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Abstract

Nearest neighbor graphs are widely used in data mining and machine learning. A brute-force

method to compute the exact kNN graph takes Θ(dn2) time for n data points in the d dimensional

Euclidean space. We propose two divide and conquer methods for computing an approximate kNN

graph in Θ(dnt) time for high dimensional data (large d). The exponent t ∈ (1,2) is an increasing

function of an internal parameter α which governs the size of the common region in the divide step.

Experiments show that a high quality graph can usually be obtained with small overlaps, that is, for

small values of t. A few of the practical details of the algorithms are as follows. First, the divide step

uses an inexpensive Lanczos procedure to perform recursive spectral bisection. After each conquer

step, an additional refinement step is performed to improve the accuracy of the graph. Finally, a

hash table is used to avoid repeating distance calculations during the divide and conquer process.

The combination of these techniques is shown to yield quite effective algorithms for building kNN

graphs.

Keywords: nearest neighbors graph, high dimensional data, divide and conquer, Lanczos algo-

rithm, spectral method

1. Introduction

Building nearest neighbor graphs is often a necessary step when dealing with problems arising from

applications in such areas as data mining (Brito et al., 1997; Dasarathy, 2002), manifold learning

(Belkin and Niyogi, 2003; Roweis and Saul, 2000; Saul and Roweis, 2003; Tenenbaum et al., 2000),

robot motion planning (Choset et al., 2005), and computer graphics (Sankaranarayanan et al., 2007).

Given a set of n data points X = {x1, . . . ,xn}, a nearest neighbor graph consists of the vertex set X

and an edge set which is a subset of X ×X . The edges are defined based on a proximity measure

ρ(xi,x j) between two data points xi and x j, where a small ρ value means that the two points are
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close. Two types of nearest neighbor graphs (Belkin and Niyogi, 2003; He and Niyogi, 2004) are

often used:

1. ε-graph: This is an undirected graph whose edge set consists of pairs (xi,x j) such that ρ(xi,x j)
is less than some pre-defined threshold ε ∈ R

+.

2. kNN graph: This is a directed graph (in general). There is an edge from xi to x j if and only if

ρ(xi,x j) is among the k smallest elements of the set {ρ(xi,xℓ) | ℓ = 1, . . . , i−1, i+1, . . . ,n}.

The ε-graph is geometrically motivated, and many efficient algorithms have been proposed for com-

puting it (see, e.g., Bentley et al., 1977; Chazelle, 1983). However, the ε-graph easily results in dis-

connected components (Belkin and Niyogi, 2003) and it is difficult to find a good value of ε which

yields graphs with an appropriate number of edges. Hence, they are not suitable in many situations.

On the other hand, kNN graphs have been shown to be especially useful in practice. Therefore,

this paper will focus on the construction of kNN graphs, for the case when ρ(·, ·) is the Euclidean

distance between two points in the R
d .

When k = 1, only the nearest neighbor for each data point is considered. This particular case,

the all nearest neighbors problem, has been extensively studied in the literature. To compute the

1NN graph, Bentley (1980) proposed a multidimensional divide-and-conquer method that takes

O(n logd−1 n) time, Clarkson (1983) presented a randomized algorithm with expected O(cdn logn)
time (for some constant c), and Vaidya (1989) introduced a deterministic worst-case O((c′d)dn logn)
time algorithm (for some constant c′). These algorithms are generally adaptable to k > 1. Thus,

Paredes et al. (2006) presented a method to build a kNN graph, which was empirically studied and

reported to require O(n1.27) distance calculations for low dimensional data and O(n1.90) calculations

for high dimensional data. Meanwhile, several parallel algorithms have also been developed (Calla-

han, 1993; Callahan and Rao Kosaraju, 1995; Plaku and Kavraki, 2007). Despite a rich existing

literature, efficient algorithms for high dimensional data are still under-explored. In this paper we

propose two methods that are especially effective in dealing with high dimensional data.

Note that the problem of constructing a kNN graph is different from the problem of nearest

neighbor(s) search (see, e.g., Indyk, 2004; Shakhnarovich et al., 2006, and references therein),

where given a set of data points, the task is to find the k nearest points for any query point. Usually,

the nearest neighbors search problem is handled by first building a data structure (such as a search

tree) for the given points in a preprocessing phase. Then, queries can be answered efficiently by ex-

ploiting the search structure. Of course, the construction of a kNN graph can be viewed as a nearest

neighbors search problem where each data point itself is a query. However, existing search methods

in general suffer from an unfavorable trade-off between the complexity of the search structure and

the accuracy of the query retrieval: either the construction of the search structure is expensive, or

accurate searches are costly. The spill-tree (sp-tree) data structure (Liu et al., 2004) is shown to be

empirically effective in answering queries, but since some heuristics (such as the hybrid scheme)

are introduced to ensure search accuracy, the construction time cost is difficult to theoretically ana-

lyze. On the other hand, many (1 + ε) nearest neighbor search methods1 have been proposed with

guaranteed complexity bounds (Indyk, 2004). These methods report a point within (1+ε) times the

distance from the query to the actual nearest neighbor. Kleinberg (1997) presented two algorithms.

