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Abstract

State-of-the-art Multi-View Stereo (MVS) algorithms de-

liver dense depth maps or complex meshes with very high

detail, and redundancy over regular surfaces. In turn, our

interest lies in an approximate, but light-weight method that

is better to consider for large-scale applications, such as

urban scene reconstruction from ground-based images. We

present a novel approach for producing dense reconstruc-

tions from multiple images and from the underlying sparse

Structure-from-Motion (SfM) data in an efficient way. To

overcome the problem of SfM sparsity and textureless areas,

we assume piecewise planarity of man-made scenes and ex-

ploit both sparse visibility and a fast over-segmentation of

the images. Reconstruction is formulated as an energy-

driven, multi-view plane assignment problem, which we

solve jointly over superpixels from all views while avoiding

expensive photoconsistency computations. The resulting

planar primitives – defined by detailed superpixel bound-

aries – are computed in about 10 seconds per image.

1. Introduction

Automatic 3D reconstruction of urban scenes is a dif-

ficult and long-researched problem [19]. Our focus of in-

terest is automatic reconstruction of man-made environ-

ments from street-level photographs. Based on develop-

ments in feature detection, description, and matching dur-

ing the last decade, state-of-the-art Structure-from-Motion

(SfM) pipelines are now capable to compute a sparse met-

ric reconstruction of large-scale scenes [2, 9, 6, 20]. Relying

on the camera models provided by SfM, various Multi-View

Stereo (MVS) algorithms have been proposed that produce

very dense surface meshes or point clouds [28, 12, 16]

which are photoconsistent across multiple views.

Besides occlusions, non-diffuse surfaces, and repetitive

patterns, a major challenge of MVS reconstruction is the

lack of visual cues on textureless surfaces. This often causes

holes or leads to noisy structures in these regions in the

Figure 1. Our method joins sparse SfM with superpixels to obtain a

light-weight, piecewise-planar, multi-view surface reconstruction.

resulting depth maps or surface models. Such visual ar-

tifacts are particularly disturbing on regular surfaces, e.g.

planar parts [22, 18, 13], which are predominant in man-

made scenes. These effects are also observable on results

produced in city scenarios, e.g. [20, 18]. MVS methods that

can suppress these artifacts via strong regularization tend to

oversmooth the surface. Moreover, dense MVS delivers a

very redundant sampling over these regular parts, e.g. [16].

MVS methods usually require intense computations,

mainly photoconsistency calculations over many views and

many depth hypotheses. Thus, they have poor scalability in

runtime and storage space, which renders them less appeal-

ing for use in large-scale street-level urban reconstruction1.

Motivated by these drawbacks, we propose a novel

method that is capable of computing a piecewise planar re-

construction from street-level photographs and that relies

only on sparse SfM data while avoiding intense computa-

tional steps. The final 3D primitives are delineated by pro-

jecting detailed superpixel boundaries from the images.

Our approach is not supposed to challenge the accuracy

of dense MVS. To the contrary, it provides a good basis

1Companies like Apple, Google, Blom, Acute3D etc. have recently

made large-scale city models automatically by dense MVS methods. These

are typically based on aerial images, and deliver no street-level detail.
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for applications that require less detail, but higher efficiency

and better scalability. Our main contributions are:

• the combination of sparse SfM and superpixels in a

multi-view MRF for obtaining a dense, approximate,

light-weight, piecewise-planar surface reconstruction,

• an energy formulation that enables an efficient assign-

ment of superpixels from all views to planes, based on

a 3D fitting score, sparse visibility constraints, pair-

wise color similarity and image gradients,

• a plane quality criterion that measures the sensitivity

of 3D polygons w.r.t. noise in the SfM points.

2. Related work

We categorize related work into four major groups: (1)

segmentation-based stereo, (2) dense MVS, (3) segmenta-

tion of depth maps or dense point clouds, (4) methods rely-

ing on sparse SfM only and extracting planar primitives.

The first group lies in the field of dense two-view depth

estimation. Several top-performing algorithms [30, 34]

on the Middlebury challenge [21] exploit an image over-

segmentation and enforce pairwise disparity consistency in

a Markov-Random-Field (MRF). These methods effectively

propagate depth information from textured to ambiguous

textureless areas [21, 4]. They estimate initial disparities

via standard window-based stereo and group them per im-

age segment. By lifting the domain from the pixel to the

superpixel level, both the computational complexity and the

susceptibility to noise are reduced [35, 25].

