUIVALENCE OF WEDGE-WASOBI FOR
AR SOURCES TO PHAM & GARAT’S CONDITION
Pham and Garat [18] have shown that for separating
stationary Gaussian sources, the ML estimate A (which is
asymptotically optimal) has to satisfy the following set of
equations (end of p.1718 in [18], restated in our notations):

> el VRV e =

7=—N

1<k#0<d, (46)

where R.[r] is given by (25) (for all |[7| < N, N being
the observation length), and where ¢;[7] is a sequence whose
Z-transform is the inverse of Sy(z) of (29) (which is the
Z-transform of r4[7], the correlation sequence of the k-th
source).

In our case of AR sources it is straightforward to show
that ¢ [7] is a finite, symmetric sequence of (maximal) length
2pmaz + 1 (given by the scaled correlation sequence of the
respective AR coefficients). Moreover, due to the Z-transform
relation, we have the deconvolution property

Z (f)k[T]Tk[n—T] =

T=—00

Pmaz

> elrlreln—7] = 8[n], (47)

T=—"Pmaxzx

where [n] denoted Kronecker’s delta. Next, define the se-

quence
oy 1 ok[0] T=0
pll=1 {m b T #0 o
and the (pmae + 1) x 1 vectors
&’k = [ng [0] &k[l] &k[pmux]]T (49)
vy = [rg[0] 7&[1] -+ 7x[Pmac]]” (50)

Note that in this case the condition (46) can be expressed as

¢krk€( ) =0

¢ Tre(V) =0, 1<l<k<d, (51)

] _ |:Sij:| (45) namely that

where 74,¢(V) is defined in (12).
Our basic claim is that W,ry, = q’)k, and, likewise, Wyry =
¢, (where Wy, is the respective block of the WASOBI
optimal weight matrix), and therefore (46) is equivalent to
our WEDGE-WASOBI condition (20).

To prove this, we would show that the inverse relation holds,

ry = W;;glék = Ck}ﬁ(z)ka

where Cy,, the inverse of the optimal Wy, is the covariance
of the estimated #,, whose (p, g)-th element is given by (recall

(27), (31))

(52)

(Cre)pg =2(&kelp— gl + &relp+4d))  p,g=0,1,...Pmac
(53)

with
Erelt] = Z re[mlri[t —m]. (54)

Let us compute the p-th element of the product Cy¢,:

Pmaz

(Cudr) = 3 (Gl (55)
Z (el — a] + Eualp + ) Bel]
:2< Erelp — pX% Eeelp + dldrlg ])
=2 < > Eulp g Z ulp— bl 1)
=2 < Ekelp — gl Pela] + __i Ewelp — Q]ﬁgk[Q])
=2 3 Gldeuly—d+ bloled
gz ouldlénelp — dl.
Substituting &5 \:\:get
(Credi)p = Z éuld] ; relmlrilp — g — m)] (56)
- mio rofm] :2 duldrilp —m
=S wefmldlp -]
.

where we have used (47) for the transition before the last.
This established the proof that r, = W,,'¢,, and therefore

Wiy, = &;k. With straightforward substitution of the indices

it can also be shown that Wy,r, = &54. Thus, when the



sources’ spectra and correlation are known, condition (20) can
be expressed (for 1 </ < k < d) as

N ~T,
v, Wite(V) =0 & ¢ ipe(V) =

0
N ~T,
I‘gwkgrkg(V) =0 < ¢€ I‘kg(V) =0. (57)
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