The first one has a O((d log2 d)(d + logn)) query time complexity but requires a data structure of

1. The ε parameter here is different from that in the “ε-graph”.
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size O(n logd)2d , whereas the second algorithm uses a nearly linear (to dn) data structure and re-

sponds to a query in O(n + d log3 n) time. By using locality sensitive hashing, Indyk and Motwani

(1998) gave an algorithm that uses O(n1+1/(1+ε) +dn) preprocessing time and requires O(dn1/(1+ε))
query time. Another algorithm given in Indyk and Motwani (1998) is a O(d poly log(dn)) search al-

gorithm that uses a O(n(1/ε)O(d) poly log(dn)) data structure. Kushilevitza et al. (2000) proposed a

O((dn)2(n log(d logn/ε))O(ε−2) poly(1/ε)poly log(dn/ε)) data structure that can answer a query in

O(d2 poly(1/ε)poly log(dn/ε)) time. In general, most of the given bounds are theoretical, and have

an inverse dependence on ε, indicating expensive costs when ε is small. Some of these methods

can potentially be applied for the purpose of efficient kNN graph construction, but many aspects,

such as appropriate choices of the parameters that control ε, need to be carefully considered before

a practically effective algorithm is derived. Considerations of this nature will not be explored in the

present paper.

The rest of the paper is organized as follows. Section 2 proposes two methods for computing

approximate kNN graphs, and Section 3 analyzes their time complexities. Then, we show a few ex-

periments to demonstrate the effectiveness of the methods in Section 4, and discuss two applications

in Section 5. Finally, conclusions are given in Section 6.

2. Divide and Conquer kNN

Our general framework for computing an approximate kNN graph is as follows: We divide the set of

data points into subsets (possibly with overlaps), recursively compute the (approximate) kNN graphs

for the subsets, then conquer the results into a final kNN graph. This divide and conquer framework

can clearly be separated in two distinct sub-problems: how to divide and how to conquer. The

conquer step is simple: If a data point belongs to more than one subsets, then its k nearest neighbors

are selected from its neighbors in each subset. However, the divide step can be implemented in many

different ways, resulting in different qualities of graphs. In what follows two methods are proposed

which are based on a spectral bisection (Boley, 1998; Juhász and Mályusz, 1980; Tritchler et al.,

2005) of the graph obtained from an inexpensive Lanczos procedure (Lanczos, 1950).

2.1 Spectral Bisection

Consider the data matrix

X = [x1, . . . ,xn] ∈ R
d×n

where each column xi represents a data point in R
d . When the context is clear, we will use the same

symbol X to also denote the set of data points. The data matrix X is centered to yield the matrix:

X̂ = [x̂1, . . . , x̂n] = X− ceT ,

where c is the centroid and e is a column of all ones. A typical spectral bisection technique splits X̂

into halves using a hyperplane. Let (σ,u,v) denote the largest singular triplet of X̂ with

uT X̂ = σvT . (1)

Then, the hyperplane is defined as 〈u,x− c〉 = 0, that is, it splits the set of data points into two

subsets:

X+ = {xi | uT x̂i ≥ 0} and X− = {xi | uT x̂i < 0}.
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This hyperplane maximizes the sum of squared distances between the centered points x̂i to the

hyperplane that passes through the centroid. This is because for any hyperplane 〈w,x− c〉 = 0,

where w is a unit vector, the squared sum is

n

∑
i=1

(wT x̂i)
2 =

∥

∥wT X̂
∥

∥

2

2
≤
∥

∥X̂
∥

∥

2

2
= σ2,

while w = u achieves the equality.

By a standard property of the SVD (Equation 1), this bisection technique is equivalent to split-

ting the set by the following criterion:

X+ = {xi | vi ≥ 0} and X− = {xi | vi < 0}, (2)

where vi is the i-th entry of the right singular vector v. If it is preferred that the sizes of the two

subsets be balanced, an alternative is to replace the above criterion by

X+ = {xi | vi ≥m(v)} and X− = {xi | vi < m(v)}, (3)

where m(v) represents the median of the entries of v.

The largest singular triplet (σ,u,v) of X̂ can be computed using the Lanczos algorithm (Lanc-

zos, 1950; Berry, 1992). In short, we first compute an orthonormal basis of the Krylov subspace

span{q1,(X̂
T X̂)q1, . . . ,(X̂

T X̂)s−1q1} for an arbitrary initial unit vector q1 and a small integer s. Let

the basis vectors form an orthogonal matrix

Qs = [q1, . . . ,qs].

An equality resulting from this computation is

QT
s (X̂T X̂)Qs = Ts,

where Ts is a symmetric tridiagonal matrix of size s× s. Then we compute the largest eigenvalue

θ(s) and corresponding eigenvector ys of Ts:

Tsys = θ(s)ys.

Therefore, θ(s) is an approximation to the square of the largest singular value σ, while the vector

ṽs ≡Qsys is an approximation of the right singular vector v of X̂ . The acute angle ∠(ṽs,v), between

ṽs and v decays rapidly with s, as is shown in an error bound established in Saad (1980):

sin∠(ṽs,v)≤
K

Cs−1(1+γ1)

where K is a constant, Ck denotes the Chebyshev polynomial of degree k of the first kind, and γ1 =
(λ1− λ2)/(λ2− λn) in which the λi’s denote the eigenvalues of X̂T X̂ , that is, the squared singular

values of X̂ , ordered decreasingly. Note that we have Cs−1(1 + γ1) = cosh[(s− 1)cosh−1(1 + γ1)],
in which cosh is the hyperbolic cosine. Therefore, a small value of s will generally suffice to yield

an accurate approximation. Note that an exact singular vector is not needed to perform a bisection,

so we usually set a fixed value, say s = 5, for this purpose. The computation of the orthonormal

basis takes time Θ(sdn), while the time to compute θ(s) and ys is negligible, since Ts is symmetric

tridiagonal and s is very small. Hence the time for computing the largest singular triplet of X̂ is

bounded by O(sdn).
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2.2 The Divide Step: Two Methods