The second group lies in the field of Multi-View Stereo

(MVS). The classic approach extends pairwise stereo by

linking and fusing stereo depth maps. As an example, [15]

incorporates piecewise planar patch priors into the process.

In turn, [14, 12] represent the surface by a set of ori-

ented photoconsistent 3D patches, and reconstruct them di-

rectly by exploiting multiple views. They iterate between

patch optimization, local 3D expansion and filtering. [26]

also uses multi-view consistency filtering and presents effi-

cient point-cloud reconstructions of large-scale city scenes.

These approaches are relatively simple yet effective. The

results are quasi-dense point clouds, which contain noise

and have to be further processed to obtain a surface model.

Plane-sweep stereo sweeps planes along a few principal

directions (obtained from SfM) to generate disparity hy-

potheses. The drawbacks are that surfaces are assumed to be

orthogonal to the sweeping directions and the scene is usu-

ally restricted to Manhattan-world [20, 11]. Finding non-

orthogonal dominant directions requires multi-structure fit-

ting, or normal estimation and clustering, which tend to be

unstable from sparse SfM data. [18] additionally exploits

superpixels to better cope with textureless areas, but they

rely on the Manhattan assumption, and compute photocon-

sistency per superpixel over all plane hypotheses to then

merge the resulted depth maps. In turn, we allow for many

plane orientations, and do not rely on photoconsistency.

The third group attacks the problem of redundancy in

pixel-wise depth maps or dense point clouds by detecting

planes [5] or spheres, cones, cylinders and tori [17]. These

works perform robust multi-structure fitting directly to the

dense 3D data. [13] additionally exploits the images for

finding planar and non-planar regions in dense depth maps.

They assign image pixels to a discrete set of pre-decided

plane primitives. However, their MRF optimization oper-

ates independently in each image for efficiency.

Finally, the fourth group is the most related to ours.

These works generate planar hypotheses from sparse SfM

point clouds, either by direct plane fitting [23], or by first

reconstructing line segments and vanishing directions, and

then using the images to detect support regions or to fine-

tune the plane primitives [31, 23]. [10] iterates between

photoconsistent support region growing and updating the

plane parameters. However, the method has difficulties with

textureless regions. [22] copes with textureless areas by ex-

ploiting a global MRF with multi-view constraints, yet they

assign individual pixels to the plane hypotheses, which is

time-consuming and less robust. [33] joins SfM points with

MRF optimization over superpixels but only for the purpose

of semantic scene segmentation.

In contrast to existing methods, ours does not require

dense point clouds or depth maps, exploits image over-

segmentation to simplify robust multi-structure fitting, al-

lows for any number of plane directions (no Manhattan as-

sumption) and even detects minor planes. The depth estima-

tion is truly multi-view as we use a global MRF optimiza-

tion over superpixels in all views, treating all views equally.

3. The proposed method

Our method starts by estimating the underlying camera

models, the sparse structure and its visibility by using an

existing SfM tool, e.g. [32, 27, 23]. Then finding the prim-

itives involves solving three joint problems:

• Fitting problem: compute the continous plane parame-

ters of each primitive,

• Segmentation: find the inlier SfM points and image

support regions for each primitive,

• Visibility reasoning or occlusion problem: determine

which region of a primitive is visible in which image.

These problems are inter-related, e.g. fitting requires the

support region of the particular primitive, support region

segmentation in the images (or inlier-outlier separation in



3D) requires the model parameters and visibility, while vis-

ibility reasoning over a surface relies on known views and

known surface.

3.1. Superpixels and Plane Hypotheses

In the first step, we assume that the scene is composed

of a set of planar primitives, and we aim to generate plane

hypotheses that explain the point cloud. Similar in spirit to

slanted-plane stereo [30, 34], our initial planes are restricted

to local neighborhoods defined by superpixels. This simpli-

fies the three-fold problem of fitting, support region search

and visibility reasoning. This approach can capture multi-

ple planes, while not suffering from the difficulties of direct

fitting of global planes [29], or of local plane growing either

in the image [10] or in the sparse point cloud [5]. In our ex-

perience, local plane growing [5] gives decent results over

dense point clouds but fails to capture the right planes in a

sparse SfM point cloud.