Based on the above general bisection technique, we propose two ways to perform the divide step for

computing an approximate kNN graph. The first, called the overlap method, divides the current set

into two overlapping subsets. The second, called the glue method, divides the current set into two

disjoint subsets, and uses a third set called the gluing set to help merge the two resulting disjoint

kNN graphs in the conquer phase. See Figure 1. Both methods create a common region, whose size

is an α-portion of that of the current set, surrounding the dividing hyperplane. Details are given

next.

hyperplane

X1 X2

(a) The overlap method.

hyperplane

X1 X2X3

(b) The glue method.

Figure 1: Two methods to divide a set X into subsets. The size of the common region in the middle

surrounding the hyperplane is an α-portion of the size of X .

2.2.1 THE OVERLAP METHOD

In this method, we divide the set X into two overlapping subsets X1 and X2:

{

X1∪X2 = X ,

X1∩X2 6= /0.

Since σvi is the signed distance from x̂i to the hyperplane, let the set V be defined as

V = {|vi| | i = 1,2, . . . ,n}.

Then we use the following criterion to form X1 and X2:

X1 = {xi | vi ≥−hα(V )} and X2 = {xi | vi < hα(V )}, (4)

where hα(·) is a function which returns the element that is only larger than (100α)% of the elements

in the input set. The purpose of criterion (4) is to ensure that the overlap of the two subsets consists

of (100α)% of all the data, that is, that2

|X1∩X2|= ⌈α|X |⌉ .

2. Here, we assume that the distances between points and the hyperplane are all different. Ties are broken arbitrarily.

The same is done for the glue method.
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2.2.2 THE GLUE METHOD

In this method, we divide the set X into two disjoint subsets X1 and X2 with a gluing subset X3:



















X1∪X2 = X ,

X1∩X2 = /0,

X1∩X3 6= /0,

X2∩X3 6= /0.

The criterion to build these subsets is as follows:

X1 = {xi | vi ≥ 0}, X2 = {xi | vi < 0},
X3 = {xi | −hα(V )≤ vi < hα(V )}.

Note that the gluing subset X3 in this method is exactly the intersection of the two subsets in the

overlap method. Hence, X3 also contains (100α)% of the data.

2.3 Refinement

In order to improve the quality of the resulting graph, during each recursion after the conquer step,

the graph can be refined at a small cost. The idea is to update the k nearest neighbors for each point

by selecting from a pool consisting of its neighbors and the neighbors of its neighbors. Formally,

if N(x) is the set of current nearest neighbors of x before refinement, then, for each point x, we

re-select its k nearest neighbors from

N(x)∪





[

z∈N(x)

N(z)



 .

2.4 The Algorithms

We are ready to present the complete algorithms for both methods; see Algorithms 1 and 2. These

algorithms share many similarities: They both fall in the framework of divide and conquer; they

both call the brute-force procedure kNN-BRUTEFORCE to compute the graph when the size of

the set is smaller than a threshold (nk); they both recursively call themselves on smaller subsets;

and they both employ a CONQUER procedure to merge the graphs computed for the subsets and

a REFINE procedure to refine the graph during each recursion. The difference is that Algorithm 1

calls DIVIDE-OVERLAP to divide the set into two subsets (Section 2.2.1), while Algorithm 2 calls

DIVIDE-GLUE to divide the set into three subsets (Section 2.2.2). For the sake of completeness,

pseudocodes of all the mentioned procedures are given in Appendix A.

2.5 Storing Computed Distances in a Hash Table

The brute-force method computes Θ(n2) pairs of distances, each of which takes Θ(d) time. One

advantage of the methods presented in this paper over brute-force methods is that the distance cal-

culations can be significantly reduced thanks to the divide and conquer approach. The distances

are needed/computed in: (1) the kNN-BRUTEFORCE procedure which computes all the pairwise

distances and selects the k smallest ones for each point, (2) the CONQUER procedure which selects
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Algorithm 1 Approximate kNN Graph Construction: The Overlap Method

1: function G = kNN-OVERLAP(X , k, α)

2: if |X |< nk then

3: G← kNN-BRUTEFORCE(X , k)

4: else

5: (X1,X2)← DIVIDE-OVERLAP(X , α) ⊲ Section 2.2.1

6: G1← kNN-OVERLAP(X1, k, α)

7: G2← kNN-OVERLAP(X2, k, α)

8: G← CONQUER(G1, G2, k) ⊲ Section 2, beginning

9: REFINE(G, k) ⊲ Section 2.3

10: end if

11: end function

Algorithm 2 Approximate kNN Graph Construction: The Glue Method

1: function G = kNN-GLUE(X , k, α)

2: if |X |< nk then

3: G← kNN-BRUTEFORCE(X , k)

4: else

5: (X1,X2,X3)← DIVIDE-GLUE(X , α) ⊲ Section 2.2.2

6: G1← kNN-GLUE(X1, k, α)

7: G2← kNN-GLUE(X2, k, α)

8: G3← kNN-GLUE(X3, k, α)

9: G← CONQUER(G1, G2, G3, k) ⊲ Section 2, beginning

10: REFINE(G, k) ⊲ Section 2.3

11: end if

12: end function

k smallest distances from at most 2k candidates for each point, and (3) the REFINE procedure which

selects the k smallest distances from at most k + k2 candidates for each point. Many of the dis-

tances computed from kNN-BRUTEFORCE and REFINE are reused in CONQUER and REFINE, with

probably more than once for some pairs. A naive way is to allocate memory for an n× n matrix

that stores all the computed distances to avoid duplicate calculations. However this consumes too

much memory and is not necessary. A better approach is to use a hash table to store the computed

distances. This will save a significant amount of memory, as a later experiment shows that only a

small portion of the n2 pairs are actually computed. Furthermore the computational time will not

be affected since hash tables are efficient for both retrieving wanted items from and inserting new

items into the table (we do not need the delete operation).

The ideal hash function maps (the distance between) a pair of data points (xi,x j) to a bucket

such that the probability of collision is low. For simplicity of implementations, we use a hash func-

tion that maps the key (xi,x j) to i (and at the same time to j). Collisions easily occur since many

distances between the point xi and other points are computed during the whole process. However,

this naive hashing has already shown rather appealing results in run time. More elaborate imple-

mentations should consider more effective hashing (e.g., double hashing) schemes.
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3. Complexity Analysis

A thorough analysis shows that the time complexities for the overlap method and the glue method

are sub-quadratic (in n), and the glue method is always asymptotically faster than the overlap

method. To this end we assume that in each divide step the subsets X1 and X2 (in both methods) are

balanced. This assumption can always be satisfied by using the Equation (3) to bisect the data set,

instead of the criterion (2). Hence, the time complexity To for the overlap method and Tg for the

glue method satisfy the following recurrence relations:

To(n) = 2To((1+α)n/2)+ f (n), (5)

Tg(n) = 2Tg(n/2)+Tg(αn)+ f (n), (6)

where f (n) is the combined time for the divide, conquer, and refine steps.

3.1 The Complexity of f

The function f (n) consists of the following three components.

3.1.1 THE TIME FOR THE DIVIDE STEP

This includes the time to compute the largest right singular vector v of the centered matrix X̂ , and

the time to divide points into subsets X1 and X2 (in the overlap method) or subsets X1, X2 and X3

(in the glue method). The former has been shown to be O(sdn) in Section 2.1, where the number

of Lanczos steps s = 5 is fixed in the implementation, while for the latter we can use a linear time

selection method to find the value hα(V ). Therefore the overall time for this step is O(dn).

3.1.2 THE TIME FOR THE CONQUER STEP

This step only involves the points in X1 ∩X2 in the overlap method or X3 in the glue method. For

each of the αn points in these subsets, k nearest neighbors are chosen from at most 2k candidates.

Therefore the time is O(kαn).

3.1.3 THE TIME FOR THE REFINE STEP

For each point, k nearest neighbors are chosen from at most k + k2 candidates. If all these distances

need to be computed, the overall time is O(k2dn). To the other extreme, if none of them are com-

puted, the factor d can be omitted, which results in O(k2n). In practice, by using a hash table, only

a very small fraction of the k + k2 distances are actually computed in this step; see also Table 3.

Hence, the best cost estimate for this step is O(k2n).

Indeed, the ultimate useful information from this estimate is that the time for the refinement is

much less than that for the division (which has a O(dn) cost), or at best is of the same order as

the latter. This can be seen from another perspective: Let the number of neighbors k be a constant.

Then even if all the distances are computed, the time is O(k2dn) = O(dn).

From the above three components and the fact that the dimension d dominates k, we conclude

that f (n) is bounded by O(dn).
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3.2 The Complexities of To and Tg

By substituting f (n) = O(dn) into (5) and (6), we derive the closed form solutions to To(n) and

Tg(n), which are stated in the following two theorems.

Theorem 1 The time complexity for the overlap method is

To(n) = Θ(dnto),

where

to = log2/(1+α) 2 =
1

1− log2(1+α)
.

Theorem 2 The time complexity for the glue method is

Tg(n) = Θ(dntg/α),

where tg is the solution to the equation

2

2t
+αt = 1.

The proofs will be given in Appendix B. Figure 2 plots the two curves of to and tg as functions

of α, together with a table that lists some of their values. Figure 2 suggests that the glue method is

asymptotically faster than the overlap method. Indeed, this is true for any choice of α.
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t
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t
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α 0.05 0.10 0.15 0.20 0.25 0.30

to 1.08 1.16 1.25 1.36 1.47 1.61

tg 1.06 1.12 1.17 1.22 1.27 1.33

Figure 2: The exponents to and tg as functions of α.

Theorem 3 When 0 < α < 1, the exponents to in Theorem 1 and tg in Theorem 2 obey the following

relation:

1 < tg < to. (7)

The proof of the above theorem will be given in Appendix B. We remark that when α >
√

2−
1≈ 0.41, to > 2. In this situation the overlap method becomes asymptotically slower than the brute-

force method. Similarly, when α > 1/
√

2≈ 0.71, tg > 2. Hence, a large α (> 0.41) is not useful in

practice.
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4. Experiments

In this section we show a few experimental results to illustrate the running times of the two proposed

methods compared with the brute-force method, and the qualities of the resulting graphs. The

experiments were performed under a Linux workstation with two P4 3.20GHz CPUs and 2GB

memory. The algorithms were all implemented using C/C++, and the programs were compiled using

g++ with -O2 level optimization. The divide and conquer methods were implemented according to

Algorithms 1 and 2, and the brute-force method was exactly as in the procedure kNN-BRUTEFORCE

given in Appendix A.