The components of our hypothesis generation method

are image over-segmentation, robust local plane fitting,

quality filtering, and plane merging.

3.1.1 Local plane fitting

Assume each of the M images Im of the scene is prelimi-

narily partitioned into a number of superpixels, e.g. by any

method in [1]. Each segment is a 4-connected set of pixels.

Let S denote the number of superpixels over all views, and

S = {s1, s2, . . . , sS} the set of superpixels si irrespective

of their image I(si).
Using RANSAC [8], we fit a plane πi robustly to the

set of 3D points Pi in each segment si, with inlier thresh-

old τ . To discriminate between random hypotheses having

the same number of inliers, we replace the inlier count scor-

ing of RANSAC by the sum of the weighted distances of all

points pk ∈ Pi from each plane hypothesis π:

C(Pi, π) =
∑

pk∈Pi

exp

(

−
1

2τ2
d2(pk, π)

)

, (1)

where d(·, ·) is the point-to-plane distance. This relaxed

score is a more robust measure than simple inlier counting.

Once the best plane hypothesis πi is found for superpixel

si, we do a final refitting to the inlier set Qi ⊆ Pi. Al-

though uniform weighting of the 3D points is used here, we

note that incorporating triangulation uncertainties into the

weights could further improve the quality of plane fitting.

3.1.2 Stability-based plane filtering

To filter out poor plane hypotheses, we propose a power-

ful stability measure using Monte-Carlo (MC) perturbation

analysis. While simple residual or point scatter analysis (by

PCA) is solely based on the arrangement, our method also

image

plane

hull of the 
superpixel

superpixel
+

+

+ +

perturbed 
inliers

Figure 2. Convex hull of a superpixel and inlier points of the lo-

cal plane fit. 3D reconstructions of the hull (right) obtained by

perturbing the inlier point set in 20 Monte-Carlo experiments.

takes point uncertainties and viewpoints into consideration.

It can discover both plane hypotheses πi with unstable point

support and planes πi that are seen in very sharp angles

across their supporting superpixel si. First, each superpixel

si is represented by the convex hull of its boundary pixels in

the image. Second, a coarse 3D reconstruction of the super-

pixel si is obtained by projecting the 2D vertices of the hull

to the plane πi. The aim is to quantify the 3D sensitivity of

this superpixel reconstruction to the uncertainty in the plane

fit πi. We perturb all inlier points in Qi to a distance τ in a

random 3D direction. Note that it may be beneficial to re-

place this with a perturbation according to individual point

uncertainties. The plane is re-fitted to the perturbed inliers

and the superpixel hull is reconstructed on the new plane.

We repeat this procedure NMC times to obtain a perturbed

set of 3D superpixel hulls (Figure 2). The sensitivity of the

3D hull is measured by the mean 3D vertex displacement,

denoted by hi. We measure the quality of a plane fit πi by

qi = exp(−hi/τ) ∈ [0, 1], (2)

where τ is the inlier threshold. Planes πi with any vertex

of the hull projected behind the camera in any of the MC

experiments are considered degenerate by enforcing qi = 0.

We than remove planes with qualities below a threshold qth.

In practice, even with a low number of MC experiments,

the method tends to capture unstable fits, including most

view-dependent degeneracies that are missed by PCA.

3.1.3 Plane merging

We significantly compress the set of remaining planes from

all views by a simple global merging procedure: a plane

is only accepted as hypothesis, if its inlier set is not fully

explained by any already accepted plane. The result is a set

of L ≪ S plane hypotheses Π = {π1, π2, . . . , πL}.

3.2. EnergyDriven MultiView Segmentation

Given the initial planes Π, which form an incomplete and

redundant, but relatively accurate approximation of the true

surface, the problem simplifies to a multi-label segmenta-

tion problem, where one associates a plane πl, represented

by a label l ∈ {1, 2, . . . , L}, to each superpixel si ∈ S .



view2

view1

view3
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Figure 3. Graph of the multi-view plane segmentation problem.

The red lines depict all adjacencies of the grey superpixel.

To solve this, consider the graph G = (V, E) with super-

pixels from all views as vertices (V = S) and with the set of

edges E = Ew ∪ Eb, where Ew is the subset of edges within

the same view and Eb between views (Ew ∩ Eb = ∅). We

connect two vertices either if the two corresponding super-

pixels si, sj are 4-connected neighbors in the same image,

or if they lie in different images, but they contain at least

one point match corresponding to a single SfM point, i.e. if

Pi∩Pj 6= ∅. This construction is illustrated in Figure 3. We

formulate the cost of a given labelling L = (l1, l2, . . . , lS)
– li being the plane label assigned to superpixel si – as

E(L) =
S
∑

i=1

Di(li) +
∑

(i,j)∈Ew

V w
ij (li, lj) +

∑

(i,j)∈Eb

V b
ij(li, lj), (3)

where Di(li) is the unary cost of assigning label li to si,
and V w

ij and V b
ij are the pairwise costs of assigning labels li

and lj to segments si and sj , provided they are in the same

view, or in different views, respectively.

3.2.1 Unary terms

Each unary term can be written as

Di(li) = Dfit
i (li) +Drays

i (li) +Dangle
i (li). (4)

The first subterm Dfit
i is a robust measure of how well each

plane πli with label li explains the 3D points detected in

superpixel si. It is formulated as

Dfit
i (li) = exp {−C(Pi, πli)/σfit} . (5)

C(Pi, πli) is the weighted inlier count in Eq. (1). It weights

each 3D point pk ∈ Pi in superpixel si by its distance from

the plane hypothesis. We set σfit = 3 in all experiments,

i.e. with 3 good inliers, the full penalty is attenuated to 37%.

The second unary subterm Drays
i (li) penalizes the as-

signment of plane πli to superpixel si if there are free-space

violations on the plane in the region observed by the super-

pixel (see Figure 4). Visibility rays are shot from each view-

point to all 3D points detected in the view, and each ray that

intersects the plane πi in the region visible in superpixel si
contributes to the penalty cost, provided that the target 3D

point of the ray is not inlier to the plane (farther from the

plane than τ ). If Crays(si, πli) is the number of such rays,

Drays
i (li) = 1− exp {−Crays(si, πli)/σrays} . (6)

view1

view2

plane 
hypothesis

a

A

B

C

D

b

c

d

>τ 

<τ 

s

Figure 4. Free-space violations. Only the red ray contributes to the

penalty of assigning the superpixel s to the plane, since it goes to

an outlier point and intersects the superpixel’s plane projection .

Since the number of visibility rays is usually much higher

than the number of SfM points, the rays yield a dense dis-

tribution of plane intersections. Thus, we relax the penalty

by setting σrays = 5 in all experiments to make our score

robust to incorrect rays shot to outlier SfM points.

The third unary subterm Dangle
i (li) discourages the as-

signment of a plane to a superpixel if the plane is seen in a

sharp angle αi through the superpixel. It is defined as

Dangle
i (li) =

{

1
2 + 1

2 cos
{

π
∆

(

αi −
π
2

)}

, αi ≥
π
2 −∆

0, otherwise

where αi ∈ [0, π
2 ] is the largest angle between the plane

normal and the incident viewing rays from the 3D vertices

of the superpixel’s reconstructed convex hull (Fig. 2). Only

angles above π
2 −∆ are penalized, where ∆ is set to 5◦.

3.2.2 Within-views pairwise terms

The terms V w
ij in Eq. (3) penalize any two neighboring su-

perpixels si and sj within the same image being assigned

to different planes. These pairs are connected by an edge

in Ew in the graph representation G. We use the following

site-dependent Potts-model.

V w
ij = (αCij + βGij) · ω

w
ij · I[li 6= lj ], (7)

where I[·] is 1 if its argument is true, and is 0 otherwise.

Cij is a color term, Gij a gradient term, ωw
ij is an additional

site-dependent weight characterizing the adjacency strength

of the pair si, sj , while α and β represent the balance with

respect to the unary terms Di(li) in Eq. (3). We set β = α.

The color term Cij increases the penalty for two neigh-

boring superpixels of similar color having different labels.

Cij = exp(−cij/σc), (8)

where σc is a shaping parameter we fix to 0.05, and cij is the

difference between the mean color of neighboring superpix-

els si and sj , measured as the mean of the absolute differ-

ences between individual RGB color components (ranging

between 0 and 1). The color term Cij enforces that two

superpixels similar in color should observe the same scene



plane, which is desirable when a homogeneous surface is

artificially split into multiple superpixels. However, it does

not take care of a potential boundary edge observed between

them, e.g. as an indication of a crease edge or discontinuity

between walls of similar color.