4.1 Running Time

Figure 3 plots the running times versus the dimension d and the number of data points n on a syn-

thetic data set. Since the distribution of the data should have little impact on the running times of

the methods, we used random data (drawn from the uniform distribution over [0,1]d) for this exper-

iment. From Figure 3(a), it is clear that the running time is linear with respect to the dimension d.

This is expected from the complexity analysis. In Figure 3(b), we used α = 0.2, which corresponds

to the theoretical values to = 1.36 and tg = 1.22. We used curves in the form c1n1.36 + c2n+ c3 and

c4n1.22 + c5n + c6 to fit the running times of the overlap method and the glue method, respectively.

The fitted curves are also shown in Figure 3. It can be seen that the experimental results match the

theoretical analysis quite well.
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(a) n = 10000, α = 0.2, d varying
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(b) d = 500, α = 0.2, n varying

Figure 3: The running times for randomly generated data.

4.2 Quality

In another experiment, we used four real-life data sets to test the qualities of the resulting kNN

graphs: The FREY3 face video frames (Roweis and Saul, 2000), the extYaleB4 database (Lee et al.,

3. FREY can be found at http://www.cs.toronto.edu/~roweis/data.html.

4. extYaleB can be found at http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
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2005), the MNIST5 digit images (LeCun et al., 1998), and the PIE6 face database (Sim et al.,

2003). These data sets are all image sets that are widely used in the literature in the areas of face

recognition, dimensionality reduction, etc. For MNIST, we used only the test set. Table 1 gives

some characteristics of the data. The number of images is equal to n and the size of each image,

that is, the total number of pixels for each image, is the dimension d. The dimensions vary from

about 500 to 10,000. Since some of these data sets were also used later to illustrate the practical

usefulness of our methods in real applications, for each one we used a specific k value that was used

in the experiments of past publications. These values are typically around 10.

FREY extYaleB MNIST PIE

# imgs (n) 1,965 2,414 10,000 11,554

img size (d) 20×28 84×96 28×28 32×32

Table 1: Image data sets.

The qualities of the resulting graphs versus the running times are plotted in Figure 4. Each

plotted point in the figure corresponds to a choice of α (= 0.05,0.10,0.15,0.20,0.25,0.30). The

running times of the brute-force method are also indicated. We use two quality criteria: accuracy

and average rank. The accuracy of an approximate kNN graph G′ (with regard to the exact graph

G) is defined as

accuracy(G′) =
|E(G′)∩E(G)|
|E(G)| ,

where E(·) means the set of directed edges in the graph. Thus, the accuracy is within the range

[0,1], and higher accuracy means better quality. The rank ru(v) of a vertex v with regard to a vertex

u is the position of v in the vertex list sorted in ascending order of the distance to u. (By default, the

rank of the nearest neighbor of u is 1.) Thus, the average rank is defined as

ave-rank(G′) =
1

kn
∑
u

∑
v∈N(u)

ru(v),

where N(u) means the neighborhood of u in the graph G′. The exact kNN graph has the average

rank (1+ k)/2.

It can be seen from Figure 4 that the qualities of the resulting graphs exhibit similar trends by

using both measures. Take the graph accuracy for example. The larger α, the more accurate the

resulting graph. However, larger values of α lead to more time-consuming runs. In addition, the

glue method is much faster than the overlap method for the same α, while the latter yields more

accurate graphs than the former. The two methods are both significantly faster than the brute-force

method when an appropriate α is chosen, and they can yield high quality graphs even when α is

small.

It is interesting to note that in all the plots, the red circle-curve and the blue plus-curve roughly

overlap. This similar quality-time trade-off seems to suggest that neither of the method is superior

to the other one; the only difference is the α value used to achieve the desired quality. However,

we note that different approximate graphs can yield the same accuracy value or average rank value,

hence the actual quality of the graph depends on real applications.

5. MNIST can be found at http://yann.lecun.com/exdb/mnist.

6. PIE can be found at http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html.
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Figure 4: Graph quality versus running time for different data sets. Each row of the plots cor-

responds to one data set. The left column of plots shows the 1−accuracy measure. The

right column shows the average-rank measure. Each plotted point corresponds to a choice

of α. From left to right on each curve, the α values are 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,

respectively.
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4.3 Distance Calculations and Refinements

We also report the percentage of the distance calculations, which is one of the dominant costs of

the graph construction. The superior efficiency of our methods lies in two facts. First, for n data

points, the brute-force method must compute distances between n(n− 1)/2 pairs of points, while

our methods compute only a small fraction of this number. Second, the use of a (hash) table brings

the benefit of avoiding repeating distance calculations if the evaluations of the same distance are

required multiple times. Tables 2 and 3 confirm these two claims. As expected, the larger the

common region (α) is, the more distances need to be calculated, while the benefit of the hashing

becomes more significant. It can also be seen that the savings in distance calculations are more

remarkable when n becomes larger and k becomes smaller, for example, k = 5 for the data set PIE.

FREY (k = 12) extYaleB (k = 10) MNIST (k = 8) PIE (k = 5)

α overlap glue overlap glue overlap glue overlap glue

0.05 6.07% 5.10% 5.13% 4.42% 1.19% 0.94% 0.45% 0.35%

0.10 6.55% 5.80% 5.58% 5.08% 1.42% 1.22% 0.60% 0.47%

0.15 7.48% 6.35% 6.05% 5.46% 1.74% 1.36% 0.78% 0.56%

0.20 8.28% 6.57% 6.66% 5.66% 2.20% 1.52% 1.06% 0.66%

0.25 9.69% 7.00% 7.36% 6.02% 2.92% 1.71% 1.48% 0.77%

0.30 11.48% 7.46% 8.34% 6.26% 4.04% 1.91% 2.07% 0.90%

Table 2: Percentages of distance calculations (with respect to n(n− 1)/2), for different data sets,

different methods, and different α’s.

FREY (k = 12) extYaleB (k = 10) MNIST (k = 8) PIE (k = 5)

α overlap glue overlap glue overlap glue overlap glue

0.05 9.44% 12.15% 11.46% 14.80% 9.56% 11.55% 6.85% 7.01%

0.10 7.07% 12.09% 8.46% 14.36% 6.82% 11.76% 5.27% 8.14%

0.05 5.18% 10.81% 6.25% 12.79% 4.66% 10.17% 3.52% 7.55%

0.20 3.65% 9.12% 4.35% 11.04% 2.98% 8.49% 2.15% 6.40%

0.05 2.62% 7.52% 2.90% 9.55% 1.77% 6.85% 1.23% 5.19%

0.30 1.83% 6.44% 1.88% 7.89% 0.96% 5.41% 0.62% 4.13%

Table 3: Percentages of actual distance calculations with respect to the total number of needed

distances in the refine step, for different data sets, different methods, and different α’s.

This is equivalent to the failure rate of hash table lookups.

The final experiment illustrates the importance of the refine step. Figure 5 shows the decrease

in quality if the REFINE procedure is not invoked. The refinement greatly improves the accuracy of

the approximate graph (especially for α less than 0.2) at some additional cost in the execution time.

This additional expense is worthwhile if the goal is to compute a high quality kNN graph.

5. Applications

kNN graphs have been widely used in various data mining and machine learning applications. This

section discusses two scenarios where the approximate kNN graphs resulting from our proposed

techniques can provide an effective replacement for the exact kNN graph.
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Figure 5: The refine step boosts the accuracy of the graph at some additional computational cost.

Data set: MNIST. The settings are the same as in Figure 4.

5.1 Agglomerative Clustering

Agglomerative clustering (Ward, 1963) is a clustering method which exploits a hierarchy for a set

of data points. Initially each point belongs to a separate cluster. Then, the algorithm iteratively

merges a pair of clusters that has the lowest merge cost, and updates the merge costs between the

newly merged cluster and the rest of the clusters. This process terminates when the desired number

of clusters is reached (or when all the points belong to the single final cluster). A straightforward

implementation of the method takes O(n3) time, since there are O(n) iterations, each of which takes

O(n2) time to find the pair with the lowest merge cost (Shanbehzadeh and Ogunbona, 1997). Fränti

et al. (2006) proposed, at each iteration, to maintain the kNN graph of the clusters, and merge two

clusters that are the nearest neighbors in the graph. Let the number of clusters at the present iteration

be m. Then this method takes O(km) time to find the closest clusters, compared with the O(m2) cost

of finding the pair with the lowest merge cost. With a delicate implementation using a doubly linked

list, they showed that the overall running time of the clustering process reduces to O(τn logn), where

τ is the number of nearest neighbor updates at each iteration. Their method greatly speeds up the

clustering process, while the clustering quality is not much degraded.

However, the quadratic time to create the initial kNN graph eclipses the improvement in the

clustering time. One solution is to use an approximate kNN graph that can be inexpensively created.

Virmajoki and Fränti (2004) proposed a divide-and-conquer algorithm to create an approximate

kNN graph, but their time complexity was overestimated. Our approach also follows the common

framework of divide and conquer. However, we bring three improvements over previous work: (1)

Two methods to perform the divide step are proposed, (2) an efficient way to compute the separating

hyperplane is described, and (3) a detailed and rigorous analysis on the time complexity is provided.

This analysis in particular makes the proposed algorithms practical, especially in the presence of

high dimensional data (e.g., when d is in the order of hundreds or thousands).

We performed an experiment on the data set PIE with 68 classes (see Figure 6). Since class

labels are known, we used the purity and the entropy (Zhao and Karypis, 2004) as quality measures.

2002



FAST kNN GRAPH CONSTRUCTION FOR HIGH DIMENSIONAL DATA

0.05 0.1 0.15 0.2 0.25 0.3
0.2

0.4

0.6

0.8

1
k = 5

α

pu
rit

y

 

 

exact kNN
kNN−overlap
kNN−glue

(a) Purity.

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4
k = 5

α

en
tr

op
y

 

 

exact kNN
kNN−overlap
kNN−glue

(b) Entropy.

0.05 0.1 0.15 0.2 0.25 0.3
4.2

4.3

4.4

4.5

4.6

4.7x 10
5 k = 5

α

S
S

E

 

 

exact kNN
kNN−overlap
kNN−glue

(c) Sum of squared errors.

Figure 6: Agglomerative clustering using kNN graphs on the image data set PIE (68 human sub-

jects).