The gradient term enforces the same plane to neighbor-

ing superpixels if their shared boundary section observed in

the image is weak. It is formulated as

Gij = exp(−gwij/σg), (9)

where σg is a shaping parameter also fixed to 0.05, and gij
is the magnitude of the image gradient along boundary pix-

els between si and sj . The lower the gradient, the more the

superpixels are enforced to observe the same plane. This as-

sumes that edges between superpixels are observed where

there is a crease or discontinuity between scene planes.

However, it does not distinguish these from texture edges.

We decrease the effect of neighboring superpixels on

each other, if they share a shorter boundary. Therefore, ωw
ij

is an additional weighting in function of the relative length

of the shared boundary between si and sj , namely

ωw
ij = 1− exp(−bij/σb), (10)

where σb is a shaping parameter (0.1 in all experiments)

and bij is the shared boundary length divided by the shorter

superpixel circumference. Using ratio instead of pixel count

makes the formulation indifferent to the size of superpixels.

3.2.3 Between-views pairwise terms

The terms V b
ij in Eq. (3) may penalize any two superpixels

si and sj being assigned to different planes, if they share

at least one feature match arising from the same SfM point.

Such pairs are connected by an edge in Eb in the graph G.

We formulate the between-view penalty as

V b
ij = γωb

ijCij · I[li 6= lj ], (11)

where γ is the balance w.r.t. the unary terms Di(li) in

Eq. (3). We set γ to α multiplied by the ratio between

the number of average intra-view and the average inter-view

correspondences per superpixel, to balance out the effect of

the two types of adjacencies. Cij is the color term of Eq. (8),

and ωb
ij is a weight encoding the neighborhood strength for

superpixels between views, replacing ωw
ij of Eq. (10).

ωw
ij = 1− exp(−nij/σn), (12)

where σn encodes how strongly two superpixels should be

tied in color in function of the number of shared 3D points

nij . The higher the number of shared points the more

we take into consideration differences in color in the Potts

penalty. We use σn = 2 in all experiments.

3.3. Optimization of the support regions

Finding the global minimum of the energy function in

Eq. (3) is NP-hard, but there exist efficient graph-cuts al-

gorithms that have guarantees for the local minimum com-

puted. Since our pairwise terms are regular, we use the α-

expansion algorithm [3] for minimization.

As a result, we have one of the plane hypotheses πli ,

li ∈ {1, 2, . . . , L} assigned to each superpixel si ∈ S .

Common plane labels organize superpixels into groups

that span across multiple views. This extends the support

regions of the initial plane hypotheses to larger sets of SfM

points, and provides the superpixel boundaries as natural

borders for the support regions. To delineate the support re-

gions per plane, we extract the pixelwise polygonal bound-

aries of each connected component from the label map per

view, project them to the plane to obtain 3D polygons, apply

standard polygon simplification, and consider the union of

the polygons as the support region. The views complement

each other, i.e. different areas of each support region on a

plane may come from different views, and scene parts ob-

served in multiple views may not be captured by perfectly

matching regions, due to the sparseness of the SfM cloud.

Since labelling enforces a plane label to each superpixel,

components with no data support may occur. After a con-

nected component analysis on the labelled graph G, we re-

move all planes with no point support, as well as the ones

with weak support, based on an area ratio criterion.

In our formulation, we do not penalize for depth dis-

continuities along superpixel boundaries, as this would not

allow to efficiently pre-compute all costs. However, our

penalties arising at similar neighboring superpixels sepa-

rated by weak boundaries enforce planarity in such regions.

Feeding all the initially fit planes along with their quali-

ties as label costs to discourage the assignment of poor qual-

ity planes to superpixels is possible, but is inefficient and

unstable. The immense number of planes before merging,

and very similar plane hypotheses result in an ineffective α-

expansion. In turn, our plane filtering and merging steps of

Section 3.1 effectively reduce the number of hypotheses.

In summary, our graph-based optimization has several

advantages. First, it propagates planes from data rich planar

regions to weakly supported or empty regions, where initial

planes are not available. Second, it reduces the number of

planes used to model the scene. Third, it makes the support

regions as consistent as possible within and between views

and allows to produce dense piecewise planar outputs by

projecting the superpixels to their assigned planes.