They are defined as

Purity =
q

∑
i=1

ni

n
Purity(i), where Purity(i) =

1

ni

max
j

(

n
j
i

)

,

and

Entropy =
q

∑
i=1

ni

n
Entropy(i), where Entropy(i) =−

q

∑
j=1

n
j
i

ni

logq

n
j
i

ni

.

Here, q is the number of classes/clusters, ni is the size of cluster i, and n
j
i is the number of class

j data that are assigned to the i-th cluster. The purity and the entropy both range from 0 to 1. In

Figure 6 we show the purities, the entropies, and the values of the objective function for a general

purpose clustering (sum of squared errors, SSE), for different methods and different α’s. In general,
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a higher purity, a lower entropy, and/or a lower SSE means a better clustering quality. As can be

seen the qualities of the clusterings obtained from the approximate kNN graphs are very close to

those resulting from the exact graph, with a few being even much better. It is interesting to note that

the clustering results seem to have little correlation with the qualities of the graphs governed by the

value α.

5.2 Dimensionality Reduction

Many dimensionality reduction methods, for example, locally linear embedding (LLE) (Roweis and

Saul, 2000), Laplacian eigenmaps (Belkin and Niyogi, 2003), locality preserving projections (LPP)

(He and Niyogi, 2004), and orthogonal neighborhood preserving projections (ONPP) (Kokiopoulou

and Saad, 2007), compute a low dimensional embedding of the data by preserving the local neigh-

borhoods for each point. For example, in LLE, a weighted adjacency matrix W is first computed to

minimize the following objective:

E(W ) = ∑
i

∥

∥

∥xi−∑x j∈N(xi)Wi jx j

∥

∥

∥

2

, subject to ∑
j

Wi j = 1, ∀i,

where N(·) means the neighborhood of a point. Then, a low dimensional embedding Y = [y1, . . . ,yn]
is computed such that it minimizes the objective:

Φ(Y ) = ∑
i

∥

∥

∥
yi−∑y j∈N(yi)Wi jy j

∥

∥

∥

2

, subject to YY T = I.

The final solution, Y , is the matrix whose column-vectors are the r bottom right singular vectors of

the Laplacian matrix LLLE = I−W . As another example, in Laplacian eigenmaps, the low dimen-

sional embedding Y = [y1, . . . ,yn] is computed so as to minimize the cost function:

Ψ(Y ) = ∑
i, j

Wi j

∥

∥yi− y j

∥

∥

2
, subject to Y DY T = I,

where D is the diagonal degree matrix. Here, the weighted adjacency matrix W is defined in a

number of ways, one of the most popular being the weights of the heat kernel

Wi j =

{

exp(−
∥

∥xi− x j

∥

∥

2
/σ2) if xi ∈ N(x j) or x j ∈ N(xi),

0 otherwise.

The solution, Y , is simply the matrix of r bottom eigenvectors of the normalized Laplacian matrix

Leigenmaps = I−D−1/2WD−1/2 (subject to scaling).

A thorn in the nicely motivated formulations for the above approaches, is that they all begin

with a rather expensive computation to obtain the neighborhood graph of the data. On the other

hand, the cost of computing the solution Y via, for example, the Lanczos algorithm, is relatively

inexpensive, and can be summarized as7 O(rkn), which is independent of the dimension d. The

methods discussed in this paper are suitable alternatives to the expensive brute-force approach to

7. To be more exact, the dominant cost of computing r singular vectors/eigenvectors of a sparse matrix by the Lanczos

method is O(r′ ·nnz), where r′ is the number of Lanczos steps and nnz is the number of nonzeros in the matrix. The

value r′ is in practice a few times of r, and in our situation, the matrix is the (normalized) graph Laplacian, hence

nnz = O(kn).
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Figure 7: Dimensionality reduction on the data set FREY by LLE.

extract the exact kNN graph, since the approximate graphs are accurate enough for the purpose of

dimensionality reduction, while the time costs are significantly smaller. Figures 7 and 8 provide two

illustrations of this.

In Figure 7 are the plots of the dimensionality reduction results of LLE applied to the data set

FREY, where we used k = 12 as that in Roweis and Saul (2000, Figure 3). Figure 7(a) shows

the result when using the exact kNN graph, while Figure 7(b) shows the result when using the

approximate kNN graph by the overlap method with α = 0.30. It is clear that the two results are

almost identical. Figures 7(c) and 7(d) give two plots when the glue method is used. Although the
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Figure 8: Dimensionality reduction on the data set MNIST by Laplacian eigenmaps.

embeddings are different from those of the exact kNN graph in Figure 7(a), they also represent the

original data manifold quite well. This can be seen by tracking the relative locations of the sequence

of images (as shown in 7(e)) in the two dimensional space.

Figure 8 shows the plots of the dimensionality reduction results of Laplacian eigenmaps applied

to the data set MNIST, where we used k = 5. Figure 8(a) shows the original result by using the exact

kNN graph, while 8(b), 8(c) and 8(d) show the results by using the overlap method with α = 0.30,

the glue method with α = 0.15, and the glue method with α = 0.30, respectively. The four plots

all show clear clusterings of the ten classes (digits from 0 to 9), and the localization patterns of the

clusterings are very similar.
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6. Conclusions

We have proposed two sub-quadratic time methods under the framework of divide and conquer for

computing approximate kNN graphs for high dimensional data. The running times of the methods,

as well as the qualities of the resulting graphs, depend on an internal parameter that controls the

overlap size of the subsets in the divide step. Experiments show that in order to obtain a high

quality graph, a small overlap size is usually sufficient and this leads to a small exponent in the

time complexity. An avenue of future research is to theoretically analyze the quality of the resulting

graphs in relation to the overlap size. The resulting approximate graphs have a wide range of

applications as they can be safely used as alternatives to the exact kNN graph. We have shown two

such examples: one in agglomerative clustering and the other in dimensionality reduction. Thus,

replacing the exact kNN graph construction with one produced by the methods proposed here, can

significantly alleviate what currently constitutes a major bottleneck in these applications.
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Appendix A. Pseudocodes of Procedures

1: function G = kNN-BRUTEFORCE(X , k)

2: for i← 1, . . . ,n do

3: for j← i+1, . . . ,n do

4: Compute ρ(xi,x j) =
∥

∥xi− x j

∥

∥

5: ρ(x j,xi) = ρ(xi,x j)
6: end for

7: Set N(xi) = {x j | ρ(xi,x j) is among the k smallest elements for all j 6= i}
8: end for

9: end function

1: function (X1,X2) = DIVIDE-OVERLAP(X , α)

2: Compute the largest right singular vector v of X̂ = X− ceT

3: Let V = {|vi| | i = 1,2, . . . ,n}
4: Find hα(V ) ⊲ See Section 2.2.1 for the definition

5: Set X1 = {xi | vi ≥−hα(V )}
6: Set X2 = {xi | vi < hα(V )}
7: end function
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1: function (X1,X2,X3) = DIVIDE-GLUE(X , α)

2: Compute the largest right singular vector v of X̂ = X− ceT

3: Let V = {|vi| | i = 1,2, . . . ,n}
4: Find hα(V )
5: Set X1 = {xi | vi ≥ 0}
6: Set X2 = {xi | vi < 0}
7: Set X3 = {xi | −hα(V )≤ vi < hα(V )}
8: end function

1: function G = CONQUER(G1, G2, k)

2: G = G1∪G2

3: for all x ∈V (G1)∩V (G2) do ⊲ V (·) denotes the vertex set of the graph

4: Update N(x)←{y | ρ(x,y) is among the k smallest elements for all y ∈ N(x)}
5: end for

6: end function

1: function G = CONQUER(G1, G2, G3, k)

2: G = G1∪G2∪G3

3: for all x ∈V (G3) do

4: Update N(x)←{y | ρ(x,y) is among the k smallest elements for all y ∈ N(x)}
5: end for

6: end function

1: function REFINE(G, k)

2: for all x ∈V (G) do

3: Update N(x)←{y | ρ(x,y) is among the k smallest elements for all

y ∈ N(x)∪
(

S

z∈N(x) N(z)
)

}
4: end for

5: end function

Appendix B. Proofs

Theorem 1 follows from the Master Theorem (Cormen et al., 2001, Chapter 4.3). Theorem 2 is an

immediate consequence of the following lemma, which is straightforward to verify.

Lemma 4 The recurrence relation

T (n) = 2T (n/2)+T (αn)+n

with T (1) = 1 has a solution

T (n) =

(

1+
1

α

)

nt − n

α
where t is the solution to the equation

2

2t
+αt = 1.

The proof of Theorem 3 requires two lemmas.
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Lemma 5 When 0 < x < 1,

log2(1− x2) >
(

log2(1− x)
)(

log2(1+ x)
)

.

Proof By Taylor expansion,

(

ln(1− x)
)(

ln(1+ x)
)

=

(

−
∞

∑
n=1

xn

n

)(

∞

∑
n=1

(−1)n+1xn

n

)

=−
∞

∑
n=1

(

2n−1

∑
m=1

(−1)m−1

m(2n−m)

)

x2n

=−
∞

∑
n=1

(

1

2n

(

1

1
+

1

2n−1

)

− 1

2n

(

1

2
+

1

2n−2

)

+ · · ·+ (−1)n−1

n2

+ · · ·− 1

2n

(

1

2n−2
+

1

2

)

+
1

2n

(

1

2n−1
+

1

1

))

x2n

=−
∞

∑
n=1

(

1

n

(

1− 1

2
+

1

3
+ · · ·+ 1

2n−1

))

x2n

<−
∞

∑
n=1

(

ln2

n

)

x2n

= (ln2) · ln(1− x2).

The inequality in the lemma follows by changing the bases of the logarithms.

Lemma 6 The following inequality

log2(ab) > (log2 a)(log2 b)

holds whenever 0 < a < 1 < b < 2 and a+b≥ 2.

Proof By using b≥ 2−a, we have the following two inequalities

log2(ab)≥ log2(a(2−a)) = log2(1− (1−a))(1+(1−a)) = log2(1− (1−a)2)

and

(log2 a)(log2 b)≤ (log2 a)(log2(2−a)) = log2(1− (1−a))× log2(1+(1−a)).

Then by applying Lemma 5 with 1−a = x, we have

log2(1− (1−a)2) > log2(1− (1−a))× log2(1+(1−a)).

Thus, the inequality of the lemma holds.
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Proof of Theorem 3 From Theorem 2 we have

tg = 1− log2(1−αtg) > 1.

Then

to− tg =
1

1− log2(1+α)
−1+ log2(1−αtg)

=
log2(1+α)+ log2(1−αtg)− log2(1+α)× log2(1−αtg)

1− log2(1+α)
.

Since 0 < α < 1, the denominator 1− log2(1 + α) is positive. By Lemma 6 the numerator is also

positive. Hence to > tg.
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