4. Experiments

We demonstrate our method on several outdoor se-

quences consisting of around 0.8 MPixel images of land-

mark and street-side scenes. Herz-Jesu-P8 [24], Merton



College I, III [31] are smaller public datasets, while Poz-

zoveggiani [7], and our Mirbel dataset are larger datasets

with considerable clutter. We use VisualSFM [32] to obtain

a sparse SfM reconstruction, and extract around 400-600

SLIC superpixels [1] per image to assure that they are large

enough to contain enough points for plane fitting. Fig. 5

gives an overview of our pipeline, Fig. 6 shows results for

more datasets, and Table 4 summarizes numerical results.

The only varying parameter between datasets is the

threshold τ . It depends on the scale of the reconstruction

and on the level-of-detail requirements. It could be easily

fixed over datasets if their scales were known, e.g. geo-

located. We set the factor between the unary and pairwise

terms to α = 0.1 in all experiments, and use a plane qual-

ity threshold qth = 0.1, which is a good trade-off between

eliminating bad planes and keeping slanted structure planes,

e.g. roofs. Other parameters are fixed as described earlier.

Our plane stability criterion effectively filters out bad

plane hypotheses, and the merging step greatly reduces the

number of hypotheses by eliminating redundant ones (see

Table 4). This allows the Graph-Cuts Optimization (GCO)

to work efficiently on the reduced set. Note how the opti-

mization completes the structures by extending support re-

gions from data-rich to weakly supported areas based on

image content. The boundaries of the support regions align

with superpixel borders. The result is a dense 3D arrange-

ment of polygons approximating the geometry of the scene.

Failure cases are planes extended into sky regions that

are strongly contaminated by SfM outliers, drift in plane ex-

trapolation that causes fragmentation of planar regions into

multiple segments, and artifacts at plane boundaries due to

weakly observable crease edges or discontinuities crossed

by superpixels. These artifacts could be removed by sky-

line detection, by E-M style iterations between plane fitting

and segmentation, by superpixel splitting, and by using an

additional volumetric optimization, such as in [5, 16].

The overall runtime of our Matlab implementation on a

3.4 GHz i7 CPU is around 10-17 seconds per image, i.e.

7 minutes for Mirbel, 11 for Pozzo, whereas related work

reports 40 minutes and more than 2 hours for similar-size

datasets [22]. Moreover, we have not explicitely used any

parallelization, and 60-80% of the runtime is spent in our

fairly slow implementation of superpixel extraction. We ex-

pect a large benefit from processing superpixels in parallel

(including over-segmentation, plane fitting, plane filtering),

as well as calculating individual energy terms in parallel. It

is mainly the final GCO that requires joint data. GCO run-

time is more affected by the plane hypotheses than the num-

ber of superpixels/images (Table 4). Without plane merg-

ing, the number of labels grows linearly with the number

of images. However, the same scene parts are observed by

many views (as also required by SfM), and in urban scenes,

real planes (wall, roof) often extend over many views and

many buildings. Hence, the merging step is effective and

makes the growth sublinear. Further speed-up could be ob-

tained by restricting the planes to building or city blocks,

and by only processing a pre-selected set of views (view

clustering and view selection).

5. Conclusion

State of the art for Multi-View Stereo (MVS) produces

detailed and accurate geometry, but suffers from high run-

time, redundant output, and often lacks higher-level knowl-

edge of the geometry. For applications requiring less detail

but better scalability, e.g. city reconstruction from ground-

level images, we proposed a method that computes a piece-

wise planar approximation of the scene from sparse data,

while exploiting dense multi-view image support.

Our approach combines sparse SfM data with super-

pixels and solves a dense multi-view segmentation prob-

lem in an efficient way by avoiding expensive photocon-

sistency computations. Our solution extracts both dominant

and small planar structures without using the Manhattan as-

sumption, or without the need for clustering normals, which

are difficult to precisely compute in sparse point clouds.

Our plane quality criterion and merging step eliminates low-

quality planes and significantly shrinks the hypothesis set

prior to optimization. Our method does not require dense

depth maps [13], or dense point clouds [5] as input, effi-

ciently deals with textureless areas, unlike e.g. [10, 11],

produces denser results than PMVS [11], and is much faster

than, e.g. [22], which is also based on sparse SfM.

Future work will investigate real-time capabilities and

the combination of planar and free-form elements into a

watertight volumetric reconstruction, as well as experimen-

tation with large-scale city scenes.
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